2014年全国高考数学试卷(文科)(全国新课标Ⅰ)
2014年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)最新修正版

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
2014年高考文科数学全国卷1-答案

2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}M N x x =-<<I ,即选B . 【提示】集合的运算用数轴或者Venn 图可直接计算。
【提示】判断三角函数的符号可先确定角所在的象限。
【考点】同角三角函数的关系。
3.【答案】B【解析】根据复数运算法则可得:111111(1)(1)222i i z i i i i i i i --=+=+=+=-++-,由模的运算可得:||2z =【提示】复数的除法用分母实数化,求复数的模用公式z =【提示】求离心率关键在于寻找a b ,或者a c ,之间的关系,用公式e =或者ce a=。
【考点】复数的运算。
5.【答案】C【解析】由()f x ,()g x 函数的定义域为R ,且()f x 是奇函数,()g x 是偶函数,可得:|()|f x 和|()|g x 均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C .【提示】判断函数的奇偶性先看定义域是否关于原点对称,再用性质或者定义或者图像判断。
【提示】向量运算抓住两条线,坐标法和转化法。
【提示】求函数的周期可画图,也可用定义或公式直接计算。
【考点】三角函数的图象和性质。
8.【答案】B【解析】根据三视图的法则:长对正,高平齐,宽相等。
可得几何体如下图所示。
【提示】三视图还原成实物图,掌握常见几何体的三视图的特征。
【提示】算法问题根据题目一步一步写出运行的结果。
【考点】算法的循环结构。
10.【答案】A【提示】抛物线的焦点弦问题注意转化:到焦点的距离和到准线的距离可以互相转化【提示】线性规划问题,根据条件画出可行域,把目标直线平移,找到最优解。
a<时,z无最小值。
故选B【提示】函数的零点问题转化为方程有解或者两个函数的图像有交点的问题。
【考点】线性规划的应用。
【提示】求解概率问题可用列举法。
2014年高考数学全国卷一

(13) (14)A(15) (16)150
三、解答题
(17)解:
(I)方程 的两根为2,3,由题意得
设数列 的公差为d,则 故 从而
所以 的通项公式为 ……6分
(II)设 的前n项和为 由(I)知 则
两式相减得
所以 ……12分
(17)解:
(I)
(II)质量指标值的样本平均数为
80×0.06+90×0.26+100×0.38+110×0.22+120×0.08
(4)已知双曲线 的离心率为2,则
A. 2 B. C. D. 1
(5)设函数 的定义域为 ,且 是奇函数, 是偶函数,则下列结论中正确的是
A. 是偶函数B. 是奇函数
C. 是奇函数D. 是奇函数
(6) 设 分别为 的三边 的中点,则
A. B. C. D.
(7)在函数 , , , 中,最小正周期为 的所有函数为
质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
6
26
38
22
8
( )在答题卡上作出这些数据的频率分布直方图:
( )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
( )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
星期一(7分钟)
已知 是递增的等差数列, , 是方程 的根。
( )求 的通项公式;
( )求数列 的前 项和.
星期二(8分钟)
如图,三棱柱 中,侧面 为菱形, 的中点为 ,且 平面 .
2014年全国统一高考数学试卷(文科)(新课标ⅰ)学生版

2014 年全国一致高考数学试卷(文科) (新课标Ⅰ)一、选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的1.(5 分)(2014?新课标Ⅰ)已知会合M={ x| ﹣1<x <3} ,N={ x| ﹣2<x <1} ,则 M ∩N=()A .(﹣ 2,1)B .(﹣ 1,1)C .(1,3)D .(﹣2,3)2.(5 分)(2014?新课标Ⅰ)若 tan α>0,则()A .sin α> 0B .cos α> 0C .sin2 α> 0D .cos2 α>0.( 分)( 2014? 新课标Ⅰ)设 z= +i ,则 | z| =( )3 5A .B .C .D .24.(5 分)(2014?新课标Ⅰ)已知双曲线﹣=1(a >0)的离心率为 2,则实数 a=( )A .2B .C .D .15.(5 分)(2014?新课标Ⅰ)设函数 f (x ),g (x )的定义域都为 R ,且 f (x )是奇函数, g (x )是偶函数,则以下结论正确的选项是()A .f ( x ) ?g (x )是偶函数B .| f ( x ) | ?g (x )是奇函数C .f ( x ) ?| g (x ) | 是奇函数D .| f ( x ) ?g (x )| 是奇函数6.(5 分)(2014?新课标Ⅰ)设 D ,E ,F 分别为△ ABC 的三边 BC ,CA ,AB 的中点,则+ =()A .B .C .D .7.( 5 分)( 2014?新课标Ⅰ)在函数①y=cos| 2x| ,② y=| cosx| ,③y=cos (2x+),④y=tan ( 2x ﹣ )中,最小正周期为 π的所有函数为()A .①②③B .①③④C .②④D .①③8.(5 分)(2014?新课标Ⅰ)如图,格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.( 5 分)( 2014?新课标Ⅰ)履行如图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的 M=()A.B.C.D.10.( 5 分)(2014?新课标Ⅰ)已知抛物线C:y2 =x 的焦点为 F,A( x0,y0)是 C 上一点, AF=| x0| ,则 x0=()A.1B.2C.4D.8.(分)(新课标Ⅰ)设,知足拘束条件且 z=x+ay 的最小11 52014?x y值为 7,则 a=()A.﹣ 5B.3C.﹣5 或 3D.5 或﹣ 312.( 5 分)(2014?新课标Ⅰ)已知函数f(x)=ax3﹣ 3x2+1,若 f( x)存在独一的零点 x0,且 x0> 0,则实数 a 的取值范围是()A.( 1, +∞)B.( 2, +∞)C.(﹣∞,﹣ 1)D.(﹣∞,﹣ 2)二、填空题:本大题共 4 小题,每题 5 分13.( 5 分)(2014?新课标Ⅰ)将2 本不一样的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为.14.( 5 分)(2014?新课标Ⅰ)甲、乙、丙三位同学被问到能否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市;乙说:我没去过 C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.( 5 分)( 2014?新课标Ⅰ)设函数 f(x)=,<,则使得 f(x)≤2 成,立的 x 的取值范围是.16.( 5 分)( 2014?新课标Ⅰ)如图,为丈量山高MN,选择 A 和另一座的山顶 C 为丈量观察点,从 A 点测得 M 点的仰角∠ MAN=60°,C 点的仰角∠ CAB=45°以及∠ MAC=75°;从 C 点测得∠ MCA=60°,已知山高 BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.( 12 分)( 2014?新课标Ⅰ)已知 { a n} 是递加的等差数列, a2, a4是方程 x2﹣5x+6=0 的根.( 1)求 { a n } 的通项公式;( 2)求数列 {} 的前 n 项和.18.( 12 分)(2014?新课标Ⅰ)从某公司生产的产品中抽取100 件,丈量这些产品的一项质量指标值,由丈量结果得以下频数散布表:质量指标值[ 75,85)[ 85,95)[ 95,105) [ 105,115) [ 115,125)分组频数62638228( 1)在表格中作出这些数据的频次散布直方图;(2)预计这类产质量量指标的均匀数及方差(同一组中的数据用该组区间的中点值作代表);(3)依据以上抽样检查数据,可否定为该公司生产的这类产品切合“质量指标值不低于 95 的产品起码要占所有产品 80%”的规定?19.( 12 分)(2014?新课标Ⅰ)如图,三棱柱ABC﹣ A1B1C1中,侧面 BB1C1C 为菱形, B1C 的中点为 O,且 AO⊥平面 BB1C1C.(1)证明: B1 C⊥ AB;(2)若 AC⊥AB1,∠ CBB1=60°,BC=1,求三棱柱 ABC﹣A1B1C1的高.20.( 12 分)(2014?新课标Ⅰ)已知点 P(2,2),圆 C:x2+y2﹣ 8y=0,过点 P 的动直线 l 与圆 C 交于 A,B 两点,线段 AB 的中点为 M, O 为坐标原点.(1)求 M 的轨迹方程;(2)当 | OP| =| OM| 时,求 l 的方程及△ POM 的面积.21.( 12 分)(2014?新课标Ⅰ)设函数 f(x)=alnx+x2﹣bx( a≠1),曲线 y=f (x)在点( 1,f( 1))处的切线斜率为 0,(1)求 b;( 2)若存在 x0≥1,使得 f( x0)<,求a的取值范围.请考生在第 22,23,24 题中任选一题作答,假如多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
14年高考真题——文科数学(新课标I卷)

页眉内容2014年普通高等学校招生全国统一考试新课标I 卷一.选择题:本大题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|13M x x =-<<,{}|21N x x =-<<,则M N =( )(A )()2,1- (B )()1,1- (C )()1,3 (D )()2,3-2.若0tan >α,则( )(A )0sin >α (B )0cos >α (C )02sin >α (D )02cos >α3.设i i z ++=11,则=||z ( ) (A )21 (B )22 (C )23 (D )2 4.已知双曲线()222103x y a a -=>的离心率为2,则=a ( ) (A )2 (B )26 (C )25 (D )1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ) (A )()()f x g x 是偶函数 (B )()()||f x g x 是奇函数(C )()()||f x g x 是奇函数 (D )()()||f x g x 是奇函数6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+( )(A )AD (B )12AD (C )12BC (D )BC 7.在函数①|2|cos x y =,②|cos |x y = ,③cos 26y x π⎛⎫=+ ⎪⎝⎭,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( )(A )①②③ (B )①③④ (C )②④ (D )①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )(A )20 (B )165 (C )72 (D )15810.已知抛物线C :x y =2的焦点为F ,()00,A x y 是C 上一点,0||54AF x =, 则0x =( ) (A )1 (B )2 (C )4 (D )811.设,x y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )(A )5- (B )3 (C )5-或3 (D )5或3-12.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ) (A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-二.填空题:本大题共4小题,每小题5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.(5分)设函数f(x)=
,则使得f(x)≤2成立的x的取
值范围是 . 16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测 点,从A点测得M点的仰角∠AMN=60°,C点的仰角∠CAB=45°以及 ∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=1000m,则山高 MN= m.
点(1,f(1))处的切线斜率为0, (1)求b; (2)若存在x0≥1,使得f(x0)<
,求a的取值范围.
请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第 一题记分。【选修4-1:几何证明选讲】 22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与 DC的延长线交于点E,且CB=CE. (Ⅰ)证明:∠D=∠E; (Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE 为等边三角形.
A. B. C. D.2
4.(5分)已知双曲线 ﹣ =1(a>0)的离心率为2,则实数
a=( ) A.2 B. C.
D.1ห้องสมุดไป่ตู้
5.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数, g(x)是偶函数,则下列结论正确的是( ) A.f(x)•g(x)是偶函数 B.|f(x)|•g(x)是奇函数 C.f(x)•|g(x)|是奇函数 D.|f(x)•g(x)|是奇函数 6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则 + =( ) A. B. C. D.
质量指标 值分组
[75, 85)
[85, 95)
[95, 105)
[105, 115)
[115, 125)
频数
6
26
38
22
8
(1)在表格中作出这些数据的频率分布直方图;
(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组 区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质 量指标值不低于95的产品至少要占全部产品80%”的规定? 19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的 中点为O,且AO⊥平面BB1C1C. (1)证明:B1C⊥AB;
2014年河北省高考数学试卷(文科)(全国新课 标Ⅰ)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项 中,只有一项是符合题目要求的 1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则 M∩N=( ) A.(﹣2,1) B.(﹣1,1) C.(1,3) D.(﹣2,3) 2.(5分)若tanα>0,则( ) A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0 3.(5分)设z= +i,则|z|=( )
A. B. C. D.
10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点, AF=| x0|,则x0=( )
A.1 B.2 C.4 D.8
11.(5分)设x,y满足约束条件
且z=x+ay的最小值为7,则
a=( ) A.﹣5 B.3 C.﹣5或3 D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0, 且x0>0,则实数a的取值范围是( ) A.(1,+∞) B.(2,+∞) C.(﹣∞,﹣1) D.(﹣∞,﹣ 2) 二、填空题:本大题共4小题,每小题5分 13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行, 则2本数学书相邻的概率为 . 14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为 .
三、解答题:解答应写出文字说明.证明过程或演算步骤
17.(12分)已知{an}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的 根. (1)求{an}的通项公式; (2)求数列{ }的前n项和.
18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项 质量指标值,由测量结果得如下频数分布表:
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.
20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与 圆C交于A,B两点,线段AB的中点为M,O为坐标原点. (1)求M的轨迹方程; (2)当|OP|=|OM|时,求l的方程及△POM的面积. 21.(12分)设函数f(x)=alnx+ x2﹣bx(a≠1),曲线y=f(x)在
【选修4-4:坐标系与参数方程】
23.已知曲线C: + =1,直线l:
(t为参数)
(Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA| 的最大值与最小值. 【选修4-5:不等式选讲】 24.若a>0,b>0,且 + = . (Ⅰ)求a3+b3的最小值; (Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.
7.(5分)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+ )
④y=tan(2x﹣ )中,最小正周期为π的所有函数为( )
A.①②③ B.①③④ C.②④ D.①③ 8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几
何体的三视图,则这个几何体是( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则 输出的M=( )