地图投影 ppt课件
合集下载
《地图投影》PPT课件

精选ppt
1
航天
浩瀚宇宙之中 : 地球是一个表面光滑、蓝 色美丽的正球体。
精选ppt
2
航空 机舱窗口俯视大地 : 地表是一个有些微起
伏、极其复杂的表面。
精选ppt
3
地面
事实是:地球不是一个正球体,而是一个极 半径略短、赤道半径略长,北极略突出、南 极略扁平,近于梨形的椭球体。
–地球的自然表面有 –高山、丘陵、平原、盆地、湖泊、河流 –和海洋等高低起伏的形态, –其中海洋面积约占71%,陆地面积约占29%。
随着人造地球卫星的发射,有了更精密的测算地球形体的 条件,近些年来地球椭球体的计算又有不少新的数据。
1975年第16届国际大地测量及地球物理联合会
(International Unionof Geodesy and Geophysics缩写为IUGG)上 通过的国际大地测量协会第一号决议中公布的地球椭球 体,称为GRS(1975),
精选ppt
4
2.地球体的物理表面(准规则曲面-假想面)
1)假想水准面(基准面):静止海平面
当无海波洋浪静、止潮时汐,、它水流的、自大由气水压面变必化定,与流该体面处上于各平点衡状的态重。力方
2向)大(地铅水垂准线面方:向)成正交,我们把这个面叫做水准面。 但基水准准面面+其有向无陆数地多的个延,伸其部中分有=一一个个封与闭静曲止面的。平均海水面相
9
地球椭球体的基本元素,由于推求它的年代、所用的方法 以及测定的地区不同,其成果并不一致,故地球椭球体的 元素值有很多种。 现将几个常用的地球椭球体元素值列于表中。
椭球体名称及元素值表
精选ppt
10Байду номын сангаас
参考椭球体的选用
《地图投影》PPT课件

m E M
纬线长度比 n 为:
n G r
精选课件ppt
15
面积比公式: P a b m n sin
式中,a,b为极值长度比,θ′为经纬线投影后 所成的夹角。
角度变形公式:
经纬线夹角变形ε为:
90 tan F
H
一点上最大的角度变形ω为:
sin ab
2 ab
或者: tan45 a
4 b
精选课件ppt
16
第三节 投影的分类
地图投影的种类很多,通常根据投影的变形性质、可展面的 种类和位置进行分类。
一、根据投影的变形性质可将地图投影分为:等角投影、等面 积投影、任意投影。
等角投影:椭球面上任意一点处任意两个方向的 夹角投影后保持大小不变。微分圆仍为
圆形,但大小有变化。满足: ab
P
m
2
n2
K rU
2
0
α, K 均为投影常数:
lg r1 lg r2 lg U 2 lg U 1
K
r1U
1
r2U
2
tan45 U 2 ,sin esin
tane45
2
精选课件ppt
35
精选课件ppt
面积比等 变形线
36
投影变形规律:
(1)无角度变形; (2)等变形线和纬线一致,同一条纬线上变形处处相等; (3)两条标准纬线上没有任何变形; (4)同一经线上,两标准纬线外侧为正变形 (1),
精选课件ppt
12
精选课件ppt
13
精选课件ppt
14
三、投影变形的基本公式
长度比公式:
任意一点与经线成α角方向上的长度比 为:
2M E 2co 2 sr G 2si2 n M Fsr i2 n
地图投影PPT课件

9
2)按构成方法分类
▪ 几何投影
▪ 按展开方式
➢ 方位投影(Azimuthal Projections) ➢ 圆柱投影(Cylindrical Projections) ➢ 圆锥投影(Conic Projections)
▪ 按投影面与地球相割或相切
➢ 割投影(Secant) ➢ 切投影(Tangent)
19
Sinusoidal 等积伪圆柱投影,(Sanson投影)
20
Robinson 伪圆柱投影
Pseudo-cylindrical Projections
21
3. GIS中地图投影的选择
随区域径纬度不同、地图比例尺不同、及地图用途 不同,地图投影方法也不同,现有地图投影方法共 有250多种。但常用的也就20多种。 1) 选择的投影系统应与国家基本图(基本比例尺地 形图、基本省区图或国家大地图集)投影系统一致; 2)系统一般采用两种投影系统;
且离中央子午线越远,长度变形越大。 6.投影前后的角度保持不变,且小范围内的图
形保持相似。 7.具有对称性,面积有变形。
28
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
23
GIS投影例子
加拿大:>= 1:50万——采用UTM(墨卡托投影) < 1:50万——采用Lambert( 兰勃特 );
美 国:>= 1:50万——采用UTM; < 1:50万——采用州平面坐标系统(以高斯投
影和Lambert投影为主,局部地区采用HOM投影); 中 国:>= 1:50万——采用高斯投影;
2)按构成方法分类
▪ 几何投影
▪ 按展开方式
➢ 方位投影(Azimuthal Projections) ➢ 圆柱投影(Cylindrical Projections) ➢ 圆锥投影(Conic Projections)
▪ 按投影面与地球相割或相切
➢ 割投影(Secant) ➢ 切投影(Tangent)
19
Sinusoidal 等积伪圆柱投影,(Sanson投影)
20
Robinson 伪圆柱投影
Pseudo-cylindrical Projections
21
3. GIS中地图投影的选择
随区域径纬度不同、地图比例尺不同、及地图用途 不同,地图投影方法也不同,现有地图投影方法共 有250多种。但常用的也就20多种。 1) 选择的投影系统应与国家基本图(基本比例尺地 形图、基本省区图或国家大地图集)投影系统一致; 2)系统一般采用两种投影系统;
且离中央子午线越远,长度变形越大。 6.投影前后的角度保持不变,且小范围内的图
形保持相似。 7.具有对称性,面积有变形。
28
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
23
GIS投影例子
加拿大:>= 1:50万——采用UTM(墨卡托投影) < 1:50万——采用Lambert( 兰勃特 );
美 国:>= 1:50万——采用UTM; < 1:50万——采用州平面坐标系统(以高斯投
影和Lambert投影为主,局部地区采用HOM投影); 中 国:>= 1:50万——采用高斯投影;
《地图投影高斯投影》PPT课件

• 1、控制测量对地图投影的要求
(1)、应当采用等角投影 理由:
➢免除大量的投影计算工作
➢局部范围类保持图形的相似性,m(长度比) 只与点的位置有关而与方向没有关系。给制 图和有关的地图量算带来极大的方便。
1、控制测量对地图投影的要求
• (2)、长度和面积的变形不能过大,并且能有用较简单的数学公式计算长 度和面积的变形改正数。
0
60
L ' 3n'
或为
n'
L 0
0
3
高斯平面坐标值的表达
中央子午线在平面上的投影是 x 轴,赤 道的投影是 y 轴,其交点是坐标原点。
x 坐标是点至赤道的垂直距离; y 坐标是点至中央子午线的垂直距离,有正
负。
为了避免 y 坐标出现负值,其名义坐标加
上 500 公里。 为了区分不同投影带中的点,在点的Y坐标 值上加带号N,所以点的横坐标的名义值为
控制测量学
6.6 地图投影、高斯投影
四川建筑职业技术学院 胡川
主要内容
• 1、知识回顾 • 2、地图投影概述 • 3、高斯投影 • 4、小结
一、知识回顾
• 1、大地线的定义和性质
大地线:大地线是一条空间曲面曲线,是椭 球面上两点间的最短线。大地线上每点的密切 面(无限接近的三个点构成的平面)都包含该点 的曲面法线,大地线上各点的主法线与该点的 曲面法线重合。
3、投影实质
3、投影实质
• 建立地球椭球面上经纬线网和平面上相应经纬线 网的数学基础,也就是建立地球椭球面上的点的 地理坐标(λ,φ)与平面上对应点的平面坐标 (x,y)之间的函数关系:
x f1(,)
y f2 (,)
•
当给定不同的具体条件时,将得到不
(1)、应当采用等角投影 理由:
➢免除大量的投影计算工作
➢局部范围类保持图形的相似性,m(长度比) 只与点的位置有关而与方向没有关系。给制 图和有关的地图量算带来极大的方便。
1、控制测量对地图投影的要求
• (2)、长度和面积的变形不能过大,并且能有用较简单的数学公式计算长 度和面积的变形改正数。
0
60
L ' 3n'
或为
n'
L 0
0
3
高斯平面坐标值的表达
中央子午线在平面上的投影是 x 轴,赤 道的投影是 y 轴,其交点是坐标原点。
x 坐标是点至赤道的垂直距离; y 坐标是点至中央子午线的垂直距离,有正
负。
为了避免 y 坐标出现负值,其名义坐标加
上 500 公里。 为了区分不同投影带中的点,在点的Y坐标 值上加带号N,所以点的横坐标的名义值为
控制测量学
6.6 地图投影、高斯投影
四川建筑职业技术学院 胡川
主要内容
• 1、知识回顾 • 2、地图投影概述 • 3、高斯投影 • 4、小结
一、知识回顾
• 1、大地线的定义和性质
大地线:大地线是一条空间曲面曲线,是椭 球面上两点间的最短线。大地线上每点的密切 面(无限接近的三个点构成的平面)都包含该点 的曲面法线,大地线上各点的主法线与该点的 曲面法线重合。
3、投影实质
3、投影实质
• 建立地球椭球面上经纬线网和平面上相应经纬线 网的数学基础,也就是建立地球椭球面上的点的 地理坐标(λ,φ)与平面上对应点的平面坐标 (x,y)之间的函数关系:
x f1(,)
y f2 (,)
•
当给定不同的具体条件时,将得到不
地图投影基础知识课件

Q1/2.5万:把1/5万图 分为四幅,编号为1、 2、3、4 。方法如下: J-50-144-A-1
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状
地图学 地图投影(课堂PPT)

.
11
地图投影变形的图解示例
(摩尔维特投影-等积伪圆柱投影)
长度变形 角度变形
.
12
地图投影变形的图解示例
(UTM-横轴等角割圆柱投影)
面积变形和长度变形
.
13
投影变形示意图
.
14
1.4、地图投影——地图投影的变形
地图投影的.变形示意
15
1.5、地图投影——地图投影的分类
u按变形性质分类: q 等角投影:角度变形为零。 q 等积投影:面积变形为零。 q 任意投影:长度、角度和面积 都存在变形。
圆锥
u从投影面与地球位置关系划分为:正轴、横轴、斜 轴,切、割
.
18
.
19
1.5、地图投影——地图投影的分类
关于地图投影的几点结论:
Ø实现等角、等面积、等距离同时做到的投影不 存在 Ø投影方式有多种多样,一个国家或地区依据自 己所处在的经纬度、幅员大小以及图件用途选择 投影方式 Ø在大于1:10万的大比例尺图件中,各种投影 带来的误差可以忽略。
关于数据精度只注意数字化和编辑过程中的偶然误差和外 围设备的系统误差,而忽视了地图投影的所产生的变形误 差。
其后果是:显示或输出的图形文件发生变形或扭曲,有些 变形在视觉上不易直接观察。这一方面严重影响到地图的 精度,属性数据空间顺序和空间联系分析结果的准确性; 另一方面严重的影响到GPS的应用效果。
它是任意投影。我国的世界地图 多采用该投影。
我国位于地图中接近中央的位置, 形状比较正确。
.
50
第二节 世界常用地图投影
.
51
.
52
.
53
.
54
.
55
地图投影-PPT精品

9
10
8 /5 3
地图投影与高斯投影
昆明冶金高等专科学校
(3)高斯平面直角坐标系
1 2 3
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午
线和赤道的交点O 作为坐标原点,以中央子午线的投影为纵坐标 x
轴,以赤道的投影为横坐标 y 轴。
4
5
6
7
x
x
500Km
8
A
A
9
xB xA xB xA
B yB
昆明冶金高等专科学校
本章提要
1
2
本章介绍从椭球面上大地坐标系到平面上直角坐
3
标系的正形投影过程。研究如何将大地坐标、大地线
4 5 6
长度和方向以及大地方位角等向平面转化的问题。重 点讲述高斯投影的原理和方法,解决由球面到平面的
7
换算问题,解决相邻带的坐标坐标换算。讨论在工程
8 应用中,工程测量投影面与投影带选择。
q
y
返回本章首页
地图投影与高斯投影
昆明冶金高等专科学校
1 2 3 4 5 6 7 8 9
10
16 /5 3
7.3 高斯平面直角坐标系与大地坐标系
1 高斯投影坐标正算公式
(1)高斯投影正算:已知椭球面上某点的大地坐标 L,B ,求该点
在高斯投影平面上的直角坐标x, y,即L,B (x,y)的坐标变换。
7
8
9
10
20 /5 3
地图投影与高斯投影
昆明冶金高等专科学校
(2)应用高斯投影正、反算公式间接进行换带计算
1
2
计算过程:
3
4
《地图数学投影》课件

04
地图投影的应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
地图制作
地图制作中,投影是必不可少的步骤 ,通过选择合适的投影方法,能够将 地球表面的曲面转化为平面,便于地 图的绘制和阅读。
投影的选择直接影响到地图的精度和 变形程度,不同的投影方法适用于不 同的地图制作需求,如世界地图、国 家地图、地区地图等。
总结词
投影后经线为曲线,长度变形逐渐增大
详细描述
圆锥投影后,经线不再是直线,而是曲线。随着经度的增 加,长度变形逐渐增大。这种投影方式在制作大范围地图 时较为常用,如世界地图和洲际地图。
总结词
投影后面积变形较大,形状和方向保持较好
详细描述
圆锥投影后,面积变形较大,但形状和方向保持较好。这 种投影方式在制作需要精确反映地理空间关系的地图时较 为常用,如地理学研究和地理教育等。
详细描述
方位投影后,经纬线仍然保持相互垂直,并且形状不变。 这种投影方式在制作航海图和航空图时较为常用,因为其 形状保持不变的特点可以保证航行方向和角度的准确性。
总结词
投影后面积变形较大,距离和方向保持较好
详细描述
方位投影后,面积变形较大,但距离和方向保持较好。这 种投影方式在制作军事地图和政治地图时较为常用,因为 其保持方向和距离的特点可以更好地反映地理空间关系。
BIG DATA EMPOWERS TO CREATE A NEW ERA
《地图数学投影》PPT课件
• 投影的基本概念 • 地图投影的原理 • 常用地图投影类型 • 地图投影的应用 • 地图投影的未来发展
目录
CONTENTS
01
投影的基本概念
BIG DATA EMPOWERS TO CREATE A NEW
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地图投影基本理论
七、地图投影分类—等角投影
条件:
a=b
F=0;√E/R= √G/RcosB
地图投影基本理论
七、地图投影分类—等面积投影
条件:
ab=1
H=R2cosB
地图投影基本理论
七、地图投影分类—任意投影
等距离投影条件:
m= 1
√E/R= 1
地图数学基础
方位投影及其应用
几何概念:假想用一平面切(割)地球,然后按 一定的数学方法将地球面投影在平面上,即得方 位投影。
方位投影及其应用
正轴方位投影
经纬线形状:
适合制作: 两极地区图
ቤተ መጻሕፍቲ ባይዱ
方位投影及其应用
横轴方位投影
经纬线形状:
适合制作: 赤道附近圆形
区域地图
方位投影及其应用
斜轴方位投影
经纬线形状:
适合制作: 中纬度地区圆
形区域地图
方位投影及其应用
透视方位投影
Q ρ A’
Q’
M
H Z0 Z A
O
D
ρ=
RsinZ(RcosZ0+D) RcosZ+D
tgθ =
H F
地图投影基本理论
五、长度比公式
经线长度比公式:
m=
√ E
R
纬线长度比公式: n =
√ G
RcosB
地图投影基本理论
六、面积比公式
P=
H
R2cosB
P=ab
P = m n sin θ
地图投影基本理论
七、地图投影分类
按变形性质,可将地图投影分为三类:
➢ 等角投影 ➢ 等面积投影 ➢ 任意投影
x=f(B) y=Cl
圆柱投影及其应用
等角正圆柱投影(墨卡托投影)
x=r0lnU y=r0l
U=tg(
π
4
+
B 2
)(
1-esinB 1+esinB
e
)2
特性:地球面上的等角航线投影为直线。
α
α
等角航线在地球面上是一条以极点为渐近点的螺旋曲线。
圆柱投影及其应用
等角正圆柱投影(墨卡托投影)
地图数学基础
地图投影基本理论
三、变形椭圆
主方向的性质: 1、地球面上的正交线投影后仍然正交。 2、投影后具有最大长度比和最小长度比。
地图投影基本理论
四、角度变形公式
x=f1(B,l) y=f2(B,l)
E=( )2+( )2
F=
+
G=( )2+( )2
H=
-
地图投影基本理论
四、角度变形公式
经纬线夹角公式:
特性:球面上任何大小的圆投影后仍为圆。
地图数学基础
圆柱投影及其应用
几何概念:以圆柱面作为投影面,按某种投影条 件,将地球椭球面上的经纬线投影于圆柱面上, 并沿圆柱的母线切开成平面的一种投影。
圆柱投影及其应用
正轴圆柱投影 横轴圆柱投影 斜轴圆柱投影 正轴圆柱投影定义:纬线投影为一组平行直线,经线 投影为与纬线正交的另一组平行直线,两经线间的间 隔与相应的经度差成正比。
以椭圆的短轴为旋转轴的椭球面 来代替地球的形状称之为地球椭球面, 其形体称之为地球椭球体。
地球椭球体及其数学描述
二、地球的大小
长半径:a
短半径:b
扁率:α =
a-b a
第一偏心率:e2=
a2-b2 a2
第二偏心率:e’2=
a2-b2 b2
地图数学基础
地图投影基本理论
地图投影基本理论
一、地图投影的概念与实质
地图投影实质:
建立地球面与投影平面上点的一 一对应关系。
x=f1(B,l) y=f2(B,l)
地图投影基本理论
一、地图投影的概念与实质
地图投影基本理论
二、地图投影变形概念与定义
1、长度比与长度变形
C’
D
C
D’
ds
ds’ B’
A
B
A’
μ=
ds’ ds
υ μ = μ -1
地图投影基本理论
二、地图投影变形概念与定义
2、面积比与面积变形
D
C
dF
A
B
C’
D’ dF’ B’
A’
P= dF’ dF
υ P= P -1
地图投影基本理论
二、地图投影变形概念与定义
3、角度变形
u
u’
du = u’-u
地图投影基本理论
三、变形椭圆
C (A)
C’ (A’)
A
B (C)
(D) O
D (B)
A’ O’ (D’)
B ’ (C’) D’ (B’)
圆锥投影及其应用
几何概念:以圆锥面作为投影面,按某种投影条 件,将地球椭球面上的经纬线投影于圆锥面上, 并沿着某一条母线展开成平面的一种投影。
圆锥投影及其应用
正轴圆锥投影
横轴圆锥投影
斜轴圆锥投影
正轴圆锥投影定义:纬线投影为同心圆弧,经线投影 为同心圆弧的半径,两经线间的夹角与相应的经度差 成正比。
δ= α
x= ρ cosδ y= ρ sinδ
S
方位投影及其应用
透视方位投影—球心投影
视点位于地球中心的透视方位投影。
D=0
ρ = RcosZ0tgZ
特性:大圆投影成直线。
方位投影及其应用
透视方位投影—球面投影
视点位于球面上的透视方位投影。
D=R
ρ = R(cosZ0+1)tg(Z/2)
投影性质:等角投影
地图投影
《地图学》之 地图数学基础
地图数学基础
地球椭球体及其数学描述 地图投影基本理论 方位、圆柱、圆锥投影及其应用 高斯-克吕格投影及其在地形图中的应用 地图投影变换原理与方法 地图分幅与编号
地图数学基础
地球椭球体及其数学描述
地球椭球体及其数学描述
一、地球的形状
第一次近似 — 球形 第二次近似 — 地球椭球体
高斯-克吕格投影及其在地形图中的应用 高斯-克吕格投影用于地形图的有关规定
二、坐标规定
1、将各带的坐标纵 轴西移500公里。
在正圆锥投影中,等变形线为同心圆弧。
地图数学基础
高斯-克吕格投影及其在地形图中的应用
几何名称:等角横切椭圆柱投影
高斯-克吕格投影及其在地形图中的应用
投影条件:
1、中央经线和赤道投影为平面直角坐标系的坐标轴。 2、投影后无角度变形。 3、中央经线投影后保持长度不变。
变形规律:
在同一纬线上,长度比随经差增大而增大;在 同一经线上,长度比随纬度减小而增大。
高斯-克吕格投影及其在地形图中的应用 高斯-克吕格投影用于地形图的有关规定
一、分带规定
6 度 带 3 度 带
高斯-克吕格投影及其在地形图中的应用 高斯-克吕格投影用于地形图的有关规定
一、分带规定
6 度 带 3 度 带
6度带:1:25000 – 1:500000系列比例尺地形图 3度带:1:10000 及大于1:10000比例尺地形图
结论:地球面上过一点的一组互相正交的方向, 投影在平面上,由于投影变形,一般不能保持 正交。但总有一组互相正交的方向投影后仍然 正交。我们称此二方向为主方向。
地图投影基本理论
三、变形椭圆
定义:地球面上一无穷小的圆在平面上一般被 描写为一无穷小椭圆。这个椭圆是由于投影变 形而产生,故称此椭圆为变形椭圆。