《相似三角形》_优秀PPT课件人教版1
合集下载
人教版《相似三角形》ppt-优秀版1

A
D B
C
D' B'
C'
分别连接AC,A'C' 则△ABC∽△A'B'C',△ADC∽△A'C'D',
S△ABC k 2 S△A'B 'C '
S ACD k 2 S A'C 'D'
S△ABC
k
S2 △A'B 'C '
S△ACD
k S2 △A'C 'D '
S△ABC S△ACD k2
S S △A'B'C'
人教版《相似三角形》ppt-优秀版1
人教版《相似三角形》ppt-优秀版1
2.如图,△ABC∽△A'B'C',他们的周长分别为60cm和72cm,且
AB=15cm,B'C'=24cm,求BC、AC、A'B'、A'C'的长.
解: △ABC∽△A'B'C'
k 60 15 72 18
AB 15 A' B ' 18
探究
(1)如图,△ABC∽△A'B'C',相似比为k1,它们的面积比是多少?
A
A'
BD
C
B' D'
C'
如图,分别作出△ABC和△A'B'C'的高AD和A'D'.
∵
∠ADB =∠A/D/B/ ∠B=∠B'
∴ △ABD∽△A'B'D'
AD AB k
D B
C
D' B'
C'
分别连接AC,A'C' 则△ABC∽△A'B'C',△ADC∽△A'C'D',
S△ABC k 2 S△A'B 'C '
S ACD k 2 S A'C 'D'
S△ABC
k
S2 △A'B 'C '
S△ACD
k S2 △A'C 'D '
S△ABC S△ACD k2
S S △A'B'C'
人教版《相似三角形》ppt-优秀版1
人教版《相似三角形》ppt-优秀版1
2.如图,△ABC∽△A'B'C',他们的周长分别为60cm和72cm,且
AB=15cm,B'C'=24cm,求BC、AC、A'B'、A'C'的长.
解: △ABC∽△A'B'C'
k 60 15 72 18
AB 15 A' B ' 18
探究
(1)如图,△ABC∽△A'B'C',相似比为k1,它们的面积比是多少?
A
A'
BD
C
B' D'
C'
如图,分别作出△ABC和△A'B'C'的高AD和A'D'.
∵
∠ADB =∠A/D/B/ ∠B=∠B'
∴ △ABD∽△A'B'D'
AD AB k
【人教版】相似三角形精品课件PPT1

;……
(4)若Dn-1Dn=
1 3
Dn-1B,En-1En=
1 3
En-1C,则DnEn=
.
不经历风雨,怎么见彩虹 没有人能随随便便成功!
再见!
请分别度量l3 , l4, l5.在l1 上截得的两条线段AB, BC和
在l2 上截得的两条线段DE, EF的长度, AB: BC与
DE:EF相等吗?任意平移l5 , 再量度AB, BC, DE,
EF的长度, 它们的比值还相等吗?
l1
l2
猜
若AB2,那 么 ,DE ? 2
BC3
EF 3
A B
想 :
若AB3,那 么 ,DE ? 3
OC上,且DF∥AC,EF∥BC.求证:
OD∶OA=OE∶OB
,证,明:EOFOD∥DAF∥B COOACFC.
O F O E ,
OC OB
O D O E . OA OB
课堂小结
一、平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段
成比例. (关键要能熟练地找出对应线段)
二、要熟悉该定理的几种基本图形
符号: ∽ 读作:相似于
(人教版)相似三角形优秀PPT1
(人教版)相似三角形优秀PPT1
A
A1
要把表示对应角顶点的 字母写在对应的位置上.
B
C 注意
B1
C1
当∠A =∠A1,∠B =∠B1,∠C =∠C1, AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时, 则△ABC 与△A1B1C1 相似, 记作△ABC ∽ △A1B1C1.
1.经历两个三角形相似的探索过程,体验分析归 纳得出数学结论的过程,进一步发展学生的探究、 交流能力.
课件《相似三角形》精美PPT课件_人教版1

(1) x=32
20
(2) y= 3 m=80° n=55°
引知探 练结
实践应用:
例1 、如图,有一块三角形形状的草坪,其中一边的长 2、若△A1B1C1 ∽△A2B2C2 ,且A1C1 =2,A2C2 =6,
已知:这两个三角形全等!
是20m。在这个草坪的图纸上,这条边长5cm,其他两边 两个直角三角形一定相似吗?两个等腰
D
E
在这个草坪的图纸上,这条边长5cm,其他两边的长都是3 5cm,求该草坪其他两边的实际长度。
若已知:△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系 ?对应边呢?什么是相似比?
已知:如图,D,E分别是AB,AC边的中点,求证:△ADE∽△ABC。
如△ABC∽△A’B’C’
∴DE=BF.又∵EF∥AB, 解:草坪的形状与其图纸上相应的形状相似,他பைடு நூலகம்的相似比是
2000:5=400:1
2、若△A1B1C1 ∽△A2B2C2 ,且A1C1 =2,A2C2 =6,
例3:如图,在△ABC中,DE∥BC,D,E分别在AB,AC上,求证:△ADE∽△ABC.
两个直角三角形一定相似吗?两个等腰
则四边形BFED是平行四边形.
且 , 则 △ADE___△ABC。 如△ABC∽△A’B’C’
1、有 一块三角形形状的土地 ,其中最长一边长20m ,在这块土地的 图纸上,这三边分别长5cm,2cm,4cm,则该土地其他两边的实 际长度 分别为______、______。
两个直角三角形一定相似吗?两个等腰
∵DE∥BC∴∠ADE=∠B∠AED=∠C, 则△A1B1C1 与△A2B2C2 的相似比是_____。
过点E作EF∥AB,交BC于F,
《相似三角形》精品ppt人教版1

《相似三角形》精品ppt人教版1
如图,已知,在Rt△ABC中,∠BAC=90°, AD⊥BC于点D,点O是AC边上一点,连接 BO交AD于点F,OE⊥OB交BC边于点E. 求证△ABF∽△COE;
B D
F E
A
O
C
《相似三角形》精品ppt人教版1
《相似三角形》精品ppt人教版1
1、作业本 2、分层
4.4两个三角形相似的判定(1)
1、相似三角形的定义?
如果 ∠A=∠A / ,∠B=∠B / ,∠C=∠C / A
A/
AB BC AC AB BC AC
那么 ΔABC∽ΔA/B/C/
B
C B/
C/
2、相似三角形的性质:
如果 ΔABC∽ΔA/B/C/ 那么 ∠A=∠A / ,∠B=∠B / ,∠C=∠C /
那么∆ADE∽∆ABC 吗?为什么?
A
解:∆ADE∽∆ABC 理由如下:
DE是ABC中位线
D
E
DE∥1 BC 2
B
C
ADEB,AEDC
AEADDE1 AB AC BC 2
又 A A
∴∆ADE∽∆ABC
4、在 ∆ABC 中,D点在DA是B上AB,中E点在A,CE上是,A若C中DE点∥,BC,
那么∆ADE∽∆ABC 吗?
BB
B
A 45米
A
15米 D
C
20米
A
E
D
《相似三角形》精品ppt人教版1
oC
DE
F
《相似三角形》精品ppt人教版1
将两块完全相同的等腰直角三角板摆成如图 的样子,假设图形中的所有点、线都在同一 平面内,那么图形中有相似(不包括全等)三 角形吗?如果有,把它们都写出来.
《相似三角形》相似图形PPT课件

定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。
。
性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设
。
相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例
课件《相似三角形》精美PPT课件_人教版1

①两个角对应相等;
②两边对应成比例,且夹角相等;
③三边对应成比例.
2
(3)相似三角形有何性质?
A
A'
B
C B'
C'
①相似三角形的对应角___相__等____ ②相似三角形的对应边___成__比_例____
(4)什么是相似三角形的相似比? 注意顺序
相似比=对应边的比=
AB AC BC. AB AC BC
相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。
如图, △ABC ∽△A′B′C′,相似比为k,分别作出 △ABC 和△ A′B′C′ 的角平分线AE 和 A′E′.
①相似三角形的对应角_________
如图4-32,AD是△ABC的高,AD=h,点R
其余两个顶点分别在AB、AC上,则
如图,△ABC中BC=12cm,高AD=6cm,
如图,△ABC是一张锐角三角形的硬纸片.
AD是边BC上的高,BC=40cm,AD=30cm. 在AC边上,点S在AB边上,SR⊥AD,垂足为E.
相似三角形的对应角平
从这张硬纸片剪下一个长HG是宽HE的2倍
分线之比,中线之比, 通过类比的数学方法得到:
相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。
正方形边长x为
()
A.3cm B.4cm C.5cm D.6cm
17
拓展训练2 如图,△ABC是一张锐角三角形的硬纸片. AD是边BC上的高,BC=40cm,AD=30cm. 从这张硬纸片剪下一个长HG是宽HE的2倍 的矩形EFGH.使它的一边EF在BC上,顶点 G,H分别在AC,AB上.AD与HG的交点为M.
想一想: 它们还有哪些性质呢?
②两边对应成比例,且夹角相等;
③三边对应成比例.
2
(3)相似三角形有何性质?
A
A'
B
C B'
C'
①相似三角形的对应角___相__等____ ②相似三角形的对应边___成__比_例____
(4)什么是相似三角形的相似比? 注意顺序
相似比=对应边的比=
AB AC BC. AB AC BC
相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。
如图, △ABC ∽△A′B′C′,相似比为k,分别作出 △ABC 和△ A′B′C′ 的角平分线AE 和 A′E′.
①相似三角形的对应角_________
如图4-32,AD是△ABC的高,AD=h,点R
其余两个顶点分别在AB、AC上,则
如图,△ABC中BC=12cm,高AD=6cm,
如图,△ABC是一张锐角三角形的硬纸片.
AD是边BC上的高,BC=40cm,AD=30cm. 在AC边上,点S在AB边上,SR⊥AD,垂足为E.
相似三角形的对应角平
从这张硬纸片剪下一个长HG是宽HE的2倍
分线之比,中线之比, 通过类比的数学方法得到:
相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。
正方形边长x为
()
A.3cm B.4cm C.5cm D.6cm
17
拓展训练2 如图,△ABC是一张锐角三角形的硬纸片. AD是边BC上的高,BC=40cm,AD=30cm. 从这张硬纸片剪下一个长HG是宽HE的2倍 的矩形EFGH.使它的一边EF在BC上,顶点 G,H分别在AC,AB上.AD与HG的交点为M.
想一想: 它们还有哪些性质呢?
《相似三角形》ppt(精选)人教版1

用相似三角形测量高度
思 考 一 下
• 请同学们回忆判定两三角形相似的条件有 哪些?
《相似三角形》ppt(精选)人教版1
想 一 想
同学们,怎样利用相似三 角形的有关知识测量旗杆
(或路灯,或树,或烟囱)的高
度?
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
方法1:利用阳光下的影子
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
一盗窃犯于夜深人静之时潜入某单位作案, 该单位的自动摄像系统摄下了他作案的全过 程.请你为警方设计一个方案,估计该盗窃犯 的身高.
《相似三角形》ppt(精选)人教版1
如图,过点A作AN⊥DC于N,交EF于M. ∵人、标杆和旗杆都垂直于地面, ∴∠ABF=∠EFD=∠CDH=90°. ∴人、标杆和旗杆是互相平行的. ∵EF∥CN,∴∠1=∠2, ∵∠3=∠3,△AME∽△ANC, ∴ AM EM
AN CN
∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM都已测量出,
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
1.旗杆的影子长6米,同时测得旗杆顶端到其 影子顶端的距离是10米,如果此时附近小树的影 子长为3米,那么小树的高是___________米.
2 .如图,AB表示一个窗户的高,AM和BN表
示射入室内的光线,窗户的下端到地面的距离
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
2.如图是小明设计用手电筒测量某建筑物高度 的示意图,点P处放一水平的平面镜,光线从点 A出发经平面镜反射后刚好射到该建筑物CD的顶 端C处,已知AB⊥BD,CD⊥BD,且测得
思 考 一 下
• 请同学们回忆判定两三角形相似的条件有 哪些?
《相似三角形》ppt(精选)人教版1
想 一 想
同学们,怎样利用相似三 角形的有关知识测量旗杆
(或路灯,或树,或烟囱)的高
度?
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
方法1:利用阳光下的影子
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
一盗窃犯于夜深人静之时潜入某单位作案, 该单位的自动摄像系统摄下了他作案的全过 程.请你为警方设计一个方案,估计该盗窃犯 的身高.
《相似三角形》ppt(精选)人教版1
如图,过点A作AN⊥DC于N,交EF于M. ∵人、标杆和旗杆都垂直于地面, ∴∠ABF=∠EFD=∠CDH=90°. ∴人、标杆和旗杆是互相平行的. ∵EF∥CN,∴∠1=∠2, ∵∠3=∠3,△AME∽△ANC, ∴ AM EM
AN CN
∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM都已测量出,
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
1.旗杆的影子长6米,同时测得旗杆顶端到其 影子顶端的距离是10米,如果此时附近小树的影 子长为3米,那么小树的高是___________米.
2 .如图,AB表示一个窗户的高,AM和BN表
示射入室内的光线,窗户的下端到地面的距离
《相似三角形》ppt(精选)人教版1
《相似三角形》ppt(精选)人教版1
2.如图是小明设计用手电筒测量某建筑物高度 的示意图,点P处放一水平的平面镜,光线从点 A出发经平面镜反射后刚好射到该建筑物CD的顶 端C处,已知AB⊥BD,CD⊥BD,且测得
《相似三角形》ppt课件-2024鲜版

2024/3/27
7
02
相似三角形判定定理及其应用
2024/3/27
8
平行线截割定理
01
02
03
定理内容
两条平行线被一组横截线 所截,则对应线段成比例 。
2024/3/27
定理证明
通过相似三角形的性质进 行证明。
应用场景
在几何证明题中,常用于 证明线段之间的比例关系 。
9
三角形中位线定理
定理内容
2024/3/27
21
其他实际问题应用举例
2024/3/27
摄影中的透视问题
在摄影中,由于透视效应的存在,照片中的物体可能会产生变形。利用相似三角形原理可 以对照片进行透视校正,恢复物体的真实形状。
地理信息系统(GIS)中的应用
在GIS中,经常需要处理地理空间数据。利用相似三角形原理可以对地图进行缩放、旋转 和平移等操作,实现地理空间数据的可视化和分析。
似。
2024/3/27
4
相似之比称为相似比。
性质
01
相似三角形的对应角相等。
02
03
相似三角形的对应边成比例 。
04
2024/3/27
05
相似三角形的面积比等于相 似比的平方。
5
相似三角形对应角相等
2024/3/27
对应角
在两个相似三角形中,相互对应 的角称为对应角。
解析
由于△ABC与△DEF全等,所以△DEF的周长 等于△ABC的周长,即5cm + 7cm + 6cm = 18cm。
2. 例2
解析
已知△ABC与△PQR相似,且AB:PQ=2:3。 若△ABC的面积为12cm²,求△PQR的面积 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1 条 B.2 条 C.3 条 D.4 条
【解析】如图所示的三条直线 l1、l2、l3.
【答案】C
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
11.(2012 中考预测题)兴趣小组的同学要测量树的高度,在阳光下,一 名同学测得一根长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的 高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶 上,测得此影子长为 0.2 米,一 级台阶高为 0.3 米,如图所示,若此时落在 地面上的影长为 4.4 米,则树高为( )
【解析】∵∠ACD=∠ABC,∠BAC=∠CAD,∴△ADC∽△ACB,∴AACB=AADC,∴AB·AD =AC2,则 AB=4,所以 BD=AB-AD=3.
【答案】3
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
15.(2012 中考预测题)如图,在△ABC 中,AB=9,AC=6,点 E 在 AB 上, 且 AE=3,点 F 在 AC 上,连结 EF,若△AEF 与△ABC 相似,则 AF=______.
【解析】分情况讨论,①当△ABC∽△AEF 时,AABE=AACF,∴93=A6F,∴AF=2;②当 △ABC∽△AFE 时,AABF=AACE,∴A9F=63,∴AF=4.5.
A.4 B.5 C.6 D.7
【解析】∵∠B=∠CDE,所以 AB∥DE.因为 BD=CD,则 DE 为△ABC 的中位线,则 AB=2DE=4.
【答案】A
7.(2010·河南)如图,△ABC 中,点 D、E 分别在 AB、AC 的中点,则下列结论:①BC
=2DE;②△ADE∽△ABC;③AADE =AABC.其中正确的有(
(第 5 题)
5.已知△ABC,延长 BC 到 D,使 CD=BC,取 AB 的中点 F,连结 FD 交 AC 于点 E. (1)求AAEC的值;(2)若 AB=a,FB=EC,求 AC 的长. 答案:(1)AAEC=23 (2)AC=32a
(第 6 题) 6.如图,△ABC 内接于⊙O,AD 是△ABC 的边 BC 上的高,AE 是⊙O 的直径,连结 BE,△ABE 与△ADC 相似吗?请证明你的结论.
【答案】B
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
二、填空题(每小题 4 分,共 16 分)
13.(2010·上海)如图,△ABC 中,点 D 在边 AB 上,满足∠ACD=∠ABC, 若 AC=2,AD=1,则 DB=________.
【解析】∵BDCE=AADC,即11..85=ACA-C 1,解得 AC=6. 【答案】6
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
三、解答题(共 36 分)
17.(12分)(2011中考变式题)如图,在△ABC中,∠C=90°,AC=3,BC= 4,O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点 D、点E,连结DE.当BD=3时,求线段DE的长;
5.(2009 中考变式题)如图,在正方形网格上,若使△ABC∽△PBD,则点 P 在( )
A.P1 处
B.P2 处
C.P3 处
D.P4 处
【解析】若△ABC∽△PBD,则∠DPB=∠CAB=135°,而 P3 点满足这一条件. 【答案】C
6.(2010·苏州)如图,在△ABC 中,D、E 两点分别在 BC、AC 边上,若 BD=CD,∠B =∠CDE,DE=2,则 AB 的长度是( )
12.(2012 中考预测题)如图,已知∠1=∠2,那么添加下列一个条件后, 仍无法判定△ABC∽△ADE 的是( )
A.AB=AC AD AE
B.AB=BC AD DE
C.∠B=∠D D.∠C=∠AED
【解析】由∠1=∠2 可得∠BAC=∠DAE.所以添加另一对角相等或两边对应成比例均 能判相似.
A.AB2=BC·BD
B.AB2=AC·BD C.AB·AD=BD·BC D.AB·AD=
AD·CD
(3)(2010·临沂)如图,∠1=∠2,添加一个条件:________,使得△ADE∽△ACB.
【点拨】本组题重点考查相似三角形的性质和判定.
【解答】 (2)∵△ABC∽△DBA,∴AB=BC,即 AB2=BC·BD,故选 A.
综上所述, CE 6或12.
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
10.(2009 中考变式题)如图,P 是 Rt△ABC 斜边 AB 上任意一点(A、B 两点 除外),过 P 点作一直线,使截得的三角形与 Rt△ABC 相似,这样的直线可以 作( )
解:在△ ABC 中,∠ C=90, AC=3, BC=4, ∴ AB=5. ∵ BD 为直径, ∴∠DEB=90 ∠C ∵∠ABC =∠DBE ∴△ACB ∽△DEB, ∴ DE BD ,
AC AB D3E=53 DE=95
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
A.1 B. 2 C. 3 D. 3
22
2
3
(第 2 题)
(第 3 题) 3.如图,在平行四边形 ABCD 中,E 是 BC 上的点,AE 交 BD 于点 F,如果BBCE=23, 那么FBDF=23.
4.如图,∠DAB=∠CAE,请补充一个条件:________,使得△ABC∽△ADE.
(第 4 题) 答案不唯一,如∠B=∠D 或∠C=∠AED 或AADB =AACE等.
DB AB (3)答案不唯一,如∠D=∠C 或∠E=∠B 或AD=AE.
AC AB
1.已知△ABC∽△DEF,且 AB∶DE=1∶2,则△ABC 的面积与△DEF 的面积之比为( B )
A.1∶2
B .1∶4
C.2∶1
D.4∶1
2.如图所示,Rt△ABC∽Rt△DEF,则 cos E 的值等于( A )
18.(12分)(2011·珠海)如图,在平行四边形ABCD中,过点A作AE⊥BC, 垂足为E,连结DE,F为线段DE上一点,且∠AFE=∠B.
)
A.3 个 B.2 个 C.1 个 D.0 个
【 解 析 】 ∵DE
是 △ABC
的
中
位
线
,
∴DE
=
1 2
BC
,
BC
=
2DE.
由
DE∥BC
得
△ADE∽△ABC, AADB=AAEC或AADE =AABC.
【答案】A
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
8.(2012.中考预测题)在平行四边形ABCD中,点E在射线AD 上,BE与对角线AC交于点F,若BC=8,DE=4,AF=3,求FC的长
14.(2010·陕西)如图,在△ABC 中,D 是 AB 边上一点,连结 CD.要使 △ADC 与△ABC 相似,应添加的条件是________.
【解析】∠ACD=∠B、∠ADC=∠ACB 或AADC=AACB,答案不唯一,只需写出一个条件 即可.
【答案】∠ACD=∠B
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
△ABE 与△ADC 相似.理由如下:在△ABE 与△ADC 中 ∵AE 是⊙O 的直径,∴∠ABE =90°,∵AD 是△ABC 的边 BC 上的高,∴∠ADC=90°,∴∠ABE=∠ADC.又∵同弧所对 的圆周角相等,∴∠BEA=∠DCA.∴△ABE∽△ADC.
相似三角形 综合训练
训练时间:60分钟 分值:100分
33
综上所述, CF 6或2
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质ppt人教版1-精 品课件 ppt(实 用版)
9.(2011.牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在 的直线上且AD=2,过点D作DE∥BC交边AC所在直线于点E,求 CE的长。
一、选择题(每小题 4 分,共 48 分) 1.(2009 中考变式题)如图,小正方形的边长均为 1,则下列图中的三角形(阴影部分)与 △ABC 相似的是( )
【解析】观察△ACB 得∠ACB=135°,被选项中只有 A 图三角形含 135°角. 【答案】A
2.(2012 中考预测题)如图,在△ABC 中,若 DE∥BC,AD=1,DE=4 cm,则 BC 的长为( ) DB 2
图1
解 : 如图(1),E在线线AD上 ∵平行四边行ABCD ∴AD ∥BC ∴△AEF ∽△CBF
∴ AF AE 4 1 CF BC 8 2
∴CF 2AF 6
图2
如图(2) : E在AD的延长线上 同(1)得, AF AE 12 3
CF BC 8 2 CF 2 AF 2 3 2
相似三角形的判定
1.两边对应成比例 ,且夹角 相等的两个三角形相似. 2.两角对应 相等 的两个三角形相似. 3.三边对应 成比例 的两个三角形相似.
相似三角形的基本图形
(1)(2010·北京)如图,在△ABC中,点D、E分别在AB、
AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC
A.8 cm B.12 cm C.11 cm D.10 cm
【解析】如图所示的三条直线 l1、l2、l3.
【答案】C
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
11.(2012 中考预测题)兴趣小组的同学要测量树的高度,在阳光下,一 名同学测得一根长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的 高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶 上,测得此影子长为 0.2 米,一 级台阶高为 0.3 米,如图所示,若此时落在 地面上的影长为 4.4 米,则树高为( )
【解析】∵∠ACD=∠ABC,∠BAC=∠CAD,∴△ADC∽△ACB,∴AACB=AADC,∴AB·AD =AC2,则 AB=4,所以 BD=AB-AD=3.
【答案】3
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
15.(2012 中考预测题)如图,在△ABC 中,AB=9,AC=6,点 E 在 AB 上, 且 AE=3,点 F 在 AC 上,连结 EF,若△AEF 与△ABC 相似,则 AF=______.
【解析】分情况讨论,①当△ABC∽△AEF 时,AABE=AACF,∴93=A6F,∴AF=2;②当 △ABC∽△AFE 时,AABF=AACE,∴A9F=63,∴AF=4.5.
A.4 B.5 C.6 D.7
【解析】∵∠B=∠CDE,所以 AB∥DE.因为 BD=CD,则 DE 为△ABC 的中位线,则 AB=2DE=4.
【答案】A
7.(2010·河南)如图,△ABC 中,点 D、E 分别在 AB、AC 的中点,则下列结论:①BC
=2DE;②△ADE∽△ABC;③AADE =AABC.其中正确的有(
(第 5 题)
5.已知△ABC,延长 BC 到 D,使 CD=BC,取 AB 的中点 F,连结 FD 交 AC 于点 E. (1)求AAEC的值;(2)若 AB=a,FB=EC,求 AC 的长. 答案:(1)AAEC=23 (2)AC=32a
(第 6 题) 6.如图,△ABC 内接于⊙O,AD 是△ABC 的边 BC 上的高,AE 是⊙O 的直径,连结 BE,△ABE 与△ADC 相似吗?请证明你的结论.
【答案】B
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
二、填空题(每小题 4 分,共 16 分)
13.(2010·上海)如图,△ABC 中,点 D 在边 AB 上,满足∠ACD=∠ABC, 若 AC=2,AD=1,则 DB=________.
【解析】∵BDCE=AADC,即11..85=ACA-C 1,解得 AC=6. 【答案】6
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
三、解答题(共 36 分)
17.(12分)(2011中考变式题)如图,在△ABC中,∠C=90°,AC=3,BC= 4,O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别交于点 D、点E,连结DE.当BD=3时,求线段DE的长;
5.(2009 中考变式题)如图,在正方形网格上,若使△ABC∽△PBD,则点 P 在( )
A.P1 处
B.P2 处
C.P3 处
D.P4 处
【解析】若△ABC∽△PBD,则∠DPB=∠CAB=135°,而 P3 点满足这一条件. 【答案】C
6.(2010·苏州)如图,在△ABC 中,D、E 两点分别在 BC、AC 边上,若 BD=CD,∠B =∠CDE,DE=2,则 AB 的长度是( )
12.(2012 中考预测题)如图,已知∠1=∠2,那么添加下列一个条件后, 仍无法判定△ABC∽△ADE 的是( )
A.AB=AC AD AE
B.AB=BC AD DE
C.∠B=∠D D.∠C=∠AED
【解析】由∠1=∠2 可得∠BAC=∠DAE.所以添加另一对角相等或两边对应成比例均 能判相似.
A.AB2=BC·BD
B.AB2=AC·BD C.AB·AD=BD·BC D.AB·AD=
AD·CD
(3)(2010·临沂)如图,∠1=∠2,添加一个条件:________,使得△ADE∽△ACB.
【点拨】本组题重点考查相似三角形的性质和判定.
【解答】 (2)∵△ABC∽△DBA,∴AB=BC,即 AB2=BC·BD,故选 A.
综上所述, CE 6或12.
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
10.(2009 中考变式题)如图,P 是 Rt△ABC 斜边 AB 上任意一点(A、B 两点 除外),过 P 点作一直线,使截得的三角形与 Rt△ABC 相似,这样的直线可以 作( )
解:在△ ABC 中,∠ C=90, AC=3, BC=4, ∴ AB=5. ∵ BD 为直径, ∴∠DEB=90 ∠C ∵∠ABC =∠DBE ∴△ACB ∽△DEB, ∴ DE BD ,
AC AB D3E=53 DE=95
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
A.1 B. 2 C. 3 D. 3
22
2
3
(第 2 题)
(第 3 题) 3.如图,在平行四边形 ABCD 中,E 是 BC 上的点,AE 交 BD 于点 F,如果BBCE=23, 那么FBDF=23.
4.如图,∠DAB=∠CAE,请补充一个条件:________,使得△ABC∽△ADE.
(第 4 题) 答案不唯一,如∠B=∠D 或∠C=∠AED 或AADB =AACE等.
DB AB (3)答案不唯一,如∠D=∠C 或∠E=∠B 或AD=AE.
AC AB
1.已知△ABC∽△DEF,且 AB∶DE=1∶2,则△ABC 的面积与△DEF 的面积之比为( B )
A.1∶2
B .1∶4
C.2∶1
D.4∶1
2.如图所示,Rt△ABC∽Rt△DEF,则 cos E 的值等于( A )
18.(12分)(2011·珠海)如图,在平行四边形ABCD中,过点A作AE⊥BC, 垂足为E,连结DE,F为线段DE上一点,且∠AFE=∠B.
)
A.3 个 B.2 个 C.1 个 D.0 个
【 解 析 】 ∵DE
是 △ABC
的
中
位
线
,
∴DE
=
1 2
BC
,
BC
=
2DE.
由
DE∥BC
得
△ADE∽△ABC, AADB=AAEC或AADE =AABC.
【答案】A
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
8.(2012.中考预测题)在平行四边形ABCD中,点E在射线AD 上,BE与对角线AC交于点F,若BC=8,DE=4,AF=3,求FC的长
14.(2010·陕西)如图,在△ABC 中,D 是 AB 边上一点,连结 CD.要使 △ADC 与△ABC 相似,应添加的条件是________.
【解析】∠ACD=∠B、∠ADC=∠ACB 或AADC=AACB,答案不唯一,只需写出一个条件 即可.
【答案】∠ACD=∠B
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
△ABE 与△ADC 相似.理由如下:在△ABE 与△ADC 中 ∵AE 是⊙O 的直径,∴∠ABE =90°,∵AD 是△ABC 的边 BC 上的高,∴∠ADC=90°,∴∠ABE=∠ADC.又∵同弧所对 的圆周角相等,∴∠BEA=∠DCA.∴△ABE∽△ADC.
相似三角形 综合训练
训练时间:60分钟 分值:100分
33
综上所述, CF 6或2
《相似三角形》优质课ppt人教版1-精 品课件 ppt(实 用版)
《相似三角形》优质ppt人教版1-精 品课件 ppt(实 用版)
9.(2011.牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在 的直线上且AD=2,过点D作DE∥BC交边AC所在直线于点E,求 CE的长。
一、选择题(每小题 4 分,共 48 分) 1.(2009 中考变式题)如图,小正方形的边长均为 1,则下列图中的三角形(阴影部分)与 △ABC 相似的是( )
【解析】观察△ACB 得∠ACB=135°,被选项中只有 A 图三角形含 135°角. 【答案】A
2.(2012 中考预测题)如图,在△ABC 中,若 DE∥BC,AD=1,DE=4 cm,则 BC 的长为( ) DB 2
图1
解 : 如图(1),E在线线AD上 ∵平行四边行ABCD ∴AD ∥BC ∴△AEF ∽△CBF
∴ AF AE 4 1 CF BC 8 2
∴CF 2AF 6
图2
如图(2) : E在AD的延长线上 同(1)得, AF AE 12 3
CF BC 8 2 CF 2 AF 2 3 2
相似三角形的判定
1.两边对应成比例 ,且夹角 相等的两个三角形相似. 2.两角对应 相等 的两个三角形相似. 3.三边对应 成比例 的两个三角形相似.
相似三角形的基本图形
(1)(2010·北京)如图,在△ABC中,点D、E分别在AB、
AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC
A.8 cm B.12 cm C.11 cm D.10 cm