2018届福建省泉州市高三质量检测理科数学试题及答案
泉州市2018届高三单科质量检查理科数学(试题+解析)(2018.01)

(A) -1
(B)
1 3
(C) 1
(D) 3
【命题意图】本小题主要考查线性规划等基础知识,考查运算求解能力,考
y
查化归与转化思想、数形结合思想、函数与方程思想,检测直观想象、数学运算 素养等. 【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的 三个顶点分别为 (1,0),(1, 2),( , ) ,把三个点分别代入 z x y 检验得:当
x 【变式题源】 (2015 全国卷 I· 理 1)已知集合 A x x 1 , B x 3 1 ,则
1 2
B {x |
1 x 1} ,故选 D. 2
B ;错选 B:集合 B 解错,解成 B x x 1或x 1 ;错选 C:
1 2
(A) A
B {x | x 0} (B) A B R
an 的公差为
(A)1 (4)已知点 (2,1) 在双曲线 E : (B)2 (C)4 (D)8
x2 y 2 1(a 0, b 0) 的渐近线上,则 E 的离心率等于 a 2 b2
5 2
(A)
3 2
(B)
(C) 5
(D)
5 或 5 2
【命题意图】本小题主要考查双曲线的渐近线、离心率等基础知识,考查运算求解能力,考查化归与 转化思想、函数与方程思想. 【试题简析】由题意得,点 (2,1) 在直线 y
一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分. (1)D (7)C (2)A (8)D (3)A (9)A (4)B (10)C (5)C (11)C (6)A (12)D
(1)已知集合 A x 2 x 1 0 , B x x 2 b2 5 b b 1 x 上,则 ,所以 e ,故选 B. a a 2 a 2
2018年5月泉州市高中毕业班第二次质量检查理科数学试题

2018年5月泉州市高中毕业班第二次质量检查理科数学试题D(A )()()ee23f f >- (B )()()23e ef f >-(C )(0.5log3f >(9)如图,长为1,体积为(A )32π (C )116π (D )136π (10)已知正三棱柱111ABC A B C -的所有棱长都相等,,M N分别为111,B C BB 的中点.现有下列四个结论:1p :1//AC MN ; 2p :11AC C N ⊥;3p :1B C ⊥平面AMN ;4p :异面直线AB 与MN 所成角的余弦值为24.其中正确的结论是(A )12,p p (B )23,p p (C )24,p p(D )34,p p(11)已知椭圆()2222:10+=>>x y C a b a b的左、右焦点分别为1F ,2F .2F 也是抛物线2:2(0)E ypx p =>的焦点,点A 为C与E 的一个交点,且直线1AF 的倾斜角为45︒,则C的离心率为(A 51- (B 21(C )35(D 21(12)函数()2e ,1,143,1,x x f a x x ax x x x ⎧>-⎪=+⎨⎪++≤-+⎩+则关于x 的方程()0f f x ⎡⎤=⎣⎦的实数解最多有(A )4个 (B )7个 (C )10个 (D )12个二、填空题:本大题共4小题,每小题5分.(13)在复平面内复数i1ia z =+对应的点位于第三象限,则实数a 的取值范围是 . (14)若,x y 满足约束条件2,0,20,x x y x y ≥-⎧⎪+≥⎨⎪-+≤⎩则2z x y =-的最大值为 .(15)甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有112n ⎛⎫- ⎪⎝⎭(*,5n n ∈≤≤N 1)五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大. 假设甲、乙所作出的推理都是正确的,那么乙手中的数是 .(16)已知数列{}na ,{}nb ,{}nc 满足1112,2,2,n n n n n n n n n n n n a a b c b a b c c a b c +++=++⎧⎪=++⎨⎪=++⎩且18a=,14b =,10c =,则数列{}nna 的前n项和为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)△ABC的内角,,A B C的对边分别为,,a b c,且2cos b A c =-.(Ⅰ)求B ;(Ⅱ)若42c =72cos A =,求△ABC 的面积.(18)(本小题满分12分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=,PE120∠=,点E为PA的中点.ADP(Ⅰ)求证://BE平面PCD;(Ⅱ)若平面PAD⊥平面ABCD,求直线BE与平面PAC所成角的正弦值.(19)(本小题满分12分)某工厂有两台不同机器A和B生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:A机器生B机器生产的产品产的产品23 4 5 5 0 2 2 4 5 6 6 7 8 9 6 6 8 9 9 8 7 6 3 2 19 8 6 4 2 2 11 08 8 8 7 6 5 54该产品的质量评价标准规定:鉴定成绩达到[90,100)的产品,质量等级为优秀;鉴定成绩达到[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(Ⅰ)从等级为优秀的样本中随机抽取两件,记X 为来自B 机器生产的产品数量,写出X 的分布列,并求X 的数学期望; (Ⅱ)完成下列22 列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B机器生产的产品比A机器生产的产品好;A生产的产品B生产的产品合计良好以上(含良好)合格合计(III)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?附:1. 独立性检验计算公式:22()()()()()n ad bc K a b c d a c b d -=++++.2. 临界值表: 2()P K k ≥ 0.25 0.15 0.10 0.050.025k 1.323 2.072 2.7063.8415.024(20)(本小题满分12分)在平面直角坐标系xOy中,已知椭圆2222:1(0)x y E a b a b+=>>经过点(22,,离心率为22.(Ⅰ)求E 的方程;(Ⅱ)过E 的左焦点F 且斜率不为0的直线l 与E相交于A ,B 两点,线段AB 的中点为C ,直线OC 与直线4x =-相交于点D ,若△ADF 为等腰直角三角形,求l 的方程.(21)(本小题满分12分)函数()()ln 1f x x ax =++的图像与直线2y x =相切. (Ⅰ)求a 的值;(Ⅱ)证明:对于任意正整数n ,()1122!ee!nn nn n n n n n ++⋅<<⋅.选考题:请考生在第(22)、(23)两题中任选一题作答。
推荐-泉州市2018届高中毕业班质量检查数学(理科)试题

泉州市2018届高中毕业班质量检查数学(理科)试题一 选择题:(本题共有12个小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是正确的,把正确的代号填在答题卡指定位置上)1、132lim 22+∞→x x x 的值是A.0B. 不存在C. 1 D 32 2、()y x P ,是0300角终边上异于原点的一点, 则xy的值为 A.3 B. -3 C. 33 D. -333、若点复数i z i z -==1,21,则12z z z =∙在复平面内的对应点位于 A .第四象限 B .第三象限 C . 第二象限 D .第一象限4、若a < b < 0,则下列不等式不能成立的是A .ba 11> B .2a > 2b C .| a | > | b | > 0D .(21)a > (21)b 5、A. P 1及E ξ无法计算B.14=0=3P E ξ, C. 114==63P E ξ, D. 113==62P E ξ, 6、已知直线l 、m ,平面α、β,且βα⊂⊥m l ,,给出下列四个命题: ①若α//β,则m l ⊥ ②若m l ⊥,则α//β ③若βα⊥,则l //m ④若l //m ,则βα⊥ 其中正确命题的序号是 A .①③ B .①④ C .②④ D .③④7、与直线05y 4x 3=++的方向向量共线的一个单位向量是A. )4,3(B. )3,4(-C. )54,53(D. )53,54(- 8、 甲、乙两人独立地解同一问题,甲解出这个问题的概率是31,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是 A .16 B .56 C .23D .319、函数x x y cos tan ∙=(0≤x <23π,且x ≠2π)的图象是10、条件:11p x +>,条件131:>-xq ,则q ⌝是p ⌝的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.拟定从甲地到乙地通话m 分钟的电话费由f (m)=1.18(O.5·[m]+1)(元)决定,其中m > O ,[m]是大于或等于m 的最小整数,(如[3]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为A .3.71元B .3.97元C .4.24元D .4.77元12. 如图,在杨辉三角中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则21S 等于A .229B .283C .361D .374二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在答题卡对应题号的横线上13、某学校共有学生4500名,其中初中生1500名,高中生3000名,用分层抽样法抽取一个容量为300的样本,那么初中生应抽取 名. 14、设圆x 2 + y 2 – 4x – 5 = 0的弦AB 的中点为(3,1),则直线AB 的方程是______. 15、若点P 是棱长为3的正四面体内的任意一点,则它到这个四面体各面的距离之和为 . 16.如图,质点P 从点A 起在圆222x y r +=上逆时针做匀角速度运动,角速度为1 r a d/s, 那么t 时刻点P 在x 轴上射影点M 的速率为___________.1 …三 解答题:(本大题共6小题,共74分)解答应写出文字说明 证明过程或推演步骤17、(本小题满分12分)已知向量),2sin ,2(cos ),23sin ,23(cosx x x x -==]2,2[),2cos ,2sin (ππ-∈-=x x x 且 (Ⅰ)求||b a +;(Ⅱ)求函数f (x )=的||2++⋅单调增区间.18、(本小题满分12分)已知等差数列{}n a 及等比数列{}n b ,其中11=b ,公比q < 0, 且数列{}n n b a +的前三项分别为2、1、4. (Ⅰ)求n a 及q ;(Ⅱ)记数列{}n a 及{}n b 的前n 项和分别为n S 、n T ,求满足n n T S 100≤的n 的最大值. 19、(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1中,D 为线段A 1C 1上一点,BC 1//平面AB 1D.(Ⅰ)求证:D 为A 1C 1中点;(Ⅱ)若AA 1=3,试确定线段AB 的长度,使得二面角A -B 1D -A 1的大小恰为060;D C20、(本小题满分12分)如图,在平直河岸l 的同一侧有两个缺水的居民区A 、B ,已知A 、B 到河岸的距离AD =1千米,BC =2千米,A 、B 之间的距离AB =2千米.欲在河岸l 上建一个抽水站,使得两居民区都能解决供水问题.(Ⅰ)在河岸l 上选取一点P 建一个抽水站,从P 分别铺设....水管至居民区A 、B ,问点P 应在什么位置,铺设水管的总长度最小?并求这个最小值; (Ⅱ)从实际施的结果来看,工作人员将水管铺设至...居民区A 、B ,且所铺设的水管总长度比(Ⅰ)中的最小值更小,你知道工作人员如何铺设水管吗(指出铺设线路,不必证明)?并算出实际铺设水管的总长度.21、(本小题满分12分)已知双曲线C :22221x y a b -=(a >0,b >0右焦点为F ,过点M (1,0)且斜率为1的直线与双曲线C 交于A 、B 两点,并且4FA FB ∙=。
福建省泉州市2018届高三下学期质量检查(3月)理科数学答案

2018年泉州市高三毕业班3月质检理科数学 答题卡姓名:______________________________ 准考证号 2 0 5 3 6第I 卷(请规范书写ABCD )题号 1 2 3 4 5 6 答案 B B C A B C 题号 7 8 9 10 11 12 答案BCCDBD第II 卷(请在各试题的答题区内作答)成绩(13)5 ; (14)6; (15)4; (16)43. 17. (本小题满分12分解:(Ⅰ)由已知1,n a ,n S 成等差数列,得21n n a S =+…①, 1分当1n = 时,1121a S =+,所以11a =; 2分当2n ≥时,1121n n a S --=+…②, 3分①②两式相减得122n n n a a a --=,所以12n n aa-=, 4分 则数列{}n a 是以11a =为首项,2q =为公比的等比数列, 5分所以1111122n n n n a a q ---==⨯=. 6分 (Ⅱ)由(Ⅰ)得()()()()11122 112121nn n n nn n a b a a ++++==----7分 1112121n n +=---, 9分所以,12n b b b +++ 2231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--11分因为1221213n +-≥-=,1110213n +<≤-, 所以12111321n +≤-<-,即证得12213n b b b ≤+++<. 12分请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效18. (本小题满分12分)解:(Ⅰ)连结CE .在四边形ABCD 中,//AD BC ,90BAD ∠=︒,23AB ,4BC ,6AD ,13AE AD , ∴12A E AE ==,4BE DE ==, 1分∴四边形BCDE 为菱形,且BCE ∆为等边三角形.又∵P 为BE 的中点,∴CP BE ⊥. 2分∵1122A P BE ==,23CP =,14AC , 满足22211A P CP A C +=,∴1CP A P ⊥, 3分又∵1A P BE P =,∴CP ⊥平面1A BE . 4分∵CP ⊂平面1A CP ,∴平面1A CP 平面1A BE . 5分 (Ⅱ)以P 为原点,向量,PB PC 的方向分别为x 轴、y 轴的正方向建立空间直角坐标系P xyz -(如图), 6分 则()0,0,0P (0,23,0)C ,(4,23,0)D -,()11,0,3A -,所以()11,0,3PA =-,(4,23,0)PD =-, 7分 设(),,x y z =n 是平面1A PD 的一个法向量, 则10,0,PA PD ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,4230,x z x y ⎧-+=⎪⎨-+=⎪⎩8分 取1z =,得(3,2,1)=n . 9分取平面1A BE 的一个法向量()0,1,0=m . 10分 ∵22cos ,222===n m n m n m , 11分 又二面角1B A P D --的平面角为钝角,所以二面角1B A P D --的余弦值为22-. 12分 z yx A1P DE CB请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效19. (本小题满分12分)解:(Ⅰ)由图19-2可知,100株样本树苗中高度高于1.60的共有15株,以样本的频率估计总体的概率,可得这批树苗的高度高于1.60的概率为0.15. 1分 记X 为树苗的高度,结合图19-1可得: 2(1.20 1.30)(1.70 1.80)0.02100f X f X <≤=<≤==, 2分 13(1.30 1.40)(1.60 1.70)0.13100f X f X <≤=<≤==, 3分 1(1.40 1.50)(1.50 1.60)(120.0220.13)0.352f X f X <≤=<≤=-⨯-⨯=,4分 又由于组距为0.1,所以0.2, 1.3, 3.5a b c ===. 5分(Ⅱ)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在[1.40,1.60]的概率为:(1.40 1.60)(1.40 1.50)(1.50 1.60)0.7P X f X f X <≤=<≤+<≤=6分 因为从这批树苗中随机选取3株,相当于三次重复独立试验, 所以随机变量ξ服从二项分布(3,0.7)B , 7分故ξ的分布列为:33()C 0.30.7(0,1,2,3)n n n P n n ξ-==⋅⋅=, 8分即: ξ 0 1 2 3 ()P ξ 0.027 0.189 0.441 0.343 ()00.02710.18920.44130.343 2.1E ξ=⨯+⨯+⨯+⨯= (或()30.7 2.1E ξ=⨯=). 9分(III )由(1.5,0.01)N ,取 1.50μ=,0.1σ=, 由(Ⅱ)可知,()P X μσμσ-<≤+=(1.40 1.60)0.7>0.6826P X <≤=,10分又结合(Ⅰ),可得:(22)P X μσμσ-<≤+=(1.30 1.70)P X <≤ 2(1.60 1.70)(1.40 1.60)f X P X =⨯<≤+<≤ 0.96>0.9544=, 11分所以这批树苗的高度满足近似于正态分布(1.5,0.01)N 的概率分布,应认为这批树苗是合格的,将顺利获得该公司签收. 12分请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效由32NP NM=可得y⎧⎪⎨所以点P的轨迹E的方程为11a-≤或≥,1][1,)+∞.请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
泉州市2018届高三单科质量检查理科数学(含解析)(2018.01)

(B)x x 1
(C) x
1
x
1 2
(D) x
1 2
x
1
(2)已知 z 为复数 z 的共轭复数, 1 i z 2i ,则 z
(A) 1 i
(B) 1 i
(C)1 i
(D)1 i
(3)设等差数列an 的前 n 项和为 Sn .若 a2 a1 2 , S5 S4 9 ,则 a50
日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.
现执行该程序框图,输入的 d 的值为 33,则输出的 i 的值为
(A)4
(B)5
(C)6
(D)7
(8)下列函数中,图象关于原点对称且单调递增的是
(A) f x sin x x
(B) f x ln x 1 ln x 1
e
x
ax
e
2,
x
0, 0,
恰有两个零点,则实数
a
的取值范围是
(A) 0,1
(B) e, (C) 0,1 e, (D) 0,1 e2,
二、填空题:本大题共 4 小题,每小题 5 分。
(13)在平面直角坐标系 xOy 中,角 的顶点在原点,始边与 x 轴的非负半轴重合,终边
三、解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分 10 分)
已知抛物线 C : y2 2 px( p 0) 的焦点为 F ,点 A( p , a)(a 0)ቤተ መጻሕፍቲ ባይዱ在 C 上, AF 3 . 4
(Ⅰ)求 C 的方程; AF
2018届福建省泉州市高三质检理科综合试题及答

泉州市2018届一般中学高中毕业班质量检查理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至4页,均为必考题,第II 卷5至12页,包含必考和选考两部分。
满分300分。
可能用到的相对原子质贝:H一1 C 一12 O一16 Fe--56Ag10注意事项:答题前考生务必在试题卷、答题卡规定的地方填写自己的准考据号、姓名。
考生要仔细查对答题卡上粘贴的条形码的“准考据号、姓名”与考生自己准证号、姓名能否一致。
第I卷每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需变动用橡擦洁净后。
再选涂其余答案标号。
第II卷用毫米黑色署名笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷和答题卡一并回收。
第I卷(必考)本卷共18小题.每题6分,共118分。
一、选择题(此题共18小题。
在每题给出的四个选项中,只有一个选项切合题目要求。
)肝脏对保持人体内环境稳态拥有重要作用。
以下激素中,不以肝细胞为靶细胞的是A.甲状腺激素B.胰高血糖素C.胰岛素D.促胰液素科研人员对某农田在不一样期间分别用不一样方法进行害虫防治,同时检查害虫种群数目变化,结果如右图。
以下表达正确的选项是施用农药引发害虫产生抗农药基因突变害虫与蜘蛛种群之间存在负反应调理引人蜘蛛会定向改变害虫种群抗农药基因频次该农田生态系统自我调理能力保持稳固不变3.嫩肉粉的主要成分是一种从木瓜中提拿出的蛋白酶利用嫩肉粉溶液腌渍肉块,可使肉类蛋白质水解成小分子多肽(短肽)和氨基酸,进而有益于消化汲取。
以下表达正确的选项是嫩肉粉适于在常温条件下储存,以保持木瓜蛋白酶的活性B.木瓜合成蛋白酶过程中,遗传信息由基因挨次流向mRNA,tRNA和酶C.经嫩肉粉作用后,肉块产生的短肽和氨基酸总质量比被分解的蛋白质高D.肉块被腌渍时.木瓜蛋白酶以主动运输方式讲入肌细晌发挥水解作用雪灵芝是青藏高原独有的野生药材。
为研究雪灵芝提取物对人胃癌细胞增殖的影响,科研人员利用含不一样浓度雪灵芝提取物的培育液培育人胃癌细胞,一段时间后检测胃癌细胞周期中各期细胞百分比,结果以下表。
2018届福建省泉州市高三(5月)第二次质量检查数学(理)试题Word版含答案
2018届福建省泉州市高三(5月)第二次质量检查数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}065,122<+-=>=x x x B x A x ,则=B C A ( )A .()3,2B .(][)+∞∞-,32,C .(][)+∞,32,0D .[)+∞,32.已知复数i a z +=().R a ∈若2<z ,则2i z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.公差为2的等差数列{}n a 的前n 项和为.n S 若123=S ,则=3a ( ) A .4 B .6 C .8 D .14 4.已知实数y x ,满足约束条件y x z y x xy +=⎩⎨⎧≤--≤,022,则满足1≥z 的点()y x ,所构成的区域面积等于( ) A .41 B .21 C. 43D .1 5.榫卯是古代中国建筑、家具及其他器械中常见的结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”,某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”的体积等于( )A .12B .13 C.14 D .156.执行一次如图所示的程序框图,若输出i 的值为0,则下列关于框图中函数()()R x x f ∈的表述,正确的是( )A .()x f 是奇函数,且为减函数B .()x f 是偶函数,且为增函数 C.()x f 不是奇函数,也不为减函数 D .()x f 不是偶函数,也不为增函数7.已知以O 为中心的双曲线C 的一个焦点为P F ,为C 上一点,M 为PF 的中点,若OMF ∆为等腰直角三角形,则C 的离心率等于( )A .12-B .12+ C. 22+ D .215+ 8.已知曲线()⎪⎭⎫⎝⎛<+=22sin :πϕϕx y C 的一条对称轴方程为6π=x ,曲线C 向左平移()0>θθ个单位长度,得到的曲线E 的一个对称中心为⎪⎭⎫⎝⎛0,6π,则θϕ-的最小值是( ) A .12π B .4π C.3π D .125π 9.在梯形ABCD 中,060,32,2,1,//=∠===ACD BD AC AB CD AB ,则=AD ( ) A .2 B .7 C. 19 D .3613-10.某密码锁共设四个数位,每个数位的数字都可以是4,3,2,1中的任一个,现密码破译者得知:甲所设的四个数字有且仅有三个相同;乙所设的四个数字有两个相同,另两个也相同;丙所设的四个数字有且仅有两个相同;丁所设的四个数字互不相同,则上述四人所设密码最安全的是( ) A .甲 B .乙 C.丙 D .丁11.已知直线PB PA ,分别于半径为1的圆O 相切于点().12,2,,PO B A λλ-+==,若点M 在圆O 的内部(不包括边界),则实数λ的取值范围是( ) A .()1,1- B .⎪⎭⎫ ⎝⎛32,0 C.⎪⎭⎫ ⎝⎛1,31 D .()1,012.已知函数()().,2ax ax x g e x f x -==,若曲线()x f y =上存在两点,这两点关于直线x y =的对称点都在曲线()x g y =上,则实数a 的取值范围是( )A .()1,0B .()+∞,1 C. ()+∞,0 D .()()+∞,11,0第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知椭圆134:22=+y x C 的左顶点、上顶点,右焦点分别为F B A ,,,则=⋅AF AB .14.已知曲线x x y C 2:2+=在点()0,0处的切线为l ,则由l C ,以及直线1=x 围成的区域的面积等于 .15.在平面直角坐标系xOy 中,角θ的终边经过点()()11,≥x x P ,则θθs i n c o s +的取值范围是 .16.已知在体积为π12的圆柱中,CD AB ,分别是上、下底面两条不平行的直径,则三棱锥BCD A -的体积的最大值等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在数列{}n a 中,().221,4211n n a n na a n n +=+-=+ (Ⅰ) 求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)求数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和n S ;18.某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试,测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需要的距离),无酒状态与酒后状态下的试验数据分别列于表1表.2已知表1 数据的中位数估计值为26,回答以下问题.(Ⅰ)求b a ,的值,并估计驾驶员无酒状态下停车距离的平均数;(Ⅱ)根据最小二乘法,由表2的数据计算y 关于x 的回归方程∧∧∧+=a b y ;(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y 大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?(附:回归方程ˆy ba ∧∧=+中,()1221,.ni ii nii x y n x y b a y b x xnx∧∧∧==-⋅==--∑∑)19.如图,在三棱锥BCD A -中,平面ABD ⊥平面42,60,,0===∠=BC BD CBD AD AB BCD ,点E 在CD 上,.2EC DE = (Ⅰ)求证:BE AC ⊥;(Ⅱ)若二面角D BA E --的余弦值为515,求三棱锥BCD A -的体积.20.在平面直角坐标系xOy 中,抛物线()02:2>=p py x C 的焦点为F ,过点F 的直线l 交C 于B A ,两点,交x 轴于点B D ,到x 轴的距离比BF 小1. (Ⅰ)求C 的方程;(Ⅱ)若AO D BO F S S ∆∆=,求l 的方程.21.已知函数().ln k kx x x f +-= (Ⅰ)若()0≥x f 有唯一解,求实数k 的值;(Ⅱ)证明:当1≤a 时,()().12--<-+ax e k kx x f x x (附:39.7,48.4,10.13ln ,69.02ln 223≈≈≈≈e e )请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧=+=ααsin cos 1y x ,(α为参数);在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为.sin cos 2θθρ=(Ⅰ)求1C 的普通方程和2C 的直角坐标方程;(Ⅱ)若射线()0:≥=x kx y l 分别交21,C C 于B A ,两点(B A ,异于原点),当(]3,1∈k 时,求OB OA ⋅的取值范围.23.选修4-5:不等式选讲 已知函数().a x a x x f ++-= (Ⅰ)当2=a 时,解不等式()6>x f ;(Ⅱ)若关于x 的不等式()12-<a x f 有解,求实数a 的取值范围.2018届福建省泉州市高三(5月)第二次质量检查数学(理)试题试卷答案一、选择题1-5:CBBCC 6-10:DBABC 11、12:BD二、填空题13.6 14.3115.(]2,1 16.8 三、解答题17.解:(Ⅰ)()n n a n na n n 22121+=+-+的两边同时除以()1+n n ,得()*+∈=-+N n na n a nn 211, 所以数列⎭⎬⎫⎩⎨⎧n a n 是首项为4,公差为2的等差数列. (Ⅱ)由(Ⅰ),得()121-+=n a na n,即22+=n na n即n n a n 222+=,故()()⎪⎭⎫ ⎝⎛+-⋅=+-+⋅=+=11121112122112n n n n n n n n a n ,所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111312121121n n S n , ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++-⎪⎭⎫ ⎝⎛++++=113121131211n n ,().1211121+=⎪⎭⎫ ⎝⎛+-=n nn 18.解:(Ⅰ)依题意,得2650106-=a ,解得40=a , 又10036=++b a ,解得24=b ; 故停车距离的平均数为.27100255100845100243510040251002615=⨯+⨯+⨯+⨯+⨯(Ⅱ)依题意,可知60,50==y x ,22222250590705030106050590907070605050303010⨯-++++⨯⨯-⨯+⨯+⨯+⨯+⨯=∧b 107=, 255010760=⨯-=∧a ,所以回归直线为.257.0+=∧x y(Ⅲ)由(Ⅰ)知当81>y 时认定驾驶员是“醉驾” 令81>∧y ,得81257.0>+x ,解得80>x ,当每毫升血液酒精含量大于80毫克时认定为“醉驾”. 19.解:(Ⅰ)取BD 的中点,连接.,,EO CO AO 因为OD BO AD AB ==,,所以BD AO ⊥,又平面⊥ABD 平面BCD ,平面 ABD 平面⊂=AO BD BCD ,平面ABD , 所以⊥AO 平面BCD ,又⊂BE 平面BCD ,所以.BE AO ⊥在BCD ∆中,EC DE BC BD 2,2==,所以2==ECDEBC BD , 由角平分线定理,得DBE CBE ∠=∠, 又2==BO BC ,所以CO BE ⊥,又因为⊂=AO O CO AO , 平面⊂CO ACO ,平面ACO , 所以⊥BE 平面ACO ,又⊂AC 平面ACO ,所以.BE AC ⊥(Ⅱ)在BCD ∆中,060,42=∠==CBD BC BD ,由余弦定理得32=CD ,所以222BD CD BC =+,即090=∠BCD , 所以DE BE EDB EBD ==∠=∠,300,所以BD EO ⊥,结合(Ⅰ)知,OA OD OE ,,两两垂直,以O 为原点,分别以向量,,的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系xyz O -(如图),设()0>=t t AO,则()()⎪⎪⎭⎫⎝⎛-0,0,332,0,2,0,,0,0E B t A , 所以()⎪⎪⎭⎫⎝⎛==0,2,332,,2,0BE t BA , 设()z y x n ,,=是平面ABE 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅,0,0BE n BA n 即⎪⎩⎪⎨⎧=+=+0233202y x tz y ,整理,得⎪⎩⎪⎨⎧-=-=,2,3y t z y x 令1-=y ,得23,1,.n t ⎛⎫=- ⎪⎭因为⊥OE 平面ABD ,所以()1,0,0m =是平面ABD 的一个法向量.又因为二面角D BA E --的余弦值为515, 所以5154133,cos 2=++=><t n m ,解得2=t 或2-=t (舍去), 又⊥AO 平面BCD ,A 所以AO 是三棱锥BCD A -的高, 故.3343222123131=⨯⨯⨯⨯=⋅⋅=∆-BCD BCD A S AO V 20.:(Ⅰ)C 的准线方程为2py -=, 由抛物线的定义,可知BF 等于点B 到C 的准线的距离,即2P y BF B +=, 又因为点B 到x 轴的距离比BF 小1, 所以12+=+B B y Py , 故12=P,解得2=P , 所以C 的方程为.42y x =(Ⅱ)由(Ⅰ)得C 的焦点()1,0F ,因为直线l 交C 于B A ,两点,交x 轴于点D ,所以l 的斜率存在且不为0,故可设l 的方程为()()().,,,,011111y x B y x A k kx y ≠+=, 则⎪⎭⎫⎝⎛-0,1k D . 联立方程组⎩⎨⎧+==,1,42kx y y x ,消去y ,得.0442=--kx x()()01616414422>+=-⨯⨯--=∆k k ,由韦达定理,得.4,42121-==+x x k x x 设点O 到直线l 的距离为d ,则.21,21AD d S BF d S AOD BOF ⋅=⋅=∆∆ 又AO D BO F S S ∆∆=,所以AD BF =.又F D B A ,,,在同一直线上,所以FB DA =,从而211x k x =⎪⎭⎫ ⎝⎛--,即k x x 112==, 因为()()()()4444221221212-⨯-=-+=-k x x x x x x , 所以()()221444⎪⎭⎫ ⎝⎛=-⨯-k k ,整理,得01161624=-+k k , 故4252-=k ,解得225-±=k , 所以l 的方程为1225+-±=x y . 21.解:(Ⅰ)函数()x f 的定义域为().,0+∞要使()0≥x f 有唯一解,只需满足()0max =x f ,且()0max =x f 的解唯一,()xkx x f -='1, ①当0≤k 时,()0>'x f ,故()x f 在()+∞,0上单调递增,且()01=f ,所以()0≥x f 的解集为[)+∞,1,不符合题意;②当0>k ,且⎥⎦⎤ ⎝⎛∈k x 1,0时,()()x f x f ,0≥'单调递增;当⎪⎭⎫ ⎝⎛+∞∈,1k x 时,()()x f x f ,0<'单调递减,所以()x f 有唯一的一个最大值为⎪⎭⎫⎝⎛k f 1, 令()()01ln 1>--=⎪⎭⎫⎝⎛=k k k k f k g ,则()()kk k g g 1,01-='=, 当10<<k 时,()0<'x g ,故()k g 单调递减;当1>k 时,故()k g 单调递增,所以()()01=≥g k g ,故令01ln 1=--=⎪⎭⎫ ⎝⎛k k k f ,解得1=k , 此时()x f 有唯一的一个最大值为()1f ,且()01=f ,故()0≥x f 的解集是{}1,符合题意; 综上,可得.1=k(Ⅱ)要证当1≤a 时,()(),1--<-+ax e k kx x f x x即证当1≤a 时,01ln 2>---x x ax e x ,即证.01ln 2>---x x x e x由(Ⅰ)得,当1=k 时,()0≤x f ,即1ln -≤x x ,又0>x ,从而()1ln -≤x x x x ,故只需证0122>-+-x x e x ,当0>x 时成立;令()()0122≥-+-=x x x e x h x ,则()14+-='x e x h x ,令()()x h x F '=,则()4-='x e x F ,令()0='x F ,得.2ln 2=x因为()x F '单调递增,所以当(]2ln 2,0∈x 时,()()()x F x F x F ,0,0≤≤'单调递减,即()x h '单调递减,当()+∞∈,2ln 2x 时,()()x F x F '>',0单调递增,即()x h '单调递增,且()()()0182,020,02ln 854ln 2>+-='>='<-='e h h h ,由零点存在定理,可知()()2,2ln 2,2ln 2,021∈∃∈∃x x ,使得()()021='='x h x h ,故当10x x <<或2x x >时,()()x h x h ,0>'单调递增;当21x x x <<时,()()x h x h ,0<'单调递减,所以()x h 的最小值是()00=h 或().2x h由()02='x h ,得1422-=x e x ,()()()122252122222222---=-+-=-+=x x x x x e x h x ,因为()2,2ln 22∈x ,所以()02>x h ,故当0>x 时,所以()0>x h ,原不等式成立.22.解:(Ⅰ)由⎩⎨⎧=+=ααsin ,cos 1y x 可得()αα2222sin cos 1+=+-y x , 即1C 的普通方程为().1122=+-y x 方程θθρsin cos 2=可化为θρθρsin cos 22= ()* ,将⎩⎨⎧==θρθρsin cos y x ,代入方程()*,可得y x =2,所以2C 的直角坐标方程为y x =2,(Ⅱ)联立方程组()⎩⎨⎧==+-,,1122kx y y x 解得.12,1222⎪⎭⎫ ⎝⎛++k k k A 联立方程组⎩⎨⎧==,,2x y kx y 可得()2,k k B ,故k k k k k OB OA 21121222=⋅+⋅+⋅+=⋅, 又(]3,1∈k ,所以(].32,2∈⋅OB OA 23.解:(Ⅰ)当2=a 时,()⎪⎩⎪⎨⎧-<-≤≤->=++-=,2,2,22,4,2,222x x x x x x x x f当2>x 时,可得,62>x ,解得.3>x当22≤≤-x 时,因为64>不成立,故此时无解;当2-<x 时,由62>-x 得,故此时.3-<x综上所述,不等式()6>x f 的解集为()().,33,+∞-∞-(Ⅱ)因为()a a x a x a x a x x f 2=---≥++-=,要使关于x 的不等式()12-<a x f 有解,只需122-<a a 成立. 当0≥a 时,122-<a a 即,122-<a a 解得21+>a ,或21-<a (舍去);当0<a 时,122-<a a ,即,122-<-a a 解得21+->a (舍去),或21--<a ; 所以,的取值范围为()().,2121,+∞+--∞-。
2018届福建省泉州市高三质检理科数学试题及答案
泉州市2018届高三质检数学试卷(理科)一、本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=(其中i为虚数单位)在复平面内对应的点在() A.第一象限 B.第二象限 C.第三象限D.第四象限2.已知集合A={x|x+1<0},B={x|3﹣x>0},那么集合A∩B() A.{x|x<﹣1} B.{x|x<3} C.{x|﹣1<x<3} D.∅3.某程序的框图如图所示,运行该程序时,若输入的x=0.1,则运行后输出的y值是()A.﹣1 B. 0.5 C. 2D.104.在二项式(2x+3)n的展开式中,若常数项为81,则含x3的项的系数为()A.216 B. 96 C.81 D.165.已知等比数列{a n}的首项a1=1,公比q≠1,且a2,a1,a3成等差数列,则其前5项的和S5=()A.31 B. 15 C. 11 D.56.已知某产品连续4个月的广告费用x i(千元)与销售额y i(万元),经过对这些数据的处理,得到如下数据信息:①x i=18,y i=14;②广告费用x和销售额y之间具有较强的线性相关关系;③回归直线方程=x+中的=0.8(用最小二乘法求得).那么,当广告费用为6千元时,可预测销售额约为()A. 3.5万元B. 4.7万元C. 4.9万元D. 6.5万元7.已知l,m为不同的直线,α,β为不同的平面,如果l⊂α,且m⊂β,那么下列命题中不正确的是()A.“l⊥β”是“α⊥β”的充分不必要条件B.“l⊥m”是“l⊥β”的必要不充分条件C.“m∥α”是“l∥m”的充要条件D.“l⊥m”是“α⊥β”的既不充分也不必要条件8.在如图所示的棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是正方形BCC1B1的中心,则三棱锥P﹣AB1D1的体积等于()A.B.C.D.9.某数学爱好者设计了一个食品商标,如果在该商标所在平面内建立如图所示的平面直角坐标系xOy,则商标的边缘轮廓线AOC恰是函数y=tan的图象,边缘轮廓线AEC恰是一段所对的圆心角为的圆弧.若在图中正方形ABCD内随机选取一点P,则点P落在商标区域内的概率等于()A.B.C.D.10.(2018•泉州一模)如图,对于曲线Ψ所在平面内的点O,若存在以O为顶点的角α,使得α≥∠AOB对于曲线Ψ上的任意两个不同的点A、B恒成立,则称角α为曲线Ψ上的任意两个不同的点A、B 恒成立,则称角α为曲线Ψ的相对于点O的“界角”,并称其中最小的“界角”为曲线Ψ的相对于点O的“确界角”.已知曲线C:y=(其中e=2.71828…是自然对数的底数),O为坐标原点,则曲线C的相对于点O的“确界角”为()A.B.C.D.二、填空题:本大题共5小题,每小题4分,共20分,请将答案填在答题卷的相应位置.11.(4分)(2018•泉州一模)(x2+sinx)dx= _________ .12.(4分)(2018•泉州一模)若对满足不等式组的任意实数x,y,都有2x+y≥k成立,则实数k的最大值为_________ .13.(4分)(2018•泉州一模)已知直线l过双曲线C:3x2﹣y2=9的右顶点,且与双曲线C的一条渐近线平行.若抛物线x2=2py(p>0)的焦点恰好在直线l上,则p= _________ .14.(4分)(2018•泉州一模)已知:△AOB中,∠AOB=90°,AO=h,OB=r,如图所示,先将△AOB绕AO所在直线旋转一周得到一个圆锥,再在该圆锥内旋转一个长宽都为,高DD 1=1的长方体CDEF﹣C1D1E1F1.若该长方体的顶点C,D,E,F都在圆锥的底面上,且顶点C1,D1,E1,F1都在圆锥的侧面上,则h+r的值至少应为_________ .15.(4分)(2018•泉州一模)定义一种向量运算“⊗”:⊗=(,是任意的两上向量).对于同一平面内的向量,,,,给出下列结论:①⊗=⊗;②λ(⊗)=(λ)⊗(λ∈R);③(+)⊗=⊗+⊗④若是单位向量,则|⊗|≤||+1以上结论一定正确的是_________ .(填上所有正确结论的序号)三、解答题:本大题共5小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(13分)(2018•泉州一模)某校高三年段共有1000名学生,将其按专业发展取向分成普理、普文、艺体三类,如图是这三类的人数比例示意图.为开展某项调查,采用分层抽样的方法从这1000名学生中抽取一个容量为10的样本.(Ⅰ)试求出样本中各个不同专业取向的人数;(Ⅱ)在样本中随机抽取3人,并用ξ表示这3人中专业取向为艺体的人数.试求随机变量ξ的数学期望和方差.17.(13分)(2018•泉州一模)已知函数f(x)=2sin•cos﹣2cos2+(ω>0),其图象与直线y=2的相邻两个公共点之间的距离为2π.(Ⅰ)若x∈[0,π],试求出函数f(x)的单调递减区间;(Ⅱ)△ABC的三个内角A,B,C及其所对的边a,b,c满足条件:f(A)=0,a=2,且b,a,c成等比数列.试求在方向上的抽影n的值.18.(13分)(2018•泉州一模)已知M(0,),N(0,﹣),G (x,y),直线MG与NG的斜率之积等于﹣.(Ⅰ)求点G的轨迹Γ的方程;(Ⅱ)过点P(0,3)作一条与轨迹Γ相交的直线l.设交点为A,B.若点A,B均位于y轴的右侧,且=,请求出x轴上满足|QP|=|QB|的点Q的坐标.19.(13分)(2018•泉州一模)设函数f(x)=﹣x n+ax+b(a,b∈R,n∈N*),函数g(x)=sinx.(Ⅰ)当a=b=n=3时,求函数f(x)的单调区间;(Ⅱ)当a=b=1,n=2时,求函数h(x)=g(x)﹣f(x)的最小值;(Ⅲ)当n=4时,已知|f(x)|≤对任意x∈[﹣1,1]恒成立,且关于x的方程f(x)=g(x)有且只有两个实数根x1,x2.试证明:x1+x2<0.20.(14分)(2018•泉州一模)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”.图1所示的“椭圆柱”中,A′B′,AB 和O′,O分别是上、下底面两椭圆的长轴和中心,F1、F2是下底面椭圆的焦点.图2是图1“椭圆柱”的三视图及其尺寸,其中俯视图是长轴在一条水平线上的椭圆.(Ⅰ)若M,N分别是上、下底面椭圆的短轴端点,且位于平面AA′B′B的两侧.①求证:OM∥平面A′B′N;②求平面ABN与平面A′B′N所成锐二面角的余弦值;(Ⅱ)若点N是下底面椭圆上的动点,N′是点N在上底面的投影,且N′F1,N′F2与下底面所成的角分别为α、β,请先直观判断tan (α+β)的取值范围,再尝试证明你所给出的直观判断.本题有21、22、23三个选答题,每小题7分,请考生任选2个小题作答,满分7分.如果多做,则按所做的前两题记分.【选修4-2:矩阵与变换】21.(7分)(2018•泉州一模)在平面直角坐标系xOy中,线性变换σ将点(1,0)变换为(1,0),将点(0,1)变换为(1,2).(Ⅰ)试写出线性变换σ对应的二阶矩阵A;(Ⅱ)求矩阵A的特征值及属于相应特征值的一个特征向量.【选修4-4:坐标系与参数方程】22.(7分)(2018•泉州一模)平面直角坐标系xOy中,直线l的参数方程为(t为参数),圆C的方程为x2+y2=4.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求直线l和圆C的极坐标方程;(Ⅱ)求直线l和圆C的交点的极坐标(要求极角θ∈[0,2π))【选修4-5:不等式选讲】23.(2018•泉州一模)设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.2014届泉州市普通中学高中毕业班质量检查理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.D 2.A 3.A 4.B 5.C 6.B 7.C 8.D 9.C 10.A二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11.2312. 2 13. 6 14. 4 15.①④三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查概率、统计的基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分13分.解:(Ⅰ)由题意,可得该校普理生、普文生、艺体生的人数比例为2:2:1, …………2分所以10人的样本中普理生、普文生、艺体生的人数分别为4人,4人,2人.…………4分(Ⅱ)由题意,可知0,1,2ξ=, …………5分3082310567(0)12015C C P C ξ====,2182310567(1)12015C C P C ξ====,128231081(2)12015C C P C ξ====, 所以随机变量ξ的分布列为…………9分18.本题主要考查直线、圆锥曲线的方程和性质,直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想等.满分13分. 解:(Ⅰ)(0),(0),MG NG y y k x k x x x -=≠=≠ …………2分由已知有3(0)4y y x x x +⋅=-≠,化简得轨迹Γ的方程为221(0)43x y x +=≠. …5分(Ⅱ)设直线l 的方程为3(0)y kx k =+<,1122(,),(,)A x y B x y (120,0x x >>). …6分因为BA AP =,(0,3)P , 所以212x x =. ……………………………① …7分联立方程组223,3412y kx x y =+⎧⎨+=⎩,消去y 得22(43)24240k x kx +++=, ……(*)…8分 所以1222443k x x k -++=………②, 1222434x x k ⋅=+………………③. …9分 由①得212122()9x x x x =+,又由②③得,222()8124343k k k -++=,所以293,42k k ==±.因为120,0x x >>,所以12224403k k x x +=+>-,0k <,所以32k =-. …………11分 当32k =-时,方程(*)可化为2320x x -+=,解得11x =,22x =,所以(2,0)B (3(1,)2A ). …12分法一:因为QP QB =,A 是PB 的中点,所以QA l ⊥,23AQ k =.设(,0)Q m ,则32213m =-,解得54m =-,所以Q 的坐标为5(,0)4-. …………13分 法二:设(,0)Q m ,因为QP QB =,所以229(2)m m +=-,解得54m =-, 所以Q 的坐标为5(,0)4-. …………13分19.本题主要考查函数、导数、函数的零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想、特殊与一般思想、有限与无限思想等.满分13分.解:(Ⅰ)当3a b n ===时,3()33f x x x =-++,2()33f x x '=-+. …1分解()0f x '>得11x -<<;解()0f x '<得11x x ><-或. …………2分 故()f x 的单调递增区间是(1,1)-,单调递减区间是(,1)-∞-和(1,)+∞. …………4分另解:当3a b n ===时,3()33f x x x =-++,2()33f x x '=-+. …1分令()0f x '=解得1x =-或1x =. ………2分()f x '的符号变化规律如下表:…………3分故()f x 的单调递增区间是(1,1)-,单调递减区间是(,1)-∞-和(1,)+∞. …………4分(Ⅱ)当1a b ==且2n =时,2()sin 1h x x x x =+--,则()cos 21h x x x '=+-, ……5分令()()x h x ϕ'=,则()sin 2x x ϕ'=-+,……6分因为()sin 2x x ϕ'=-+的函数值恒为正数,所以()x ϕ在(,)-∞+∞上单调递增, 又注意到(0)0ϕ=,所以,当0x > 时,()()(0)0x h x h ϕ''=>=,()h x 在(0,)+∞ 单调递增;当0x < 时,()()(0)0x h x h ϕ''=<=,()h x 在(,0)-∞ 单调递减 . ……8分所以函数()()()h x g x f x =-的最小值min ()(0)1h x h ==-. …………9分另解:当1a b ==且2n =时,2()sin 1h x x x x =+--,则()cos 21h x x x '=+-, ……5分令()cos 210h x x x '=+-=,得cos 21x x =-+. 考察函数cos y x =和21y x =-+的图象,可知:当0x < 时,函数cos y x =的图象恒在21y x =-+图象的下方,()0h x '<; 当0x > 时,函数cos y x =的图象恒在21y x =-+图象的上方,()0h x '>.所以()h x 在(,0)-∞ 单调递减,在(0,)+∞ 单调递增, ……8分 所以函数()()()h x g x f x =-的最小值min ()(0)1h x h ==-. …………9分(Ⅲ)因为对任意[1,1]x ∈-,都有1()2f x ≤,所以111(0),(1),(1)222f f f ≤≤-≤, 即11,22111+,22111+,22b a b a b ⎧-≤≤⎪⎪⎪-≤-+≤⎨⎪⎪-≤--≤⎪⎩亦即 11,(1)2213+,(2)2213+,(3)22b a b a b ⎧-≤≤⎪⎪⎪≤≤⎨⎪⎪≤-≤⎪⎩由(2)+(3)得13(4)22b ≤≤,再由(1)(4),得12b =,将12b =代入(2)(3)得0a =. 当0a =,12b =时,41()2f x x =-+. …………10分 因为[1,1]x ∈-,所以201x ≤≤,401x ≤≤,410x -≤-≤,4111222x -≤-+≤, 所以41()2f x x =-+符合题意. …………11分 设41()()()sin 2F x f x g x x x =-=-+-.因为1111(2)16sin(2)0,(1)1sin(1)sin1sin 022262F F π-=-+--<-=-+--=->-=,111(0)sin 00,(1)1sin1sin10222F F =->=-+-=--<, ……12分又因为已知方程()()f x g x =有且只有两个实数根12,x x (不妨设12x x <), 所以有1221,01x x -<<-<<,故120x x +<. …………13分20.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系、空间向量、三角函数等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想、特殊与一般思想及应用意识. 满分14分. 解:(Ⅰ)(i )连结','O M O N ,∵''O O O ⊥底面,''O M O ⊂底面,∴''O O O M ⊥. …1分∵'''O M A B ⊥,'''O O AA B B ⊂平面,''''A B AA B B ⊂平面,''A B ''O O O =,∴'''O M AA B B ⊥平面. …2分类似可证得''ON AA B B ⊥平面,∴'//O M ON . 又∵'O M ON =, ∴四边形'ONO M 为平行四边形, ∴'OM O N . …3分又∵'','''OM A B N O N A B N ⊄⊂平面平面, ∴OM 平面''A B N . …………4分(ii )由题意,可得'AA =,短轴长为2. …5分如图,以O 为原点,AB 所在直线为x 轴,'OO 所在直线为z 轴建立空间直角坐标系O xyz -.则有2(1,0,0),(0,1,0),'(F N A B ,∴'(2,1,6),'(2,NA NB =--=-, …6分 ∵z 轴⊥平面ABN ,∴可取平面ABN 的一个法向量1(0,0,1)n =.设平面''A B N 的一个法向量为2(,,)n x y z =,则'20,'20n NA y n NB x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,化简得0,x y =⎧⎪⎨-+=⎪⎩,取1z =,得2n =. …8分设平面ABN 与平面''A B N 所成锐二面角为θ.则12127cos 7||||n n nn θ⋅==⋅.…………9分(Ⅱ)当点N 为下底面上椭圆的短轴端点时,12NF NF ==1'tan tan NN NF αβ===3παβ==, 23παβ+=,tan()αβ+=当点N 为下底面上椭圆的长轴端点(如右顶点)时,11NF =,21NF =,1'tan NNNF α=2'tan NN NF β=tan tantan()1tan tan 5αβαβαβ++==--. 直观判断tan()αβ+的取值范围为[5-. (说明:直观判断可以不要求说明理由.) …10分 ∵'N 是点N 在上底面的投影,∴'N N ⊥上底面'O ,∵上下两底面互相平等, ∴'N N ⊥下底面O ,即'N N ⊥平面ABN ,∴12','N F N N F N ∠∠分别为12','N F N F 与下底面所成的角,即12','N F N N F N αβ∠=∠=. …11分 又∵12,NF NF ⊂平面ABN , ∴12','NN NF NN NF ⊥⊥. 设12,NF m NF n ==,则m n +=,且12''tan ,tan NN NN NF m NF nαβ====,∴)tan()66m n mn mn mn αβ+++===--. …12分∵m n +=,∴2)(2mn m m m =-=-+.11m -≤≤,∴ 12mn ≤≤. …13分∴564mn -≤-≤-,6mn ≤≤--.从而证得:tan()αβ+的取值范围为[]5-. …………14分21.(1)(本小题满分7分)选修4—2:矩阵与变换本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查函数与方程思想.满分7分.解:(Ⅰ)设a b c d ⎛⎫=⎪⎝⎭A ,则1100a c ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ,0112b d ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ,所以1102⎛⎫=⎪⎝⎭A ; …………3分 (Ⅱ)矩阵A 的特征多项式为11()(1)(2)02f λλλλλ--==---,............4 令()0f λ=,得矩阵A 的特征值为121,2λλ==. (5)对于特征值11λ=,解相应的线性方程组00,00x y x y ⋅-=⎧⎨⋅-=⎩,即0y =,令1x =,得该方程的一组非零解1,x y =⎧⎨=⎩,所以110⎛⎫= ⎪⎝⎭ξ是矩阵A 的属于特征值11λ=的一个特征向量. (6)对于特征值22λ=,解相应的线性方程组0,000x y x y -=⎧⎨⋅+⋅=⎩,即x y =,令1x =,得该方程的一组非零解1,1x y =⎧⎨=⎩, 所以211⎛⎫= ⎪⎝⎭ξ是矩阵A 的属于特征值22λ=的一个特征向量. …………7分 (2)(本小题满分7分)选修4—4:坐标系与参数方程本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分7分.解:(Ⅰ)直线l的普通方程为20x +-=, …………………………(*)将cos ,sin x y ρθρθ==代入(*),得cos sin 20ρθθ+-=,……1分 化简得线l 的方程为cos()13πρθ-=, ……2分圆C 的极坐标方程为2ρ=. …………3分(Ⅱ)联立方程组2,cos()13ρπρθ=⎧⎪⎨-=⎪⎩,消去ρ得1cos()32πθ-=, ………4分 因为[0,2)θπ∈, 所以5333πππθ-≤-<,所以33ππθ-=-或33ππθ-=,………6分所以直线l 和圆C 的交点的极坐标为2(2,0),(2,)3π. …………7分 (3)(本小题满分7分)选修4—5:不等式选讲本小题主要考查绝对值的含义、柯西不等式等基础知识,考查运算求解能力以及推理论证能力,考查函数与方程思想、数形结合思想等.满分7分. 解:(Ⅰ)()3f x ==+≤=,……2分当且仅当4x =时等号成立. ……3分故函数()f x 的最大值3M =.(Ⅱ)由绝对值三角不等式,可得12(1)(2)3x x x x -++≥--+=. ……4分 所以不等式123x x -++≤的解x ,就是方程123x x -++=的解. ……5分 由绝对值的几何意义,可得当且仅当21x -≤≤时,123x x -++=. ……6分所以不等式12x x M -++≤的解集为{|21}x x -≤≤. ……7分。
2018年福建省质检数学(理科)试卷(含答案)
2018年福建省高三毕业班质量检查测试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合21{|log 0},33xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R1.【答案】B【考查意图】本小题以集合为载体,考查指数函数、对数函数的图象与性质,集合的运算等基础知识;考查运算求解能力,考查数形结合思想等.【答题分析】只要掌握指、对数函数的图象与性质,集合的运算等,便可解决问题.解:2log 0x <等价于22log log 1x <,解得01x <<,所以(0,1)A =;133x⎛⎫< ⎪⎝⎭等价于11133x-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,解得1x >-,所以(1,)B =-+∞,从而(0,1)A B =I . 2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称B .()f x 的最小正周期为2π C .()y f x =的图象关于点,02π⎛⎫⎪⎝⎭对称 D .()f x 在,36ππ⎛⎫-⎪⎝⎭单调递增 2.【答案】D【考查意图】本小题以三角函数为载体,考查函数的图象变换及三角函数的图象与性质等基础知识,考查推理论证能力,考查数形结合思想、特殊与一般思想等.【答题分析】只要掌握函数图象变换知识、三角函数的图象与性质,便可解决问题. 解:由题意得,()sin f x x =.sin y x =的图象对称轴为直线,2x k k Z ππ=+∈,所以选项A 错误;sin y x =的最小正周期为2T π=,所以选项B 错误; sin y x =的图象对称中心为(,0),k k Z π∈,所以选项C 错误;sin y x =的一个单调递增区间为,22ππ⎛⎫- ⎪⎝⎭,,,3622ππππ⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确.3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系;在如图所示的正五角星中,以,,,,A B C D E 为顶点的多边形为正五边形,且51PT AT -=.下列关系中正确的是( ) A .512BP TS RS -=u u u r u u r u uu r B .512CQ TP TS +=u u u r u u r u ur C .512ES AP BQ -=u u u r u u u r u u ur D .512AT BQ CR +=u u u r u u u r u u ur ABCDEP QR S T【考察意图】本小题以正五角星为载体,考查平面向量的概念及运算等基础知识,考查推理论证能力,考查转化与化归思想等.【答题分析】只要掌握平面向量的概念,平面向量的加法、减法及数乘运算的几何意义,便可解决问题.解:由题意得,51BP TS TE TS SE RS +-=-==u u u r u u r u u r u u r u u r u uu r ,所以选项A 正确. 512CQ TP PA TP TA ST +=+==u u u r u u r u u u r u u r u u r u u u r ,所以选项B 错误;512ES AP RC QC RQ QB -=-==u u u r u u u r u u u r u u u r u u u r u u u r ,所以选项C 错误;51,2AT BQ SD RD CR RS RD SD +=+==-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,若512AT BQ CR +=u u u r u u u r u u u r ,则0SD =u u u r r,不合题意,所以选项D 错误.故选A .4.已知5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( ) A .123 B .91 C .120- D .152- 4.【答案】D【考查意图】本小题以代数恒等式为载体,考查二项式定理等基础知识,考查运算求解能力、抽象概括能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握二项式定理,会合理赋值,便可解决问题.解法一:由5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,取1x =得:01234563a a a a a a a ++++++=, ①取1x =-得:0123456243a a a a a a a -+-+-+=-, ②+①②,得0246120a a a a +++=-,又561232a =⨯=,所以024152a a a ++=-.解法二:因为5(21)x -的展开式的第1r +项515(2)(1),0,1,2,3,4,5r r r r T C x r -+=-=, 所以5054143230525522(1)2,12(1)22(1)70a C a C C =⨯-=-=⨯-+⨯-=-, 23214145512(1)22(1)80a C C =⨯-+⨯-=-,所以024152a a a ++=-,故选D .5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( ) A .120 B .84 C .56 D .28【答案】B【考查意图】本小题以数学文化为载体,考查程序框图等基础知识,考查运算求解能力、应用意识. 【答题分析】只要按程序框图逐步执行,便可解决问题. 解:按步骤执行程序框图中的循环体,具体如下:1,1,12,3,43,6,104,10,20i n S i n S i n S i n S ===→===→===→===; 5,15,356,21,567,28,84i n S i n S i n S ===→===→===.所以输出84S =.故选B .6.已知函数22()22x f x x x =-+.命题1:()p y f x =的图象关于点(1,1)对称;命题2:p 若2a b <<,则()()f a f b <.则在命题112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和 412:()q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q【答案】B【考察意图】本小题以分式函数为载体,考查函数的图象与性质、导数及其应用、逻辑联结词的含义等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握逻辑联结词的含义、函数图象的对称性,会利用导数研究函数的单调性,会判断含逻辑联结词的命题的真假,便可解决问题.解法一:因为2222(2)44(2)(2)2(2)222x x x f x x x x x --+-==---+-+, 所以22244()(2)222x x x f x f x x x -+++-==-+,故()f x 的图象关于点(1,1)对称,故命题1p 为真命题; 因为2(2),(0)05f f -==,所以(2)0f ->,故命题2p 为假命题. 所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .解法二:因为2222(1)()122(1)1x x f x x x x -==+-+-+,所以函数()y f x =的图象可由22()1xg x x =+的图象向右平移1个单位,再向上平移1个单位后得到.因为()()g x g x -=-,所以()g x 是奇函数,()g x 的图象关于原点对称,从而()y f x =的图象关于点(1,1)对称,故命题1p 为真命题.因为22224()(22)x xf x x x -+'=-+,令()0f x '>,得02x <<,所以()f x 的单调递增区间为(0,2);令()0f x '<,得0x <或2x >,所以()f x 的单调递减区间为(,0)-∞,(2,)+∞; 故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B . 解法三:同解法一可得,命题1p 为真命题.因为当0x ≠时,2221()2211122x f x x x x x ==-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,设2()221h t t t =-+,1t x =,则1t x=在(,0)-∞单调递减,当(,0)x ∈-∞时,(,0)t ∈-∞,又因为 2()221h t t t =-+在(,0)-∞单调递减,当(,0)t ∈-∞时,()(1,)h t ∈+∞,所以211122y x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在(,0)-∞单调递增,又因为1y x =在(1,)+∞单调递减,所以()f x 在(,0)-∞单调递减,故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .7.如图,在平面直角坐标系xOy 中,质点,M N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的运算圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( ) A .37.5分钟 B .40.5分钟 C .49.5分钟 D .52.5分钟O Py【答案】A【考查意图】本小题以匀速圆周运动为背景,考查任意角三角函数的定义、三角函数的图象与性质等基础知识,考查抽象概括能力、推理论证能力、运算求解能力、应用意识及创新意识,考查函数与方程思想、数形结合思想等.【答题分析】只要掌握任意角三角函数的定义、三角函数的图象与性质等,或结合平面几何知识直观判断,便可解决问题.解法一:设点N 出发后的运动的时间为t 分钟,圆O 的半径为1,由三角函数的定义,得sin cos 266N y t t πππ⎛⎫=-+=- ⎪⎝⎭,因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,所以sin sin 2626M y t t ππππ⎛⎫=-++= ⎪⎝⎭,所以sincos26664M N y y t t t ππππ⎛⎫-=+=+ ⎪⎝⎭, 当2,642t k k Z ππππ+=+∈,即312,2t k k Z =+∈时, M N y y -取得最大值,故当3k =时,M N y y -第4次取得最大值,此时37.5t =,故选A .解法二:因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,当M N y y -取得最大值时,MN x ⊥轴,且4PON π∠=,O PyNM当M N y y -第一次取得最大值时,N 运动的时间为4 1.56ππ=分钟;又质点N 运动一周的时间为2126ππ=分钟,当M N y y -第4次取得最大值时,N 运动的时间为1.512337.5+⨯=分钟.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( ) A .32643π-B .648π-C .16643π-D .8643π-【答案】C【考查意图】本小题以空间几何体为载体,考查三视图,正方体,圆柱,圆锥的体积等基础知识;考查空间想象能力,运算求解能力.【答题分析】只要掌握三视图及正方体、圆柱、圆锥的体积计算公式,便可解决问题. 解:由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得的几何体,且圆锥的底面半径为2,高为4;圆柱的底面半径为2,高为4,如图. 所以该几何体的体积为311164444464433πππ⎛⎫-⨯⨯⨯+⨯⨯=- ⎪⎝⎭.故选C .9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( ) A .3200元 B .3400元 C .3500元 D .3600元 【答案】C【考查意图】本小题以故障机器问题为载体,考查计数原理、排列与组合、随机变量的分布列与数学期望等基础知识,考查抽象概括能力、运算求解能力及应用意识,考查统计与概率思想、分类与整合思想等. 【答题分析】只要能列出随机变量的所有取值并应用计数原理及排列组合知识计算对应的概率,理解数学期望的意义,便可解决问题.解法一:设检测机器的台数为ξ,则ξ的所有可能取值为2,3,4.1123223232235513133(2),(3),(4)1101010105C C A A A P P P A A ξξξ+========--=, 所以133234 3.510105E ξ=⨯+⨯+⨯=,故所需检测费用的均值为10003500E ξ⨯=元. 解法二:设检测费为η元,则η的所有可能取值为2000,3000,4000.1123223232235513133(2000),(3000),(4000)1101010105C C A A A P P P A A ηηη+========--=所以133200030004000350010105E η=⨯+⨯+⨯=,故所需检测费用的均值为3500元. 10.已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【考查意图】本小题以抛物线为载体,考查抛物线的标准方程及其简单几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想等.【答题分析】只要掌握抛物线的标准方程及其简单几何性质,直线与抛物线的位置关系,并根据题意准确作//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,则1212221212122122AB y y y y pk y y x x y y p p--====-+- 所以122y y p +=,所以0y p =,作MK x ⊥轴于K ,则MK p =,因为AB 的斜率为1, 所以FMK △为等腰直角三角形,故FK KC p ==,所以32MN OK OF FK p ==+=,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =. 解法二:由题意,得,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p y x =-,四边形CNMF 为梯形,且//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,由222p y x y px ⎧=-⎪⎨⎪=⎩,得2220y py p --=,则122y y p +=,所以0y p =,故(0,)N p ,由于2p y x =-,令0y p =,得032x p =, 所以3,2M p p ⎛⎫⎪⎝⎭,因为MC AB ⊥,所以1MC AB k k ⋅=-,故1MC k =-,从而直线MC 的方程为52y x p =-+,令0y =,得52C x p =,故5,02p C ⎛⎫⎪⎝⎭,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =.11.已知,,,A B C D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,42,8BC BD CD ===.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .8【答案】D【考查意图】本小题以球为载体,考查空间几何体,球的性质等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想等.【答题分析】只要通过长度关系,认清以,,,A B C D 四点为顶点的三棱锥的图形特征,正确判断球心1O 的位置,借助方程求出球1O 的半径,直观判断球2O 的位置,便可解决问题.解法一:取CD 的中点O ,连结,AO BO ,如图,因为42BC BD ==8CD =,所以222BD BC CD +=,所以BC BD ⊥,故O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面BCD ,所以1O 在直线AO 上,连结1O D ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.解法二:将Rt BCD △补形成正方形ECBD ,如图,易知四棱锥A BCED -为正四棱锥,正方形BDEC 的中心为O ,BO CD ⊥.连结,AO BO ,则O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,又因为4,4OD BO ==,所以222AO BO AB +=,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面CBDE ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.1O 2O A BC DO 1O 2O A BCDO E12.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围是( ) A .[0,3]B .[0,2]C .[2,3]D .(1,3]-【答案】A【考查意图】本题以三次函数为载体,考查导数及其应用等基础知识,考查运算求解能力、推理论证能力及创新意识,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想等. 【答题分析】只要将函数3()()3()2f x x a x a a =----的图象作平移变换得到3()3g x x x =-,将条件转化为“当[1,]x a b a ∈---时,()g x 的值域为[2,2]a -”,注意到()g x 的极小值与它在[1,]a b a ---上的最小值相等,再结合函数图象,由()g x 的值域为[2,2]a -直观判断b a -的取值范围;或直接研究函数()f x 的图象与性质,通过分类讨论确定a 的值,进而根据图象直观判断出b 的取值范围. 解法一:将函数33()()3()3()2f x x a x a x a x a a =--+=----的图象向左平移a 个单位,再向上平移2a 个单位,得到3()3g x x x =-的图象,故条件等价于3()3g x x x =-在[1,]a b a ---的值域为[2,2]a -.2()333(1)(1)g x x x x '=-=+-,所以当(,1)x ∈-∞-或(1,)x ∈+∞时,()0g x '>,故()g x 的单调递增区间为(,1),(1,)-∞-+∞;当(1,1)x ∈-时,()0g x '<,故()g x 的单调递减区间为(1,1)-.又(1)2,(1)2g g -==-,令()2g x =,得3320x x -+=,即2(1)(2)0x x -+=,得2x =-或1x =,因为0a >,所以11a --<-,由图象得12a ---≥,故01a <≤.①当1a =时,3()3g x x x =-在[2,1]b --的值域为[2,2]-,因为(1)(2)2g a g --=-=-,令()2g x =,得3320x x --=,即2(1)(2)0x x +-=,解得:1x =-或2x =,故由图象得112b --≤≤,解得03b ≤≤;②当01a <<时,211,022a a -<--<-<<,所以1b a -<-,又()g x 在(1,)a b a ---上单调递增,所以()(1)2g x g a -->-≥,此时与题意矛盾. 综上,可知03b ≤≤,故选A .解法二:因为3()()3f x x a x a =--+,所以2()3()3f x x a '=--,令()0f x '=得:1x a =+或1x a =-,又(1)22,(1)22f a a f a a +=---=-+,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)a -∞-1a -(1,1)a a -+1a +(1,)a ++∞()f x ' ()0f x '>()0f x '<()0f x '>()f x单调递增22a -+ 单调递减22a --单调递增① 若(1)22f a -=--,则32340a a +-=,整理得,2(1)(2)0a a -+=,解得:1a =或2a =-(舍去),此时3()(1)31f x x x =--+,令()4f x =-,解得1x =-或2x =;令()0f x =,解得0x =或3x =,因为()f x 在[1,]b -的值域为[4,0]-,故由图象可得03b ≤≤. ②若(1)22f a ->--,因为0a >,所以11a ->-,要使()f x 在[1,]b -上的值域为[22,0]a --,则1a b +≤,所以1[1,]a b -∈-,所以(1)22(1)0f a f a ->--⎧⎨-⎩≤, 即3(1)322220a a a a ⎧--++>--⎨-⎩≤,即2(1)(2)01a a a ⎧-+<⎨⎩≥,无解. 综上,可得03b ≤≤,故选A .二、填空题:本大题共4小题,每小题5分,共20分。
【全国市级联考】福建省泉州市2018届高中毕业班1月单科质量检查数学理试题(解析版)
福建省泉州市2018届高中毕业班单科质量检查理科数学试题一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合,,则A. B. C. D.【答案】D【解析】则故选2. 已知为复数的共轭复数,,则A. B. C. D.【答案】A【解析】则故选3. 设等差数列的前项和为.若,,则A. B. C. D.【答案】C【解析】依题意故选4. 已知点在双曲线的渐近线上,则的离心率等于A. B. C. D. 或【答案】B【解析】由题意得:点在直线上,则故选5. 已知实数满足则的最大值为A. B. C. D.【答案】C【解析】由已知条件,可行域如右图阴影部分其中阴影区域三角形的三个顶点分别为,把三个点分别代入,检验得:当,时,取得最大值。
故选6. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. B. C. D.【答案】A【解析】该几何体可以看成是在一个半球上叠加一个圆锥,然后挖掉一个相同的圆锥,所以该几何体的体积和半球的体积相等则故选7. 《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的的值为33,则输出的的值为A. 4B. 5C. 6D. 7【答案】C【解析】开始执行,,再执行一行,然后输出故选8. 下列函数中,图象关于原点对称且单调递增的是A. B.C. D.【答案】D【解析】选项中,,不符合图象上升这个条件;选项中,定义域不关于原点对称;选项中,函数图象先减后增,在时函数取得最小值;故选9. 已知,,,则A. B. C. D.【答案】A........................故选10. 已知是函数图象的一个最高点,是与相邻的两个最低点.若,则的图象对称中心可以是A. B. C. D.【答案】C【解析】如图,取的中点,连结,则,设,则,由余弦定理可得解得,,的中点都是图象的对称中心,故选11. 已知直线:,圆:.若对任意,存在被截得弦长为,则实数的取值范围是A. B.C. D.【答案】C【解析】由题意可得,圆心到的距离即解得或故实数的取值范围是故选12. 已知函数恰有两个零点,则实数的取值范围是A. B. C. D.【答案】D【解析】当时,,故不是函数的零点,当时,等价于令,则当时,,当时,,当时,,(1)当时,在有两个零点,故在没有零点,从而,(2)当或时,在有一个零点,故在有一个零点,不合题意;(3)当时,在没有零点,故在有两个零点,从而综上所述,或,即实数的取值范围是故选点睛:本题主要考查了二次函数的图象与性质,分段函数的图象,复合函数的图象以及零点问题等知识点;主要考查了学生的抽象概括能力,运算求解的能力以及应用意识;考查数行结合思想,分类与整合,函数与方程思想;考查数学抽象,数学运算和数据分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泉州市2018届高中毕业班质量检测数学(理科)一、选择题(共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合要求的)1.设全集为R,函数f(x)=lg(x﹣1)的定义域为M,则∁R M为() A.(0,1) B.(0,1] C.(﹣∞,1] D.(﹣∞,1)2.已知角α的终边经过点P(m,4),且cosα=﹣,则m等于()A.﹣ B.﹣3 C. D. 33.已知=(1,2),=(3,n),若∥,则n等于()A. 3 B. 4 C. 5 D. 6 4.某几何体的三视图如图所示,则该几何体的体积等于()A. +π B. 3( +π) C.3( +)D. +5.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.6.运行如图所示的程序框图所表达的算法,若输出的结果为0.75,则判断框内应填入的内容是()A.i≥4? B. i<4? C.i≥3? D.i<3?7.下列说法正确的是()A.命题“∃x∈R,使得x2+x﹣1>0”的否定是“∀x∈R,x2+x﹣1<0”B.命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题C.“x=﹣1”是“x2﹣2x﹣3=0”的必要不充分条件D.“0<a<1”是“函数f(x)=a x(a>0,a≠1)在R上为减函数”的充要条件8.若不等式组所表示的平面区域被直线y﹣1=k(x﹣5)分为面积相等的两部分,则k的值是()A.B.C.2D.49.双曲线﹣=1 (a>0,b>0)的一个焦点为F1,顶点为A1、A2,P是双曲线上任意一点,则分别以线段PF1,A1A2为直径的两圆一定()A.相交 B.相切C.相离 D.以上情况都有可能10.若函数y=f(x)满足:集合A={f(n)|n∈N*}中至少有三个不同的数成等差数列,则称函数f(x)是“等差源函数”,则下列四个函数中,“等差源函数”的个数是()①y=2x+1;②y=log2x;③y=2x+1;④y=sin(x+)A. 1 B. 2 C. 3 D. 4二、填空题:共5小题,每小题4分,共20分11.(4分)(2018•泉州模拟)复数z=(其中i为虚数单位)的共轭复数等于_________ .12.(4分)(2018•泉州模拟)已知(3﹣)n的展开式中第三项为常数项,则展开式中个项系数的和为_________ .13.(4分)(2018•泉州模拟)已知在等差数列{a n}中,a1=10,其公差d <0,且a1,2a2+2,5a3成等比数列,则|a1|+|a2|+|a3|+…+|a15|=_________ .14.(4分)(2018•泉州模拟)如图,矩形ABCD的面积为3,以矩形的中心O为顶点作两条抛物线,分别过点A、B和点C、D,若在矩形ABCD中随机撒入300颗豆子,则落在阴影部分内的豆子大约是_________ .15.(4分)(2018•泉州模拟)如图,已知点G是△ABC的重心(即三角形各边中线的交点),过点G作直线与AB、AC两边分别交于M、N两点,若=x,=y,则+=3,由平面图形类比到空间图形,设任一经过三棱锥P﹣ABC 的重心G(即各个面的重心与该面所对顶点连线的交点)的平面分别与三条侧棱交于A 1、B1、C1,且=x,=y,=z,则有++=_________ .三、解答题:共5小题,共80分,解答应写出文字说明,证明过程或演算步骤16.(13分)(2018•泉州模拟)已知某射击队员每次射击击中目标靶的环数都在6环以上(含6环),据统计数据绘制得到的频率分布条形图如图所示,其中a,b,c依次构成公差为0.1的等差数列,若视频率为概率,且该队员每次射击相互独立,试解答下列问题:(Ⅰ)求a,b,c的值,并求该队员射击一次,击中目标靶的环数ξ的分布列和数学期望Eξ;(Ⅱ)若该射击队员在10次的射击中,击中9环以上(含9环)的次数为k的概率为P(X=k),试探究:当k为何值时,P(X=k)取得最大值?17.(13分)(2018•泉州模拟)已知m=(1,﹣),n=(sin2x,cos2x),定义函数f(x)=m•n.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)已知△ABC中,三边a,b,c所对的角分别为A,B,C,f()=0.(i)若acosB+bcosA=csinC,求角B的大小;(ii)记g(λ)=|+|,若||=||=3,试求g(λ)的最小值.18.(13分)(2018•泉州模拟)椭圆G的中心为原点O,A(4,0)为椭圆G的一个长轴端点,F为椭圆的左焦点,直线l经过点E(2,0),与椭圆G 交于B、C两点,当直线l垂直x轴时,|BC|=6.(Ⅰ)求椭圆G的标准方程;(Ⅱ)若AC∥BF,求直线l的方程.19.(13分)(2018•泉州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD 为正方形,PA=PD,PA⊥AB,点E、F分别是棱AD、BC的中点.(Ⅰ)求证:AB⊥PD;(Ⅱ)若AB=AP,求平面PAD与平面PBC所成锐二面角的余弦值;(Ⅲ)若△PAD的面积为1,在四棱锥P﹣ABCD内部,放入一个半径为R的球O,且球心O在截面PEF中,试探究R的最大值,并说明理由.20.(14分)(2018•泉州模拟)已知函数f(x)=ln|x+1|﹣ax2.(Ⅰ)若a=且函数f(x)的定义域为(﹣1,+∞),求函数f(x)的单调递增区间;(Ⅱ)若a=0,求证f(x)≤|x+1|﹣1;(Ⅲ)若函数y=f(x)的图象在原点O处的切线为l,试探究:是否存在实数a,使得函数y=f(x)的图象上存在点在直线l的上方?若存在,试求a的取值范围;若不存在,请说明理由.本题有三小题,每题7分,请考生任选2题作答,满分14分【选修4-2:矩阵与变换】21.(7分)(2018•泉州模拟)已知是矩阵A=的一个特征向量.(Ⅰ)求m的值和向量相应的特征值;(Ⅱ)若矩阵B=,求矩阵B﹣1A.【选修4-4:坐标系与参数方】22.(7分)(2018•泉州模拟)直线l1:θ=(ρ∈R)与直线l2:(t为参数)的交点为A,曲线C:(其中α为参数).(Ⅰ)求直线l1与直线l2的交点A的极坐标;(Ⅱ)求曲线C过点A的切线l的极坐标方程.【选修4-5:不等式选讲】23.(2018•泉州模拟)已知不等式|t+3|﹣|t﹣2|≤6m﹣m2对任意t∈R恒成立.(Ⅰ)求实数m的取值范围;(Ⅱ)若(Ⅰ)中实数m的最大值为λ,且3x+4y+5z=λ,其中x,y,z ∈R,求x2+y2+z2的最小值.泉州市2014届普通中学高中毕业班质量检测理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.C 2.B 3.D 4.C 5.A 6.B 7.D 8.A 9. B 10.C 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11、i -; 12、16; 13、65; 14、200; 15、4.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.本小题主要考查组合数公式、概率、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分13分. 解:(Ⅰ)依题意,得0.6a b c ++=,即0.10.20.6a a a ++++=,解得0.1a =,…2分所以0.2,0.3b c ==.………………3分故该队员射击一次,击中目标靶的环数ξ的分布列为:ξ6 7 8 9 10 P0.10.20.30.360.04…………5分60.170.280.390.36100.048.04E ξ=⨯+⨯+⨯+⨯+⨯=. ………………6分(Ⅱ)记事件A :“该队员进行一次射击,击中9环”,事件B :“该队员进行一次射击,击中10环”,则事件“该队员进行一次射击,击中9环以上(包括9环)”为A B +.………7分因为A 与B 互斥,且()0.36,()0.04P A P B ==,所以()()()0.4P A B P A P B +=+=. …………8分所以,该射击队员在10次的射击中,击中9环以上(含9环)的次数为k 的概率1010()0.40.6(0,1,2,,10)kk k P X k C k -==⨯⨯= . ………………10分当1k ≥,*k ∈N 时,101011101100.40.6()2(11)(1)0.40.63kk k k k k C P X k k P X k C k----+⨯⨯=-===-⨯⨯. 令()1(1)P X k P X k =>=-,解得225k <. ………………12分 所以当14k ≤≤时,(1)()P X k P X k =-<=;当510k ≤≤时,(1)()P X k P X k =->=.综上,可知当4k =时,()P X k =取得最大值.………………13分17.本小题主要考查平面向量、三角恒等变换、三角函数性质以及解三角形等基础知识,考查运算求解能力与推理论证能力,考查函数与方程思想、数形结合思想、转化与化归思想等.满分13分.解:(Ⅰ)()sin 23cos 22sin(2)3f x x x x π=⋅=-=-m n , ………………2分由222232k x k πππππ-+≤-≤+,得51212k x k ππππ-+≤≤+,k ∈Z .……3分 所以函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .………………4分(Ⅱ)由()02A f =,得2sin()03A π-=, 因为0A π<<,所以3A π=.…………5分(ⅰ)由正弦定理,知cos cos sin a B b A c C +=可化为2sin cos sin cos sin A B B A C +=,……6分 故2sin()sin A B C +=,………………7分又因为A B C π+=-,所以2sin()sin C C π-=即2sin sin C C =, 因为sin 0C ≠,所以sin 1C =,又由于0C π<<,所以2C π=,………………8分所以()6B AC ππ=-+=.………………9分(ⅱ)AB AC λ+()22222cos AB ACAB AB AC A AC λλλ=+=+⋅+ ,…10分又3AB AC == ,3A π=,所以AB AC λ+ ()22222131(1)3324AB λλλλλ⎛⎫=++=++=++ ⎪⎝⎭ ,12分故当12λ=-时,()g AB AC λλ=+ 的值取得最小值332.………………13分另解:记AB AC AP λ+=,则P 是过B 且与AC 平行的直线l 上的动点,()||g AP λ=,…………12分所以()g λ的最小值即点A 到直线l 的距离332.…………13分 18.本小题主要考查椭圆的标准方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分13分. 解:(Ⅰ)因为(4,0)A 为椭圆G 的一个长轴端点,所以可设椭圆G 的方程为222116x y b +=,………………1分因为当直线l 垂直x 轴时,6BC =,所以椭圆G 过点(2,3),……2分所以249116b+=,解得212b =. ………………3分 故所求椭圆的方程为2211612x y +=.………………4分 (Ⅱ)方法1:设直线l 的方程为2x my =+,联立方程组2223448x my x y =+⎧⎨+=⎩,消去x ,得22(34)12360m y my ++-=,……5分 设1122(,),(,)B x y C x y ,则1221234,mm y y +=-+……① 1223634y m y ⋅=-+.……② …………6分 又2211(4,),(2,)AC x y FB x y =-=+,且AC BF ,………………7分 故2112(4)(2)0x y x y --+=,即2112(2)(4)0my y my y --+=,即122y y =-.………③ …………9分由①②③得22212183434m m m ⎛⎫= ⎪⎝⎭++,所以245m =.…………11分 当245m =时,0∆>,所以255m =±,…………12分所以直线l 的方程为2525x y =±+,即525100x y --=或525100x y +-=.…………13分方法2:①当直线l 的斜率不存在时,AC 与BF 不平行;………………5分②当直线l 的斜率存在时,设直线l 的方程为(2)y k x =-,联立方程组22(2),3448.y k x x y =-⎧⎨+=⎩消去y ,整理得2222(34)1616480k x k x k +-+-=,…………6分设1122(,),(,)B x y C x y ,则12221634x k x k =++,…………①2221164834x k k x -=+⋅…………② …………7分 又2211(4,),(2,)AC x y FB x y =-=+,且AC BF , ………………8分 故2112(4)(2)0x y x y --+=,即2112(4)(2)(2)(2)0k x x k x x ---+-=, 即1226x x +=…………③ …………9分由①③得2122228183481834k x k k x k ⎧-=⎪⎪+⎨+⎪=⎪+⎩,代入②得2222228188181648343434k k k k k k-+-=+++………………11分 化简,得254k =,当254k =时,0∆>,故52k =±,…………12分所以直线l 的方程为525100x y --=或525100x y +-=.……13分19.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分13分. 解:(Ⅰ)在正方形ABCD 中,AB AD ⊥,又PA AB ⊥ ,PA AD A = ,∴AB ⊥平面PAD ,…………2分又 PD ⊂平面PAD ,AB PD ∴⊥………………3分(Ⅱ) 点E 、F 分别是棱AD 、BC 的中点,连结PE ,EF ,则,PE AD EF AB ⊥ , 又由(Ⅰ)知AB ⊥平面PAD ,∴EF ⊥平面PAD ,又,AD PE ⊂平面PAD ,∴,EF AD EF PE ⊥⊥,………………4分 如图,以点E 为坐标原点,分别以,,AD EF EP 所在直线为为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.由题设可知: PA PD AB AD ===,故不妨设2AB =, 则(1,0,0),(1,0,0),(1,2,0),(1,2,0),(0,2,0),(0,0,3)A D B C F P --(1,2,3)PB =- ,(1,2,3)PC =--,………………5分AB ⊥平面PAD , ∴平面PAD 的一个法向量为(0,2,0)AB =,…………6分设平面PBC 的一个法向量为(,,)x y z =n ,,PB PC ⊥⊥n n,∴00PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n,即230230x y z x y z ⎧+-=⎪⎨-+-=⎪⎩,解得0230x y z =⎧⎪⎨-=⎪⎩, 令2z =,得3y =,∴平面PBC 的一个法向量为(0,3,2)=n .………………7分设平面PAD 与平面PBC 所成锐二面角的大小为θ,则0230321cos cos ,.7277AB AB AB θ⋅++=<>====⋅n n n∴平面PAD 与平面PBC 所成锐二面角的余弦值为21.7……………8分 (Ⅲ)由(Ⅱ)已证得PE EF ⊥,则截面PEF ∆为直角三角形.xyzFE (O )DCBA P111,22PEF PAD S EF EP AD EP S ∆∆=⋅=⋅== 2.EF EP ∴⋅=………………9分设PEF ∆的内切圆半径为,r 则1()12PEF S PE EF FP r ∆=++⋅=2222r PE EF PF PE EF PE EF∴==+++++ 2222222PE EF PE EF ≤=⋅+⋅+121,21==-+………………10分∴当且仅当EF EP =时,PEF ∆有最大内切圆,其半径2 1.r =-此时2EF EP ==, 2.PF =………………11分115522222PAB PCD S S PA AB ∆∆==⋅=⋅=,1122222PBC S BC PF ∆=⋅=⋅⋅=, 1PAD S ∆=,2(2) 2.ABCD S AD EF =⋅==设PEF ∆的内切圆圆心O 到侧面PAB 、侧面PCD 的距离为d ,则1111()3333P ABCD PAD PBC ABCD PAB PCDABCD V r S S S d S d S EP S -∆∆∆∆∆=⋅+++⋅+⋅=⋅, 即()2PAD PBC ABCD PAB ABCD r S S S d S EP S ∆∆∆∆⋅+++⋅=⋅, 所以()(21)122522d -+++=, 解得121.5d r =>-=………………12分 ∴在四棱锥P ABCD -的内部放入球心O 在截面PEF 中的球,其最大半径R 是21,-该最大半径的球只能与四棱锥P ABCD -的三个面相切. ………13分20.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分. 解:(Ⅰ)当23a =且1x >-时,22()ln(1)3f x x x =+-,214443(23)(21)'()133(1)3(1)x x x x f x x x x x --++-=-==-+++,…………2分令'()0f x >,因为1x >-,所以(23)(21)0x x +-<,解得112x -<<, 所以函数()f x 的递增区间为1(1,)2-.…………4分(Ⅱ)当0a =时,()ln 1f x x =+,不等式()11f x x ≤+-即ln 1110x x +-++≤, …………5分令1t x =+,则0t >,此时不等式ln 1110x x +-++≤等价于不等式ln 10(0)t t t -+≤>. 令()ln 1t t t ϕ=-+,则11'()1t t t tϕ-=-=. …………7分 令'()0t ϕ=,得1t =.(),'()t t ϕϕ随t 的变化情况如下表t(0,1)1(1,)+∞'()t ϕ+0 -()t ϕ递增极大值0递减由表可知,当0t >时,()(1)0t ϕϕ≤=即ln 10t t -+≤.所以()11f x x ≤+-成立. …………9分(Ⅲ)当1x >-时,2()ln(1)f x x ax =+-,1'()21f x ax x =-+,所以直线l 的斜率'(0)1k f ==,又(0)0f =,所以直线l 的方程为y x =.令2()ln 1g x x ax x =+--,则命题“函数()y f x =的图象上存在点在直线l 的上方”可等价转化为命题“存在(,1)(1,)x ∈-∞--+∞ ,使得()0g x >.”……10分当1x >-时,2()ln(1)g x x ax x =+--,1'()211g x ax x =--+, 当1x <-时,2()ln(1)g x x ax x =----,1'()211g x ax x =--+, 所以,对(,1)(1,)x ∈-∞--+∞ ,都有212(1)2(21)2'()11ax x ax a xa g x x x -++--+==++. ……11分令'()0g x =,解得0x =或212a x a+=-.①当0a >时,2112a a+-<-,(),'()g x g x 随x 的变化情况如下表: x1(,1)2a -∞-- 112a -- 1(1,1)2a--- (1,0)- 0(0,)+∞'()g x+ 0 - + 0 - ()g x递增 极大值递减递增极大值递减又因为111(1)ln ,(0)0224g a g a a a--=+-=, 所以,为使命题“存在(,1)(1,)x ∈-∞--+∞ ,使得()0g x >.”成立,只需111(1)ln 0224g a a a a --=+->. 令12t a =,则111(1)ln 222g t t a t--=+-, 令11()ln (0)22h t t t t t =-+>, 因为2111'()022h t t t =++>,所以()h t 在(0,)+∞上为增函数,又注意到(1)0h =, 所以当且仅当112t a =>,即102a <<时,()0h t >, 故关于a 的不等式11ln024a a a +->的解集为102a a ⎧⎫<<⎨⎬⎩⎭;…………13分 ②当0a ≤时,因为存在1x e =--使得2(1)2(1)0g e e a e --=+-+>恒成立,所以,总存在点(1,e --21(1))a e -+在直线l 的上方. 综合①②,可知a 的取值范围为12a a ⎧⎫<⎨⎬⎩⎭. …………14分 21.(1)(本小题满分7分)选修4—2:矩阵与变换解:(Ⅰ)由题意,可知存在实数(0)λλ≠,使得10200k k m λ⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,………1分即0k kmk λ=⎧⎨=⎩, ………2分又因为0k ≠,所以10m λ=⎧⎨=⎩, ………3分所以0m =,特征向量0k ⎛⎫ ⎪⎝⎭相应的特征值为1. …………4分(Ⅱ)因为1=-B ,所以11223--⎛⎫=⎪-⎝⎭B , …………6分故1121014230226---⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭B A . …………7分 (2)(本小题满分7分)选修4-4:坐标系与参数方程解:(Ⅰ)将12,l l 的方程化为普通方程,得1:l y x =,2l :220x y -+=,2分联立方程组220y xx y =⎧⎨-+=⎩,解得22x y =⎧⎨=⎩,所以A 的坐标为(2,2),………3分 故点A 的极坐标(22,)4π. …………4分(Ⅱ)将曲线C 的方程化为普通方程得228x y +=,…………5分所以曲线C 是圆心为(0,0)O ,半径为22的圆,且A (2,2)在曲线C 上.因为1OA k =,所以曲线C 过点A 的切线l 的斜率1l k =-, 所以l 的方程为40x y +-=,……6分故l 的极坐标方程为cos sin 40ρθρθ+-=. …………7分(3)(本小题满分7分)选修4—5:不等式选讲解:(Ⅰ)由已知得()2max326t t m m +--≤-………………1分因为323(2)5t t t t +--≤+--=(当且仅当2t ≥时取等号)………3分 所以265m m -≥,解得15m ≤≤,所以实数m 的取值范围是1 5.m ≤≤………………4分 (Ⅱ)由(Ⅰ)可知5λ=,所以3455x y z ++=.由柯西不等式, 可得()()()222222234534525x y zx y z ++++≥++=, …5分所以22212x y z ++≥, 当且仅当345x y z ==即321,,1052x y z ===时等号成立. ………6分 故222x y z ++的最小值为1.2………………7分。