变压器磁芯的种类及应用

合集下载

常用磁芯与应用功率 对照表

常用磁芯与应用功率 对照表

常用磁芯与应用功率对照表是一种表格,其中列出了不同的磁芯类型和应用功率。

通过这个表格,人们可以快速了解不同磁芯的适用功率范围,从而更好地选择适合自己需求的磁芯。

在对照表中,常见的磁芯类型包括铁氧体磁芯、硅钢磁芯、坡莫合金磁芯等。

这些磁芯在不同的应用场合有不同的适用功率范围。

例如,铁氧体磁芯适用于较低功率的应用,如电源供应器、充电器等,其优点是成本较低、温度稳定性好,但缺点是饱和磁感应强度较低。

硅钢磁芯适用于中等功率的应用,如电机、发电机等,其优点是饱和磁感应强度高、磁导率高,但缺点是成本较高、温度稳定性较差。

坡莫合金磁芯适用于高功率的应用,如高频变压器、脉冲变压器等,其优点是饱和磁感应强度高、磁导率高、电阻率高,但缺点是成本极高、温度稳定性差、容易氧化。

除了磁芯类型和应用功率外,对照表还可以包括其他相关信息,如磁芯的材料、形状、尺寸等。

这些信息有助于人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。

总之,常用磁芯与应用功率对照表是一种方便实用的参考资料,可以帮助人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。

(干货收藏)30多种磁芯优缺点对比

(干货收藏)30多种磁芯优缺点对比

(干货收藏)30多种磁芯优缺点对比功率型EE、EEL、EF型功率磁芯特点:引线空间大,绕制接线方便。

适用范围广、工作频率高、工作电压范围宽、输出功率大、热稳定性能好。

用途:广泛应用于程控交换机电源、液晶显示屏电源、大功率UPS逆变器电源、计算机电源、节能灯等领域。

EI型功率磁芯特点:结构紧凑、体积小、工作频率高、工作电压范围广、气隙在线圈顶端耦合紧、损耗低。

损耗与温度成负相关,可防止温度的持续上升。

用途:电源转换变压器及扼流圈、DVD电源、照相机闪光灯、通讯设备及其它电子设备。

PEE、PEI功率磁芯ER功率磁芯特点:耦合位置好,中柱为圆形,便于绕线且绕线面积增大,可设计功率大而漏感小的变压器。

用途:开关电源变压器,脉冲变压器,电子镇流器等。

ETD型功率磁芯特点:中柱为圆形,绕制接线方便且绕线面积增大,可设计出功率大且漏感小的变压器。

其他如组装成本,安规成本,电磁屏蔽,标准化难易等各方面都很出色。

用途:开关电源,传输变压器,电子镇流器。

广泛应用于家电、通讯、照明、医疗设备、办公自动化、军品、OA设备、电子仪器、航空航天等领域。

EQ/EQI型功率磁芯EP型功率磁芯特点:具有磁屏蔽效果好、分布电容小、传输衰耗低、电感量高、漏感小、磁场分布均匀等优点,且骨架配有多路接头,易设计多路输出变压器。

用途:宽带变压器、电感器、隔离变压器、匹配变压器,广泛应用于程控交换机终端和精密电子设备等领域。

EFD型功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽凳使用优点。

成品重量轻、结构合理、易表面贴装。

用途:广泛应用于体积小而功率大的变压器,如精密仪器、模块电源、计算机终端输出等。

EPC功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。

用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。

POT功率磁芯特点:体积小、感抗高、绕线方便、磁屏蔽及散热效果均衡。

浅谈高频变压器磁芯的选用如何选型

浅谈高频变压器磁芯的选用如何选型

浅谈高频变压器磁芯的选用如何选型高频变压器磁芯的选用是变压器设计中非常重要的一环,直接影响了变压器的性能和效率。

选用合适的磁芯可以提高变压器的能量转换效率、降低功率损耗、增加功率密度等。

在选择高频变压器磁芯时,需要考虑以下几个关键因素:1.磁导率:磁导率是磁芯材料的一个重要参数,它反映了磁芯对磁场的导磁能力。

选择具有较高磁导率的磁芯能够提高能量传输效率。

目前常用的高频变压器磁芯材料包括铁氧体、磁性不锈钢、钴铁和镍铁合金等。

不同磁芯材料的磁导率各有差异,需要根据具体的设计要求和性能指标进行选择。

2.饱和磁场强度:饱和磁场强度是指材料的磁场强度达到一定程度时,磁化强度不再增加的临界值。

选择具有较高饱和磁场强度的磁芯可以提高变压器的能量转换效率和输出功率。

一般来说,磁导率越高的磁芯,其饱和磁场强度也较高。

3.损耗:磁芯材料的损耗是选择磁芯时需要考虑的另一个重要因素。

高频变压器在工作过程中会产生一定的涡流损耗和磁滞损耗。

较低的损耗能够提高变压器的效率和功率密度。

一般来说,铁氧体材料具有较低的涡流损耗和磁滞损耗,因此在高频变压器中应用较为广泛。

4.成本和可获性:在选用磁芯时,还需要考虑材料的成本和可获性。

一些高性能的磁芯材料可能价格较高或难以获得,而一些常见的磁芯材料则价格比较低廉。

因此,需要在高性能和经济性之间进行权衡,选择适合的磁芯材料。

5.尺寸和形状:磁芯的尺寸和形状也是选择磁芯时需要考虑的因素。

变压器磁芯的尺寸和形状会直接影响变压器的体积、重量和功率密度等。

因此,在设计变压器时需要综合考虑磁芯的尺寸和形状,以满足实际需求。

综上所述,高频变压器磁芯的选用是一个综合考虑磁导率、饱和磁场强度、损耗、成本和可获性、尺寸和形状等多个因素的过程。

通过合理选择磁芯材料和形状,可以提高高频变压器的性能和效率,满足不同的设计要求和性能指标。

变压器磁芯类别

变压器磁芯类别

变压器磁芯类别变压器是电力系统中的重要组成部分,它可以将一个电压值转换为另一个电压值。

其中的磁芯是变压器的重要组成部分,它负责将电能转换成磁能,然后再将磁能转换成电能。

磁芯的质量和性能直接影响变压器的性能和质量,因此磁芯的选择十分关键。

根据材料的不同,磁芯可以分为以下几种类型。

1. 铁氧体磁芯铁氧体磁芯是目前应用最广泛的一种磁芯,它由氧化铁和金属氧化物组成,具有高的磁导率和低的磁损耗。

铁氧体磁芯的特点是稳定性好,磁导率高,磁损耗小,适用于高频变压器和开关电源中。

2. 硅钢磁芯硅钢磁芯是一种低损耗的磁芯。

它由硅钢片组成,硅钢片表面覆盖一层绝缘漆。

硅钢磁芯的特点是磁导率高,磁损耗小,适用于低频变压器和电机中。

3. 镍铁磁芯镍铁磁芯是一种高精度、高性能的磁芯,它由镍、铁、铜和钼等金属组成。

镍铁磁芯的特点是磁导率高,磁损耗小,能够承受高温和高磁场,适用于高精度变压器和磁传感器等领域。

4. 铁氢磁芯铁氢磁芯是一种新型的磁芯材料,它由铁、氢和碳等元素组成。

铁氢磁芯的特点是磁导率高,磁损耗小,饱和磁感应强,能够承受高温和高磁场,适用于高精度变压器和磁传感器等领域。

5. 铁氧化物磁芯铁氧化物磁芯是一种由铁、氧和其他元素组成的磁芯材料,具有高的磁导率和低的磁损耗。

铁氧化物磁芯的特点是稳定性好,磁导率高,磁损耗小,适用于高频变压器和开关电源中。

变压器磁芯的选择应根据具体的使用场合和要求来确定。

在选用磁芯时,应考虑到其磁导率、磁损耗、温度特性、热稳定性、饱和磁感应强度等因素,并且要进行严格的测试和评估,确保磁芯具有良好的性能和稳定性,以保证变压器的性能和质量。

种形状的磁芯优缺点大总结

种形状的磁芯优缺点大总结
PM功率磁芯
漏磁小,损耗低,功率大,分布电容小。
用途:主变压器,推动变压器。主要应用于超声波清洗,激光设备等领域。
U型高导磁芯
特点:具有阻抗偏差小,输出电流大,感量高,可抑制高次谐波等特点。
用途:滤波共模变压器。广泛应用于彩电,计算机,显示器等电子设备。
ET、FT型高导磁芯杂散电容小、纹波系数低、漏磁 Nhomakorabea、电感高。
广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。
POT功率磁芯
体积小、感抗高、绕线方便、磁屏蔽及散热效果均衡。
载波滤波器、高灵敏度感应器、高效率传感器、电源转换变压器等。
PQ功率磁芯
损耗小,温升低,抗干扰性能好,形状合理,功率范围大(50W-1000W),能有效减少安装体积,备有多个引脚,绕制接线方便。组装成本低,易满足安规要求,但标准化较难。
33种形状的磁芯优缺点大总结
磁心型号
尺寸图
特点
用途
EE、EEL、EF型功率磁芯
引线空间大,绕制接线方便。适用范围广、工作频率高、工作电压范围宽、输出功率大、热稳定性能好。
广泛应用于程控交换机电源、液晶显示屏电源、大功率UPS逆变器电源、计算机电源、节能灯等领域。
EI型功率磁芯
结构紧凑、体积小、工作频率高、工作电压范围广、气隙在线圈顶端耦合紧、损耗低。损耗与温度成负相关,可防止温度的持续上升。
EP型功率磁芯
EFD型功率磁芯
具有热阻小、衰耗小、功率大、工作频率宽凳使用优点。成品重量轻、结构合理、易表面贴装。
广泛应用于体积小而功率大的变压器,如精密仪器、模块电源、计算机终端输出等。
EPC功率磁芯
具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。

种形状的磁芯优缺点大总结

种形状的磁芯优缺点大总结
RM型功率磁芯
磁屏蔽效果好,抗干扰能力强,漏磁小,分布电容低,骨架备有多路引脚,可设计多路输出变 压器,可高密度安装。但散热较差,安规成本较高。
辅助功率变压器、驱动变压器、宽带变压器、载波滤波器、高稳定性滤波器。主要应用于载波通讯、网络、数字、电视、电子仪器等领域。
PM功率磁芯
漏磁小,损耗低,功率大,分布电容小。
广泛应用于体积小而功率大的变压器,如精密仪器、模块电源、计算机终端输出等。
EPC功率磁芯
具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。
广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。
POT功率磁芯
用途:主要应用于载波通讯、网络、数字、计算机等领域。
结构紧凑、体积小、工作频率高、工作电压范围广、气隙在线圈顶端耦合紧、损耗低。损耗与温度成负相关,可防止温度的持续上升。
电源转换变压器及扼流圈、DVD电源、照相机闪光灯、通讯设备及其它电子设备。
ER功率磁芯
耦合位置好,中柱为圆形,便于绕线且绕线面积增大,可设计功率大而漏感小的变压器。
开关电源变压器,脉冲变压器,电子镇流器等
种形状的磁芯优缺点大总结
33种形状的磁芯优缺点大总结
磁心型号
尺寸图
特点
用途
EE、EEL、EF型功率磁芯
引线空间大,绕制接线方便。适用范围广、工作频率高、工作电压范围宽、输出功率大、热稳定性能好。
广泛应用于程控交换机电源、液晶显示屏电源、大功率UPS逆变器电源、计算机电源、节能灯等领域。
EI型功率磁芯
用途:主变压器,推动变压器。主要应用于超声波清洗,流大,感量高,可抑制高次谐波等特点。

磁芯的种类及应用

磁芯的种类及应用

磁芯的种类及应用:1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br⁄Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁芯的设计及应用

磁芯的设计及应用

磁芯的设计及应用磁芯是一种用于存储和转换磁能的装置。

它通常由磁性材料制成,如铁磁材料(如铁氧体和硅钢)或软磁材料(如铁镍合金)。

磁芯的设计和应用涉及到电磁学、材料科学和电子工程等多个学科。

磁芯的设计考虑到了磁场的强度、方向、偏转和损耗等因素。

根据具体的应用需求,磁芯可以采用不同的形状,如圆柱形、矩形、环形等。

常见的磁芯类型包括变压器磁芯、电感器磁芯和磁存储器磁芯等。

在变压器中,磁芯用于连接两个或多个线圈,以实现电能的传递和转换。

铁芯变压器是最常见的类型,其磁芯通常由硅钢叠片组成。

这种设计可以减小铁芯的磁滞回线和局部热点,提高能量传递效率。

在电感器中,磁芯用于提高电感器的感应磁场强度。

磁芯通过集中磁场线,提高电感器的磁感应强度。

这有助于减小电感器的体积和提高电感器的效率。

硅钢磁芯是通用的选择,因其具有良好的磁导率和低磁滞损耗。

磁存储器磁芯是一种特殊的磁芯,用于存储数字信息。

在过去,磁芯存储器是计算机主存储器的一种常见形式。

磁芯存储器由许多磁芯组成,每个磁芯代表一个二进制位。

根据磁芯的磁化状态(顺时针或逆时针),可以表示0或1。

虽然现在的计算机存储器主要采用半导体材料,但磁芯存储器仍然被用于某些特定领域,如军事应用和高可靠性系统。

磁芯的应用广泛,除了上述提到的变压器、电感器和磁存储器外,它还常用于电源和电路中的滤波器、隔离器和稳压器等。

磁芯的设计和材料选择直接影响电器设备的性能,如效率、频率响应和稳定性等。

随着科技的发展,磁芯的研究也在不断推进。

新材料和新加工技术的应用使得磁芯的性能得到了进一步提升。

一些新型磁性材料如铁氮化物和铁碳化物具有更高的饱和磁感应强度和更低的磁滞损耗,可以让磁芯在更高的频率下工作。

总而言之,磁芯作为一种重要的磁性元件,在电磁学中扮演着重要角色。

通过合理的设计和应用,磁芯可以提高电器设备的性能,如提高传输效率、降低能量损耗和增强信号质量等。

随着科技的进步,我们有理由相信磁芯将在更广泛的领域得到应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器磁芯的种类及应用磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。

二、软磁材料的发展及种类1. 软磁材料的发展软磁材料在工业中的应用始于19世纪末。

随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。

到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。

直至现在硅钢片在电力工业用软磁材料中仍居首位。

到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。

从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。

进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

2. 常用软磁磁芯的种类铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。

按(主要成分、磁性特点、结构特点)制品形态分类:(1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯(2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金三常用软磁磁芯的特点及应用(一) 粉芯类1. 磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。

由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。

主要用于高频电感。

磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。

常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。

磁芯的有效磁导率μe及电感的计算公式为:μe = DL/4N2S ×109其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。

(1) 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。

在粉芯中价格最低。

饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。

铁粉芯初始磁导率随直流磁场强度的变化铁粉芯初始磁导率随频率的变化(2). 坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。

MPP 是由81%Ni、2%Mo及Fe粉构成。

主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。

主要应用于300kHz 以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。

高磁通粉芯HF是由50%Ni、50%Fe粉构成。

主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。

主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。

价格低于MPP。

(3) 铁硅铝粉芯(Kool MμCores)铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。

主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。

主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。

有时也替代有气隙铁氧体作变压器铁芯使用。

2. 软磁铁氧体(Ferrites)软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。

有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在100kHZ 以下的频率使用。

Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。

磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。

在应用上很方便。

由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。

而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。

随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。

国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。

分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。

电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。

广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。

宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。

其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。

广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。

功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。

另外具有低损耗/频率关系和低损耗/温度关系。

也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。

广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。

(二) 带绕铁芯1. 硅钢片铁芯硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢。

该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。

是软磁材料中产量和使用量最大的材料。

也是电源变压器用磁性材料中用量最大的材料。

特别是在低频、大功率下最为适用。

常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。

但高频下损耗急剧增加,一般使用频率不超过400Hz。

从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。

对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。

在工频下使用时,常用带材的厚度为0.2~0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜。

厚度越薄,价格越高。

2. 坡莫合金坡莫合金常指铁镍系合金,镍含量在30~90%范围内。

是应用非常广泛的软磁合金。

通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。

常用的合金有1J50、1J79、1J85等。

1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。

做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。

1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。

1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。

3. 非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys)硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。

相关文档
最新文档