广东省惠东县新庵镇初级中学七年级数学下册6.3实数教案2(新版)新人教版【精品教案】

合集下载

人教版数学七年级下册6.3《实数》教案2

人教版数学七年级下册6.3《实数》教案2

人教版数学七年级下册6.3《实数》教案2一. 教材分析本节课是人教版数学七年级下册第六章第三节《实数》的教学内容。

在这一节中,学生将学习实数的概念、性质以及实数的运算。

实数是数学中的基础概念,包括有理数和无理数。

学生需要掌握实数的分类、实数的性质以及实数的运算方法。

这一节内容是学生进一步学习数学的基础,也是培养学生逻辑思维能力的重要环节。

二. 学情分析学生在七年级上学期已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但学生对无理数的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生可能对实数的运算方法还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,学会实数的运算方法。

2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和问题解决能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学的美。

四. 教学重难点1.重点:实数的概念、性质和运算方法。

2.难点:无理数的概念和性质,实数的运算方法。

五. 教学方法采用问题驱动法、自主探究法和合作交流法进行教学。

通过设置问题引导学生思考,激发学生的学习兴趣;给予学生足够的自主探究时间,培养学生的独立思考能力;学生进行合作交流,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示实数的概念、性质和运算方法。

2.练习题:准备一些关于实数的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。

提问:同学们,我们已经学习了有理数和无理数,那么实数是什么呢?2.呈现(15分钟)利用PPT展示实数的概念和性质,让学生初步了解实数。

同时,介绍实数的运算方法,如加法、减法、乘法和除法。

3.操练(15分钟)让学生进行实数的运算练习,巩固所学知识。

可以让学生独立完成练习题,也可以进行小组合作,共同解决问题。

【复习必备】2019七年级数学下册 6.3 实数(2)教案 (新版)新人教版

【复习必备】2019七年级数学下册 6.3 实数(2)教案 (新版)新人教版

2 的相反数是 π 的相反数是
0 的相反数是
, , ;
教学过程 设计 (2)
2 =

-π



0

结合有理数相反数和绝对值的意义,你能说说实数关于相反 数和绝对值的意义吗? (出示问题,抽学生回答师点评、补充并板书 。) 数 a 的相反数是 - a .
1
①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验 证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维; G. 设难置疑, 引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复 习巩固;K.其它。 ②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概 括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解; H.设疑_播 放_概括.I 讨论_交流_总结 J.其他 师生活动 一、 复习引入 有理数关于相反数、绝对值的意义以及运算律? 1、相反数:有理数 a 的相反数是 a 。 2、绝对值:当 a ≥0 时, a a ,当 a ≤0 时, a a 。 3、运算律:交换律、结合律、分配律。 二 、探究新知 问题 1:你能解答下列问题吗? (1) 设计意图
一个正实数的绝对值是它本身;一个 负实数的绝对值是它的相 反数;0 的绝对值是 0.
a ,当a 0时 ; a 0,当a 0时; -a ,当a 0时.
通过复习让学
2
生类比求有理 数的相反数和 三.例题解析 例 1、1)分别写出 6 ,π 3.14 的相反数; (2)指出 绝对值的方法 来求实数的相 反数和绝对 值。

3人教初中数学七年级下册- 6.3 实数教案2

3人教初中数学七年级下册- 6.3 实数教案2
3 , 3 , 47 , 9 , 11 , 5 5 8 11 9 9
三、质疑探究
1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小
课 数也都是有理数
堂 观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫
③无理数都是无限小数。 ( )
④带根 号的数都是无理数。( )
⑤两个无理数之和一定是无理数。
()
⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数
。( )
3、教材 p56 练习 1.
C、4、 2x 4 4 2x 是实数,则 x _________
六、作业布置








实数
课 实数

授课时间
课型
课 第二课时

授课人
科目
数学
主备

知识与技能


过程与方法
标 情感态度价值观
了解实数 的意义,能对实数 按要求进行分类。 了解数轴上的点与实数一一对应,能用数轴上的点来 表示无理数。 培养学生数学学习兴趣


重点:了解实数的意义
重难点

难点:能用数轴上的点来表示无理数


教法
四、当堂检测
A.1、把下列各数分别填入相应的集合里:
3 8, 3, 3.141, , 22 , 7 , 3 2, 0.1010010001
37 8
正有理数{
}
,1.414, 0.020202

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。

本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。

通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。

二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。

但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。

此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。

三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。

2.掌握实数的运算规则,能够进行实数的加减乘除运算。

3.能够运用实数的概念和运算规则解决实际问题。

四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。

2.实数的运算规则:实数的加减乘除运算规则。

五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。

六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。

2.练习题:针对实数的分类和运算的练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。

2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。

3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。

4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。

5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。

6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。

本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。

通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。

二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。

但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.能够对实数进行分类,了解实数的丰富性和广泛性。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.实数的定义和实数与数轴的关系。

2.实数的分类和各类实数的特征。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。

六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。

2.准备实数的分类表格,方便学生理解和记忆。

3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。

同时,结合案例和图片,使学生直观地理解实数的概念。

例如:“同学们,今天我们要学习的是实数。

实数包括有理数和无理数,它们都可以用数轴上的点来表示。

请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。

”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。

新人教版本初中七级的下册的第六章实数优选教案6.3实数精品教学设计课件

新人教版本初中七级的下册的第六章实数优选教案6.3实数精品教学设计课件

教课目的:1、认识无理数和实数的观点及实数的分类。

2、知道实数与数轴上的点拥有一一对应的关系。

3初步领会“数形联合”的数学思想。

经过认识数系扩大领会数系扩大对人类发展的作用。

教课要点:认识无理数和实数的观点;知道实数与数轴上的点的一一对应关系教课难点:对无理数的认识。

教课方法:讲解法教课准备:多媒体教课过程:一、复习引入无理数: 经过课前学生的着手操作提出问题:如何将两个面积是1的正方形经过裁剪拼成一个大正方形,大正方形的边长是多少?和小正方形的对角线有什么关系? 详细是多大学生着手操作,直观的从几何图形上感觉2的大小,从而提出√2详细是多大?是什么样的小数? 联合所学的知识,让学生联想有没有其余种类的小数,教师指引,学生察看, 从而发现特色给出无理数观点,并总结无理数的特色。

2、无穷不循环小数叫做无理数。

让学生经过理解,举出无理数的例子。

347953、问题1:把以下有理数3,-,,,写成小数的形式,它们有什么特色? 58119即:3=3.0.=-0.67=5.875,=0.81=0.5 概括:任何一个有理数(整数或分数)都能够写成有限小数或许无穷循环小数的形式,反过来,任何有限小数或许无穷循环小数也都是有理数。

经过小学的分数与小数互化,让学生察看此组数据的特色,教师指引学生进行总结,即有限小数和无穷循环小数是有理数。

二、实数及其分类:1、实数的观点:有理数和无理数统称为实数。

2、实数的分类:教师启迪学生类比有理数的分类,明确分类的基来源则,学生独立思虑后进行分类。

依据定义分类以下:「整数右实数有理数(有限小数或无穷循环小数)无理数(无穷不循环小数)依据正负分类以下:正有理数正实数负无理数实数负实数负有理数负无理数三、实数与数轴上的点是一一对应的。

1、问题:我们知道每个有理数都能够用数轴上的点来表示。

无理数能否也可以用数轴上的点表示出来吗?多媒体展现活动1、活动2活动1:把直径为1个单位长度的圆放在数轴上从原点向右转动一周圆上的一点由原点抵达另一个点,这个点的坐标就是。

人教版七年级数学下册 教学设计6.3 第2课时《实数》

人教版七年级数学下册教学设计6.3 第2课时《实数》一. 教材分析人教版七年级数学下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识。

本节内容主要介绍实数的定义、性质以及实数与数轴的关系。

通过本节课的学习,使学生掌握实数的概念,了解实数的性质,能够利用实数和数轴解决一些实际问题。

二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数的运算也有一定的了解。

但学生在理解实数与数轴的关系方面可能存在一定的困难。

因此,在教学过程中,要注重引导学生利用数轴理解实数的概念和性质。

三. 教学目标1.知识与技能:理解实数的定义,掌握实数的性质,能够运用实数和数轴解决一些实际问题。

2.过程与方法:通过数轴引导学生直观地理解实数的概念和性质。

3.情感态度价值观:培养学生的逻辑思维能力,激发学生学习数学的兴趣。

四. 教学重难点1.重点:实数的定义和性质。

2.难点:实数与数轴的关系。

五. 教学方法1.情境教学法:通过数轴引导学生直观地理解实数的概念和性质。

2.启发式教学法:在教学过程中,引导学生积极思考,提高学生的逻辑思维能力。

3.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队合作意识。

六. 教学准备1.教师准备:准备好数轴的图片和相关实数的例子。

2.学生准备:预习实数的相关内容,了解实数的概念和性质。

七. 教学过程1.导入(5分钟)利用数轴引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

2.呈现(10分钟)介绍实数的定义和性质,让学生初步认识实数。

实数包括有理数和无理数,它们都可以用数轴上的点表示。

实数具有以下性质:–实数是数轴上的点,每个实数对应数轴上的一个唯一点。

–实数具有大小和方向,可以进行加、减、乘、除等运算。

–实数按照大小顺序排列,相邻两个实数之间存在无数个实数。

3.操练(10分钟)让学生在数轴上表示实数,并进行实数的运算。

例1:在数轴上表示-2、3、√2等实数。

【人教版】七年级数学下册第六章实数6.3实数教案

第六章 6.3 实数知点 1: 无理数1.定 : 无穷不循小数叫做无理数 .2. 表形式 :(1) 开方开不尽获得的数如:、等;(2)含有π的式子 ;(3)有律但不循的无穷小数, 如 :0.101 001 000 1⋯ ;注意 : 于数的分 , 不可以只看形式 , 并不是全部根号的数都是无理数, 格依据有理数和无理数的定来判断 , 如有理数 .知点 2: 数的观点(1)定 : 有理数和无理数称数. 比如 :-6,,,0.4, π等都是数 .(2)数的分: (1) 数的相反数的意和有理数的相反数的意一, 假如 a 表示随意一个数, 那么 -a 就是 a 的相反数 , 即 a 与 -a 互相反数 , 比如 :的相反数是-,的相反数是-. 此外 , 定 0的相反数仍旧是0;(2) 数的的意与有理数的的意一, 一个正数的是它自己; 一个数的是它的相反数;0 的是0, 用字母表示 : 于随意数a, 有|a|=知点 3: 数与数1.关系 : 数与数上的点一一 .2.与有理数同样 , 数上右的点表示的数比左的点表示的数大.: (1) 利用数能够比数的大小, 在数上 , 右的点表示的数比左的点表示的数大 ;(2) 正数大于0, 数小于0, 正数大于全部数, 两个数比大小, 大的反而小 .知点 4: 数的性在数范内的相反数、倒数、的意和在有理数范内的相反数、倒数、的意完整一 .知点 5: 数的运算(1) 数有加、减、乘、除、乘方、开方运算, 混淆运算的序是先算乘方、开方, 再算乘、除 ,最后算加、减 , 同运算依据从左到右的序行,有括号的要先算括号里的;(2) 加法交律 :a+b=b+a; 加法合律 :(a+b)+c=a+(b+c) ; 乘法交律 :ab=ba; 乘法合律 :(ab)c=a(bc);乘法分派律 :a(b+c)=ab+ac.之有理数的全部运算法合用于数的运算.考点 1:数观点的用【例 1】以下各数 :-5,3.7,,,,- π ,,0.3,-,0.212 112 111 2⋯(每两个2之依次多一个 1)哪些是有理数 ?哪些是无理数?哪些是正数 ?哪些是数?解 : 有理数有 :-5,3.7,,,0.3,-;无理数有 :,- π ,,0.212 112 111 2⋯(每两个2之挨次多一个1);正数有 :3.7,,,0.3,,,0.212 112 111 2⋯(每两个2之挨次多一个1);数有 :-5,-,- π .考点 2: 数的大小比【例 2】比 2,,的大小,正确的选项是()A.2<<B.2<<C.<2<D.<<2答案 :C2∴ 2<3∴2> . 应选 C.点拨:∵ 2 =4<5,, ∵ 2 =8>7,考点 3:用数轴比较数的大小【例 3】在数轴上表示以下各数, 并把它们按从小到大的次序摆列起来, 用“ <”连接:-0.,-,.解 :-0.,-,在数轴上表示,如下图.由图获得 :-<-0. < .点拨:关于 -, 能够经过画边长为 1 的正方形的对角线获得.考点 4:实数的运算【例 4】计算 :(1)(+) ×;(2)--;(3)-( 精准到 0.01);(4)+(<a<π)( 精准到 0.01).解 :(1)原式 =(0.1+0.1)× 12=2.4;(2)原式= --=-;(3)原式 =(-)-(+)=---=-2 ≈ (-2) × 1.414=-2.828 ≈-2.83;(4)由<a<π , 得原式 =( π -a)+(a-)= π -≈ 3.142-1.414=1.728 ≈1.73.点拨:关于一些常用的无理数, 应记着其近似值, 如≈ 1.414,≈ 1.732.。

七年级数学下册6.3实数教案2新版新人教版

实数教学目标知识与技能在实数范围内,会进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。

过程与方法掌握实数的加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。

情感态度与价值观通过实数的运算,培养学生的运算能力.教学重难点掌握实数的加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算。

教学过程【练一练】计算下列各式的值:(1)(3+2)-2;解:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0=3;(2)33+23.(2)33+23.=(3+2)3(分配律)=53.总结实数范围内的运算方法及运算顺序与在有理数范围内都是一样的.试一试计算:(1)5+π(精确到0.01);(2)3·2(结果保留3个有效数字).解:(1)5+π≈2.236+3.142≈5.38;(2)3·2≈1.732×1.414≈2.45.总结在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.(三)应用迁移,巩固提高例1 a为何值时,下列各式有意义?(1)2a;(2)a-;(3)2+a;(4)31-a;(5)aa-+;解:(1)∵a为任何实数时,a2≥0,∴a为任意实数时,2a有意义.(2)∵要使a-有意义,必须使-a≥0,即a≤0,∴当a≤0时,a-有意义.(3)∵要使2+a有意义,必须使a+2≥0,即a≥-2,所以当a≥-2时,2+a有意义;(4)∵31-a有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时,31-a有意义;(5)∵要使a有意义,必须使a≥0,要使a-有意义,必须使-a≥0,即a≤0,∴要使aa-+有意义,a必须等于0.因此仅当a=0时,aa-+有意义;例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)(2)|+|-|-|2552;(精确到0.01)(3)|a -π|+|2-a |(2<a <π).(精确到0.01)解:(1)∵ 5的算术平方根为5,2的平方根为±2,∴ 5的算术平方根与2的平方根之和为5±2又因为5≈2.235,2≈1.414,所以 5±2≈2.236+1.414=3.65 5-2≈2.236-1.414≈0.82(2)因为2<5,所以2-5<0,所以|2-5|-|5+2|=5-2-5-2=-22≈-2×1.414≈-2.83. (4)因为2<a <π,所以|a -π|=-(a -π)=π-a ,|2-a |=-(2-a )=a -2因此|a -π|+|2-a |=π-a +a -2=π-2=3.142-1.414=1.73.例 3 已知实数a 、b 、c 在数轴上的位置如图10—3—3所示.化简|a |+|b |+|a +b |-222c a c -)-(的值.解:由数轴可知a >0,b <0,c <0,且a +b >0.所以|a |+|b |+|a +b |-222c a c -)-( =a +(-b )+(a +b )-(a -c )-2(-c ) =a -b +a +b -a +c +2c =a +3c . 【备选例题】实数p 在数轴上的位置如图10—3—4所示,化简()()2211-+-p p 的值.【点拨】 (1)1<p <2 (2)算术平方根的非负性.-=)-(,-=)-(p p p p 221122【答案】 1(四)总结反思,拓展升华总结 1.实数的运算法则及运算律. 2.实数的相反数和绝对值的意义. (五)课堂跟踪反馈 夯实基础1.a 、b 是实数,下列命题正确的是(D )A .a ≠b ,则a 2≠b 2B .若a 2>b 2,则a >bC .若|a |>|b |,则a >bD .若|a |>|b |,则a 2>b 22.如果3962=+-+a a a 成立,那么实数a 的取值范围是(B ) A .a ≤0 B .a ≤3 C .a ≥-3 D .a ≥33.|31-|=1,|π-3.14|=π-3.14,|2-1.42|=242.1-. 4.23-的相反数是32-,39-的相反数是39.5.当a >17时,|a -17|=17-a ,217)-(a =17-a .6.当m =-1时,2m +|m |+2m =0.7.比较下列各数的大小:(1)-3和-1.7;(2)π和722.【答案】 (1)-3<-1.7;(2)π<722.提升能力8.已知a 、b 、c 在数轴上如图所示,化简|.++| )-(|++-|c b a c b a a 22【答案】 由图示知,b <a <0,c >0, ∴ a +b <0,c -a >0,b +c <0,∴|.++| )-(|++-|c b a c b a a 22=|a |-|a +b |+|c -a |+|b +c |=-a +(a +b )+(c -a )-(b +c ) =-a +a +b +c -a -b -c作业:p56页第4题, p57页第4、5题 小结:教学 反思 本节课的教学目标是知道相反数、绝对值的概念可推广到实数范围内;知道在实数范围内,可进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算,而且有理数的运算法则和性质同样适用。

新人教版七年级下册第六章《实数》教学设计6.3实数

小组讨论,学生去黑板展示
师生讨论一一对应的含义
学生独立思考,并完成
及时归纳无理数、实数的定义及分类
正式给出无理数的定义
通过典型例题辨析学生对有理数和无理数的认识;
同时使学生认识到概念的辨析要回归定义;并在辨析的过程中总结出哪些形式的数是无理数
通过学生的动手操作,直观感觉到每一个无理数都可以用数轴上的点表示出来,进而得出当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的点来表示;反过来数轴上的每一点都表示一个实数
教学过程
教学
环节
教师活动
学生活动
设计意图
复习引入
大家对有理数比较熟悉了,那么能回忆一下有理数是如何分类的吗?
学生作答.
师生共同小结归纳.
带领学生复习回顾有理数的定义及分类
综合探究
教师提问:
1.到现在为止我们学习了好多数,比如:5,-2, ,1.2, , , , 下列哪些数是有理数?
2.其余的数是什么数?
,-1.5, , ,3
变式练习:将下列各实数按从小到大的顺序排列,并用“<”号连接起来.
-2, , ,1-π, ,1.
先让学生独立思考几分钟,学生代表交流讨论结果,教师点评并板书.
师生小结归纳本题.
学生独立思考,完成概念辨析,教师请学生回答并补充点评,学生在学案上完成解题过程.教师投影展示学生解题过程并点评.
运用本节课所学解决相关问题,检测学生是否掌握本节课的知识
总结
通过本节课的学习,你有什么收获?并阅读课本58页“阅读与思考”
学生进行总结
通过小结使学生理解本节课所学的内容,明确核心知识
课后作业
完成学案上习题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数
第二课时
【教学目标】
知识与技能:
掌握实数的相反数和绝对值;
掌握实数的运算律和运算性质.
过程与方法: 通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识。

情感态度与价值观:
通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。

教学重点:
会求实数的相反数和绝对值;
会进行实数的加减法运算;
会进行实数的近似计算。

教学难点: 认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。

【教学过程】
一、复习引入:有理数的一些概念和运算性质运算律:
1、相反数:有理数a 的相反数是a -。

2、绝对值:当a ≥0时,a a =,当a ≤0时,a a -=。

3、运算律和运算性质:有理数之间可以进行加、减、乘、除(除数不为0)、乘方、非负数的开平方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律。

二、实数的运算:
1.实数的相反数:数a 的相反数是a -。

2.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.
3、实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数的开方运算,还有任意实数的开立方运算,在进行实数的运算中,交换律、结合律、分配律等运算性质也适用。

三、应用:
例1、(1)求364-的绝对值和相反数;
(2)已知一个数的绝对值是3,求这个数。

解:(1)因为4643-=-,所以44643=-=--,4)4(643=--=--
(2)因为33,33=-=,所以绝对值为3的数是3或3-。

例2、计算下列各式的值:
(1)2)23(-+; (2)3233+。

分析:运用加法的结合律和分配律。

解:(1)303)2_2(32)23(=+=+=-+;
(2)353)23(3233=+=+
例3、计算:
(1)π+5 (精确到01.0)
(2)23⋅ (结果保留3个有效数字)
解:(1)38.5142.3236.25≈+≈+π;
(2)45.2414.1732.123≈⨯≈⋅。

四、随堂练习:
1、计算:
(1)2624-; (2))23(3+;
(3)3253+-; (4)23)5
4(198-+--。

2、计算:
(1)322-(精确到0.01);
(2)π-+3422
5、 (精确到十分位)。

3、在平面内有四个点,它们的坐标分别是)2,2(),2,5(),22,5(),22,2(D C B A 。

(1)依次连接D C B A 、、、,围成的四边形是一个什么图形?
(2)求这个四边形的面积。

(3)将这个四边形向下平移2个单位长度,四个顶点的坐标变为多少?
五、课堂小结
1、实数的运算法则及运算律。

2、实数的相反数和绝对值的意义
六、布置作业
课本P87习题14.3第4、5、6、7题;
教学反思:
当数的范围由有理数扩充到实数后有理数的概念和运算(包括运算律和运算性质)在实数范围内仍然成立。

教学时要注意突出这种早数的扩充中体现出来的一致性;同时,教学中也要注意,随着数的范围的不断扩大,在扩大的数的范围内可以解决更多的问题,这一点在以后的教学中会更加充分的体现。

相关文档
最新文档