2014全国统一高考数学真题及逐题详细解析文科—海南卷

合集下载

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014年普通高等学校招生全国统一考试(海南卷)

2014年普通高等学校招生全国统一考试(海南卷)

2014年普通高等学校招生全国统一考试(海南卷)物 理注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I 卷时,选出每小题的答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、单项选择题:本题共6小题,每小题3分,共18分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,在一水平、固定的闭合导体圆环上方。

有一条形磁铁(N 极朝上, S 极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是A .总是顺时针B .总是逆时针C .先顺时针后逆时针D .先逆时针后顺时针【答案】C【解析】磁铁从圆环中穿过且不与圆环接触,则导体环中,先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流先顺时针后逆时针,选项C 正确。

2.理想变压器上接有三个完全相同的灯泡,其中一个与该变压器的原线圈串联后接入交流电源,另外两个并联后接在副线圈两端。

已知三个灯泡均正常发光。

该变压器原、副线圈的匝数之比为A .1:2B .2:lC .2:3D .3:2【答案】B 【解析】三灯都正常工作,则电流相等,由此可知变压器的原副线圈的电流比1212I I =,对于单匝输入单匝输出的变压器,由于功率相等,12p p =,得1221u I u I =,得:1221u u =,选项A 正确。

3.将一物体以某一初速度竖直上抛。

物体在运动过程中受到一大小不变的空气阻力作用,它从抛出点到最高点的运动时间为t 1,再从最高点回到抛出点的运动时间为t 2,如果没有空气阻力作用,它从抛出点到最高点所用的时间为t 0,则A .t 1> t 0 t 2< t 1B .t 1< t 0 t 2> t 1C .t 2> t 0 t 2> t 1D .t 1< t 0 t 2< t 1【答案】 B【解析】三种情况的下的匀变速加速度是:12a g a >>,其中,1100a t v gt ==,得01t t >,又上升与下降过程:2211221122a t a t =,得21t t >,选项B 正确。

2014年高考文科数学试题全国新课标Ⅰ逐题详解-

2014年高考文科数学试题全国新课标Ⅰ逐题详解-

2014年高考文科数学试题全国新课标Ⅰ逐题详解(纯word解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

【2014年全国新课标Ⅰ(文01)】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)【答案】:B【解析】:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1}【2014年全国新课标Ⅰ(文02)】若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0【答案】:C【解析】∵tanα>0,∴,则sin2α=2sinαcosα>0【2014年全国新课标Ⅰ(文03)】设z=+i,则|z|=()A.B.C.D.2【答案】:B【解析】:z=+i=+i=.故|z|==.【2014年全国新课标Ⅰ(文04)】已知双曲线﹣=1(a>0)的离心率为2,则a=()A.2B.C.D.1【答案】:D【解析】:双曲线的离心率e==2,解答a=1【2014年全国新课标Ⅰ(文05)】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【答案】:C【解析】:f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,【2014年全国新课标Ⅰ(文06)】设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.【答案】:A【解析】:D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=【2014年全国新课标Ⅰ(文07)】在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos (2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③【答案】:A【解析】:函数①y=cos丨2x 丨的最小正周期为=π,②y=丨cosx 丨的最小正周期为=π,③y=cos(2x+)的最小正周期为=π,④y=tan(2x ﹣)的最小正周期为【2014年全国新课标Ⅰ(文08)】如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】:B【解析】:根据网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,可知几何体是三棱柱.【2014年全国新课标Ⅰ(文09)】执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【答案】:D【解析】:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=【2014年全国新课标Ⅰ(文10)】已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,x0=()A. 1 B. 2 C. 4 D.8【答案】:A【解析】:由抛物线的定义,可得|AF|=x0+,∵|AF|=x0,∴x0+=x0,∴x0=1【2014年全国新课标Ⅰ(文11)】设x,y满足约束条件,且z=x+ay的最小值为7,则a=()A.﹣5 B. 3 C.﹣5或3 D.5或﹣3【答案】:B【解析1】:由约束条件作可行域如图,联立,解得.∴A().当a=0时A为(),z=x+ay的最小值为,不满足题意;当a<0时,由z=x+ay得,要使z最小,则直线在y轴上的截距最大,满足条件的最优解不存在;当a>0时,由z=x+ay得,由图可知,当直线过点A时直线在y轴上的截距最小,z最小.此时z=,解得:a=3或a=﹣5(舍)【2014年全国新课标Ⅰ(文12)】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)【答案】:C【解析】:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下: x(﹣∞,0)0f′(x)+ 0﹣ 0+f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:x (﹣∞,)0(0,+∞)f′(x)﹣ 0+ 0﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2)第Ⅱ卷本卷包括必考题和选考题两个部分。

海南2014高考数学卷(带解析)

海南2014高考数学卷(带解析)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{}0,1,2M =,{}2=320N x x x -+≤,则MN =(A) {}1(B) {}2(C) {}0,1(D) {}1,2解析:∵{}{}2=32012N x x x x x -+≤=≤≤,∴M N ={}1,2答案:D(2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =(A) 5-(B) 5(C) 4i -+(D) 4i --解析:∵12i z =+,∴22i z =-+,∴2212(2i)(2i)i 25z z =+-+=-=- 答案:A(3)设向量a ,b 满足+=a b -=a b =⋅a b(A) 1(B) 2(C) 3(D) 5解析:∵+=a b -=a b 2()10+=a b ……①,2()6-=a b ……②.由①-②得:1=⋅a b答案:A(4)钝角三角形ABC 的面积是12,1AB =,BC =,则AC = (A) 5(B)(C) 2 (D) 1解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:AC =答案:B(5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 (A) 0.8(B) 0.75(C) 0.6(D) 0.45解析:此题为条件概率,所以0.60.80.75P == 答案:A(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件有一个底 面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则 切削掉部分的体积与原来毛坯体积的比值为 (A) 1727 (B) 59 (C)1027(D)13解析:原来毛坯体积为:223654(cm )ππ⋅⋅=,由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:222243234(cm )πππ⋅⋅+⋅⋅=,则切削掉部分的体积为2543420(cm )πππ-=,所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ= 答案:C(7)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S = (A) 4 (B) 5 (C) 6 (D) 7解析:输入的x ,t 均为2.12≤是,1221M =⋅=,235S =+=,112k =+=;22≤是,2222M =⋅=, 257S =+=,213k =+=,32≤否,输出7S =答案:D(8)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = (A) 0 (B) 1(C) 2(D) 3解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =答案:D(9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为(A) 10(B) 8(C) 3(D) 2解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩表示的平面区域如图阴影部分:做出目标函数0l :2y x =,∵2y x z =-,∴当2y x z =-的截距最小时,z 有最大值。

2014年海南高考数学(文科)试卷评析共5页word资料

2014年海南高考数学(文科)试卷评析共5页word资料

2014年海南高考数学(文科)试卷评析一、结构平稳,难度略深。

首先,2014年全国新课标Ⅱ卷的整体结构是比较稳定的。

从总体情况看,今年新课标Ⅱ的文科数学试卷,整体结构没有大变化,依然是延续传统的12道选择,4道填空,6道解答题,分值、知识分布与覆盖上保持相对稳定,坚持对基础知识、数学思想方法进行考查,体现了注重考查学生实际应用能力的指导思想;多视角、多层次地考查考生对数学基础知识、数学思想与方法的掌握和理解,着重考查学生的数学思维能力和素养。

其次,试题难度小幅度加深。

相对于2013年的试题,2014年试题的难度略有增大。

试卷在对知识的全面考查的基础上,特别注意突出重点,对空间想象能力、推理论证能力、数据处理能力、计算能力以及应用意识等考点,提出了比较高的要求。

二、着眼于基础,立意于能力。

从试卷命题实际来看,今年数学试题所涉及的知识内容几乎覆盖了高中所学知识的全部重要内容,而又仍然沿用去年的“重点知识重点考查”的原则。

在着眼于数学基础知识考查的同时,尤其注重知识综合方面的考查,在知识交汇点处出题。

因而大家普遍感到:入手容易完成较难,得分、得高分更是不容易。

这就对学生的数学能力提出了一定的要求,体现了高考数学合理的区分度和一定的选拔性。

下面结合部分题型,略加说明。

1选择填空题:大稳定,小创新,大小综合见难度。

选择题和填空题是考生的主要得分题,和往年一样,选择题和填空题主要考查考生对基础知识和基本能力的掌握程度。

今年试卷的选择与填空题稳中有变,其中立体几何、线性规划、函数的基本运算、圆锥曲线的简单的几何性质等问题中考查多个知识点,以小综合的形式出现,这有利于促进考生多元化分析以及创新解答,并充分发挥自己的水平。

2解答题:讲方法,重技巧,能力之中显高低。

高考数学解答题比较重视考查学生对数学基本方法、技巧的掌握情况,只要平时教学有方,学生掌握较好,这样的题就比较容易得分。

比如,在今年试卷中,第一个解答题依然考察的是解三角形问题中余弦定理的应用。

2014全国统一高考数学真题及 逐题详细解析(文科)—海南卷

2014全国统一高考数学真题及    逐题详细解析(文科)—海南卷

2014年普通高等学校招生全国统一考试海南数学文科(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 ,,则( )A. B. C. D.2.( )A. B. C. D.3.函数在 处导数存在,若 ,是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件4.设向量满足,,则 ( )A.1B.2C.3D.55.等差数列的公差为2,若成等比数列,则的前项和( )A. B. C. D.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.B.C.D.7.正三棱柱的底面边长为2,侧棱长为,D为BC终点,则三棱锥的体积为(A)3 (B) (C)1 (D)8.执行右图程序框图,如果输入的 均为2,则输出的( )是否A.4 B.5 C.6 D.79.设满足的约束条件,则的最大值为( )(A)8 (B)7 (C)2 (D)110.设F为抛物线的焦点,过F且倾斜角为的直线交于C于两点,则(A) (B)6 (C)12 (D)11.若函数在区间单调递增,则的取值范围是(A) (B) (C) (D)12.设点,若在圆上存在点N,使得,则的取值范围是(A) (B) (C) (D)第Ⅱ卷二、填空题:本大概题共4小题,每小题5分。

13.甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.14.函数的最大值为_________.15.已知偶函数的图像关于直线对称,,则_______.16.数列 满足,,则_________.三、解答题(本大题共8小题)17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(I) 求C和BD;(II)求四边形ABCD的面积.18.(12分) 如图,四棱锥P-ABCD中,底面ABCD为矩形,,E为PD中点.(I)证明:PB平面AEC;(II)设AP=1,,三棱锥P-ABD的体积,求A到平面PBC的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

2014年高考新课标I卷数学(文)试题解析(精编版)(解析版)

2014年普通高等学校招生全国统一考试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =I ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(-22112||()()222z =+-=.考点:复数的运算4.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 16.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B. 21 C. 21D. 【答案】A 【解析】试题分析:根据平面向量基本定理和向量的加减运算可得:在BEF ∆中,12EB EF FB EF AB =+=+u u u r u u u r u u u r u u u r u u u r,同理12FC FE EC FE AC =+=+u u u r u u u r u u u r u u u r u u u r,则11111()()()()22222EB FC EF AB FE AC AB AC AB AC AD+=+++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r . 考点:向量的运算7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱考点:三视图的考查9.执行右面的程序框图,若输入的,,a b k分别为1,2,3,则输出的M ( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8考点:线性规划的应用12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P 63==. 考点:古典概率的计算14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________. 【答案】A 【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:可以得出结论乙去过的城市为:A . 考点:命题的逻辑分析15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.【答案】(,8]-∞ 【解析】试题分析:由于题中所给是一个分段函数,则当1x <时,由12x e -≤,可解得:1ln 2x ≤+,则此时:1x <;当1x ≥时,由132x ≤,可解得:328x ≤=,则此时:18x ≤≤,综合上述两种情况可得:(,8]x ∈-∞考点:1.分段函数;2.解不等式16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.【答案】150 【解析】试题分析:根据题意,在ABC ∆中,已知0045,90,100CAB ABC BC ∠=∠==,易得:1002AC =;在AMC ∆中,已知0075,60,1002MAC MCA AC ∠=∠==易得:045AMC ∠=,由正弦定理可解得:sin sin AC AM AMC ACM =∠∠,即:10023100322AM ==;在AMN ∆中,已知0060,90,1003MAN MNA AM ∠=∠==150MN m =.考点:1.空间几何体;2.仰角的理解;3.解三角形的运用三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年高考全国卷新课标版2数学文试题及答案详解

A.25 B.27 C.50D.54
6.函数 的图像向右平移 个单位后所得的图像关于点 中心对称.则 不可能是( )
A. B. C. D.
7.抛物线的中心在原点,焦点与双曲线 的有焦点重合,则抛物线的方程为()
A. B. C. D.
8.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有( )
二、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或推演步骤)
17.(本小题满分12分)在 中,角 的对边分别为 , 是该三角形的面积,(1)若 , , ,
(1)求角 的度数;
(2)若 , , ,求 的值.
18.(本小题满分12分)某车站每天上午发出两班客车(每班客车只有一辆车),第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为 ,8∶20发出的概率为 ,8∶40发出的概率为 ;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为 ,9∶20发出的概率为 ,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
……………………12分
18.(12分)(1)第一班若在8∶20或8∶40发出,则旅客能乘到,其概率为
P= + = …………4分
(2)旅客候车时间不超过50分钟的概率
P= + + ⅹ =13∕16.
答:旅客候车时间不超过50分钟的概率为13∕16.…………12分
19.(12分)(1)作ME AC,连接NE,可证得AB 平面MNE,即得MN AB …………4分
即 ,在 上恒成立.所以 .
因此满足条件的 的取值范围是 ………………14分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试海南数学文科(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2,0,2A =-{} ,{}2|20B x x x =--=,则A B =I ( )A.∅B.{2}C.0{}D.2-{} 2.131i i+=-( )A.12i +B.12i -+C.12i -D.12i --3.函数()f x 在0x x = 处导数存在,若0:()0p f x '= ,0:q x x =是()f x 的极值点,则( )A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件4.设向量,a b r r 满足||a b +=r r ,||a b -=r ra b ⋅=r r ( )A.1B.2C.3D.55.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A.(1)n n +B.(1)n n -C.(1)2n n + D.(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B . 59 C . 1027D . 13 7.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 终点,则三棱锥11A B DC -的体积为(A )3 (B )32 (C )1 (D )3 8.执行右图程序框图,如果输入的,x t 均为2,则输出的S =( )A .4B .5C .6D .79.设x y ,满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )1是否10.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A )30(B )6 (C )12 (D )73 11.若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D )2222⎡⎤-⎢⎥⎣⎦,第Ⅱ卷二、填空题:本大概题共4小题,每小题5分。

13.甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为_________.15.已知偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=_______. 16.数列{}n a 满足111n na a +=-,22a =,则1a =_________. 三、解答题(本大题共8小题) 17.(12分)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (I) 求C 和BD ;(II)求四边形ABCD 的面积.18.(12分) 如图,四棱锥P-ABCD 中,底面ABCD 为矩形,D A BC P A ⊥平面,E 为PD 中点.(I)证明:PB 平面AEC ;(II)设AP =1,3AD =,三棱锥P-ABD 的体积3V =,求A 到平面PBC 的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。

根据这甲部门乙部门3 5 94 4 0 4 4 89 75 1 2 2 4 56 67 7 789 9 7 6 6 5 3 3 2 1 1 06 0 1 1 2 3 4 6 8 8 9 8 87 7 7 6 6 5 5 5 5 4 4 4 3 3 3 2 1 0 07 0 0 1 1 3 4 4 9 6 6 5 5 2 0 0 8 1 2 3 3 4 5 6 3 2 2 2 09 0 1 1 4 5 6100 0 0(I )分别估计该市的市民对甲、乙部门评分的中位数;(II )分别估计该市的市民对甲、乙部门的评分高于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。

20. (12分)设12,F F 分别是椭圆22221(0):x y C a a b b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点是N .(I)若直线MN 的斜率为34,求C 的离心率; (II)若直线MN 在y 轴上的截距为2,且1|MN |5||F N =,求a ,b .21. (12分)已知函数32()32f x x x ax =-++.曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2. (I) a ;(II)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(10分)选修4-1:几何证明选讲如图,P 是O e 外一点,PA 是切线,A 为切点,割线PBC 与O e 相交于点B ,C ,PC =2PA ,D 为PC 中点,AD 的延长线交O e 于点E ,证明: (I) BE =EC(II) 22DE B AD P ⋅=23. (10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(I)求C 的参数方程(II)设点D 在C 上,C 在D 处的切线与直线2:3l y x =+垂直,根据(I)中你得到的参数方程,确定D 的坐标.24. (10分)选修4-5:不等式选讲设函数()||||()10af x x x a a =++->. (I)证明:()2;f x ≥(II)若(3)5f <,求a 的取值范围.参考答案一、选择题 1.B.解析:把-2,0,2代人202x x --=验证,只有2满足不等式,故选B. 考点:考查集合的知识,简单题. 2.B. 解析:13(13)(1)121(124)2(1)i i i i i i i i+++===-++-+--Q 故选B.考点:考查复数的基本知识,简单题. 3.C.解析:极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/ 从而p 是q 的必要但不充分的条件故选C.考点:考查充要条件与极值的基础知识,简单题. 4.A . 解析:||10,6|4=41=+=-=∴+⋅+⋅+∴⋅∴⋅=-=2222a b a b a 2a b b a 2a b b a b a b Q故选A .考点:考查平面向量的数量积,中等题. 5.A .解析:∵数列{}n a 是等差数列,公差等于2 ∴2141812,6,14a a a a a a =+=+=+∵248,,a a a 成等比数列∴22428111()6)214()(a a a a a a ⋅⇒=++=+解得122(221)n a a n n ==+-⇒⋅= ∴(1)(222)=n n nS n n ⋅=++ 故选A .考点:考查等差数列的通项公式与求和公式,中等题. 6.C.解析:毛胚的体积23654V ππ⋅⋅==制成品的体积 221322434V πππ⋅⋅+⋅⋅==∴切削掉的体积与毛胚体积之比为:134********V V ππ-=-= ,故选C. 考点:考查三视图于空间几何体的体积,中等题. 7.C.解析: ∵正三棱柱的底面边长为2,D 为BC 中点∴22213AD +=∵1112,3BC CC ==∴111111123322B DC B C S C C ⋅=⋅⋅⋅== ∴11111133133AB C B DC V S AD ⋅⋅=⋅⋅== .故选C. 考点:考查空间点,线,面关系和棱锥体积公式,中等题. 8.D. 解析:第1次循环M=2,S=5,k=1 第2次循环,M=2,S=7,k=2第3次循环k=3>2,故输出S=7,故选D. 考点:考查算法的基本知识,简单题. 9.A .解析:作图即可.考点:考查二元一次不等式组的应用,中等题. 10.C.解析:∵23y x =∴抛物线C 的焦点的坐标为:()3,04F 所以直线AB 的方程为:330an )t (4y x ︒-=故233)343x y y x ⎧==-⎪⎨⎪⎩从而2122161689012x x x x -+=+=⇒ ∴弦长12||=3122x x AB ++= 故选C.考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力,难度为中等题. 11.D.解析:()ln f x kx x =-Q1()(0)f x k x x ∴'=->()f x Q 在区间(1,)+∞上递增()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞ 1k ∴≥故选D.考点:考查导数与函数单调性的关系.中等题.12.A .解析:设N 点的坐标为,s (cos )in θθ(1)当00,1x ≠± 时∵0(,1)M x 点的坐标为∴OM ,MN 的斜率分别为:001s n c s ,i o 1OM MN k x k x θθ-==- ∵45OMN ∠=︒ ∴1tan 45()1MN OM MN OM MN OM MN OMk k k k k k k k -︒=±⇒=-++± 即000011sin 1()11sin cos cos ()x x x x θθθθ--±-=--+⋅* 取正号时,化简(*)式得:2000(1)sin 11()cos x x x θθ+-=++取负号化简(*)式得:2000(1)sin 1(1)cos x x x θθ++=+- 2220000(1)(1))1x x x θϕ++-+=+ 222400000(1)(1)11||1x x x x x +-≥+⇒≤⇒≤+故0||<1x 且00x ≠(2)当00x =时,取(1,0)N ,此时满足题设.(3)当01x =±时,取(0,1)N ,此时也满足题设.综上所述,011x -≤≤ ,故选A .从上面解法可以看到选择N 的几个特殊位置观察,即可以猜出答案,这样就可以简化解法. 考点:考查应用斜率与倾斜角的概念,直线方程,园的方程,分析问题的能力.困难题.二、填空题13.1.3 解析:1.3333P =⋅=考点:考查古典概型的概念.简单题.14.1解析:因为cos sin 2sin c ()sin s o co s x x f x x ϕϕϕ-=+si s n in cos s n c (o i )s x x x ϕϕϕ==--所以最大值为1.考点:考查和差角公式,简单题.15.3解析:因()f x 是偶函数,所以(1)(1)f f -= ,因()f x 关于2x =,所以(1)(2)(332)1f f f ⋅-=== .考点:考查偶函数的概念,轴对称的概念.简单题.16.12 解析:∵111n na a +=- ,22a = ∴12111112112a a a a =⇒-==⇒-考点:考查递推数列的概念,简单题.三、解答题17.解析:(I )1,3,2,180AB BC CD DA A C ====+=︒Q2222cos BD BC CD B C C CD ∴⋅=+-222cos(180-)2AD AB BD AB AD C +-=⋅︒22222332cos 112co 222s C C ∴+⋅⋅=⋅⋅-++1cos 602C C ∴=⇒=︒22222332cos 607BD BD ∴+⋅⋅︒=⇒-==(II)由(I ) 得,四边形ABCD 的面积S =11sin sin 22AB AD A BC DC C ⋅+⋅⋅ 1112sin(18060)23sin 6022⋅⋅︒-︒+⋅⋅︒==考点:考查余弦定理的应用,中等题.18.解析:(I)连接EF ,因为四边形ABCD 是矩形,故F 为AC 中点,又因为E 为PD 中点,故EF 是△PBD 的中位线,从而||EF PB ,故||.PB AEC 面(II)设AB=a ,因1AD PA ==则1111()(132324P ABD V AB AD PA a -⋅⋅⋅=⋅⋅==所以32a = 过A 作AG 垂直PB 于G.因为,,ABCD BC ABCD PA A C P B ⊥⊂⇒⊥面面又因为AB BC ⊥所以BC PAB ⊥面 ,又BC PBC ⊂面故 PAB A PBC G PBC ⊥⇒⊥面面面所以AG 为点A 到面PBC 的距离. 因22223131()2PB PA AB ++=== 所以1132213PA AB PB AG PA AB AG PB ⋅⋅=⋅⇒== 故点A 到面PBC 的距离为31313考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(I)甲部门的得分共50个,50个数字从小到大排列起来位于中间位置的数为第25,第26个数,它们分别是:75,75,故甲部门得分的中位数是75.乙部门的得分也是50个数,它们从小到大排列起来的第25,26个数字分别是:66,68,故乙部门的中为数为6668627+=. (II)市民对甲,乙两部门的评分各有n =50个,对甲部门评分高于90分的分数有m =5个,对乙部门的评分高于90分的s =8个,故对甲部门评分高于90分的概率为5500.1m n ==,对乙部门的评分高于90的概率为8500.16n s ==. (III )观察茎叶图的形状,甲的分数在茎6,7处形成单峰,出现在这里面的数据频率为3450,其中位数为75,乙的分数在茎5,6,7处形成单峰,出现在这个单峰里面的数据频率为2950,中位数为67.因为3450>2950,75>67,这说明市民对甲部门的评价基本在75分附近,对乙部门的评价基本在67分左右.整体看市民对甲部门的评价更好.考点:考查使用茎叶图及样本的数字特征估计总体的能力,中等题.20.解析:(I )∵2MF x ⊥轴(不妨设M 在x 轴的上方)∴M 的坐标满足方程组222221(,)x b M c a a y b x c ⎧⎪⇒⎨⎪⎩=+= ∵MN 的斜率为34∴2234322b a ac cb =⇒= ∵222222()3a c a a c c b =-⇒-= 又∵222(1)32320c e e e e e a⇒+-⇒-=== ∴椭圆离心率为12e = . (II)∵MN 在y 轴上的截距为2,O 为12,F F 的中点∴M 的坐标为(c ,4)(不妨设M 在x 轴的上方)由(I )得24b a= (*) ∵1||5||MN NF =∴11||4||MF NF =作1NF x ⊥轴于T ,由于△1NTF ∽ △12MF F ,故有24,4M N N y c y c x =--=- ∴321,14N M N y y c x =-=-=- ,即,3()12c N -- 把N 点的坐标代人椭圆方程得:2221419c a b+=∴2222222)111(9(9544**)4a b b a b a b +=⇒-=- 把(*)与(**)联立得:772a b ==⎧⎪⎨⎪⎩ 考点:考查椭圆的几何性质以及直线与椭圆的位置关系,难题.21.解析:(I )32232))36((f x x f x ax x a x x =⇒'=-++-+Q∵切点为(0,2),切线过点(-2,0)∴切线的斜率为22100---= ∴(0)1a f '==(II)由(I )知,1a =,故32()32f x x x x =-++记32()()(2)3(1)4g x f x kx x x k x =--=-+-+ ,∴2()36(1)x g x x k -+-'=∴3612(1)2412k k ∆=+-=+(1)当210k ∆≥≤-<即时 由16(3)3+30k g x x =-'=⇒,26+33k x =+ 21k -≤<Q∴1201,12x x ≤≤<<∴1()0x x g x '≥⇔< 或2x x >12()0x x g x x '≤⇔<<∴()g x 在区间12(),,,()x x -+∞∞ 上递增,在区间12(,)x x 上递减∴()g x 的极小值为322222()3(1)4g x x x k x =-+-+∵222222261()31230g x k k x x x x -+--⇒==-'= ∴22222222()(2)(1)4g x x x x x k x =--+-+ 222222221(1)42(1)34(123)x k x x k x k x x -=+-+=-+-≤-<⋅- 记222(1)4(12)()2((1)33)k x x x h x h k x x -+≤=---<⇒'=-- 由2210(1)23k k -≤<⇒<--≤,由41222x x ≤⇒-<-≤-< ∴2(1)0()0342k x x h -≤⇒'-<-≤- ∴()h x 在区间[1,2)递减2()(2)(1)03h x h k ⇒≥=--> ∴2212()g()()(00)g x h x x x g ⇒≥>>= (∵12(,)x x 是减区间)又∵(1)10g k -=-<∴当21k -≤<时,方程()0g x =只有一根.(2) 当20k ∆<<-即时,有26(0))3(1g x k x x -+-=>',从而()g x 在R 上递增∵(1)10g k -=-<,(0)40g =>∴当2k <-时,方程()0g x =只有一根.综上所述,方程()0g x =在R 上只有一根,即曲线()f x 直线2y kx =-只有唯一交点. 考点:考查利用导数综合研究函数性质的能力,难度压轴题.22.解析:(I)连接OA ,OD 交BC 于F ,设PAD α∠=,因PA 是O e 的切线,则90-EAO OEA α∠=∠=︒∵2,2PC PA PC PD ==∴P A D P PD A ⇒=V 是等腰三角形∴ PDA EDF α∠=∠=∵(90)90EDF OEA αα∠+∠=+︒-=︒∴OE BC ⊥故OE 平分弧BC ,从而BE = EC.(II)∵2,2PC PC PA D PB P ⋅==∴22PA PB PD ⋅=由(I )知PD PA =∴222PA PA PB PB PA ⋅⇒==∴()()DE BD DC BD PA PD PB PA A PA D PA PB ⋅=⋅=⋅=-⋅=-⋅ 2()PA PB PC PA PB PC PA PA PB PB ⋅=⋅-⋅=⋅-=-()PC PD PB DC PB PA PB ⋅-=⋅=⋅=把2PA PB =代人上式,得222PA PB B P PB P B ⋅=⋅=∴22DE B AD P ⋅=考点:考查与园有关的角的知识和圆幂定理的应用.难度中等.23.解析:(I )∵极坐标方程为2cos ,[0,]2πρθθ=∈∴22cos ρρθ= ∴对应的普通方程为:220()02x y x y =≥+- ,即22(01)1()x y y -+=≥∴对应的参数方程为[0,]sin 1cos ,x y ϕϕπϕ⎧∈=+⎨=⎩(II)设半圆的圆心为A ,则A (1,0),又由(I )知,可以设D 点坐标为(1cos n ),si ϕϕ+ ∴直线DA 的斜率tan k ϕ=∵切线与直线32y x =+垂直 ∴tan 3=3([0,])πϕϕϕπ⇒=∈Q ∴3,sin 231cos ϕϕ==+ 即D 点坐标为3(32 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用,难度中等题.24.解析:(I )∵()||||()10af x x x a a =++-> ∴1111,2x ,(12),a a a a x f x a a a x a x x a a ⎧⎪⎪⎪+-≤≤⎨-+-<-=⎪⎪-+>⎪⎩∴()f x 在递增(,)a +∞,在递减(-1)a ∞,-,在[]1,aa -上为常数 ∴()f x 的最小值为()(111)2f a f a a a a a ≥⋅-=+== ∴()2f x ≥(II )(1)当3a ≥时,1(3)5f a a+<= ∴252215122510a a a ⇒<<-+<∴523a ≤<+ (2)当03a <<时,2(3)61510f a a a a <⇒-+-->=∴a < 或a >3a <<综上所述15(22a ++∈ 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系,中等题.。

相关文档
最新文档