计量经济学专题1虚拟变量的回归
虚拟变量回归课件

虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。
虚拟变量回归

数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。
关于虚拟变量的回归

关于虚拟变量(Dummy Variable )的回归1.虚拟变量的性质● 在回归分析中,应变量不仅受量化好了的变量的影响,还受定性性质的变量的影响(如性别,种族,肤色,宗教,国籍,地震等等)● 这类定性变量指某一“性质”或属性出现或不出现。
量化这些变量的方法,是构造一个取值1或0 的人为变量,0代表某一属性不出现,而1代表该属性出现。
● 取这样的0和1 值的变量叫做虚拟变量 (dummy variable)● 在回归分析中,可以清一色的使用虚拟变量,这样的模型叫做方差分析模型(analysis of variance, ANOV A ), 例:i i i u D Y ++=βα其中Y=学院教授的年薪 D i = 1 若是男教授= 0 若是女教授● 学院女教授的平均薪金:α==)0/(i i D Y E 学院男教授的平均薪金:βα+==)1/(i i D Y E● 截距项α给出学院女教授的平均薪金,而斜率系数β告诉我们学院男教授和女教授的平均薪金的差额,α+β反映学院男教授的平均薪金。
● 在大多数经济研究中,一个回归模型既含有一些定量的又含有一些定性的解释变量。
协方差分析(analysis of covariance ANCOV A )2.对一个定量变量和一个两分定性变量的回归● ANCOV 的一个例子:i i i i u X D Y +++=βαα21其中Y i = 学院教授的年薪 X i = 教龄 D i = 1 若是男教授 = 0 若是女教授● 假定和平常一样E (u i )=0,学院女教授的平均薪金:i i i X D Y E βα+==1)0/( 学院男教授的平均薪金:i i i X D Y E βαα++==)()1/(21 ● 图● 以上模型设想学院男教授和女教授的薪金作为教龄的函数,有相同的斜率,但不同的截距● 如果2α统计上显著,则表明有性别歧视● 上述虚拟变量回归模型有以下特点:(1) 为了区分两个类别,男性和女性,我们只引进了一个虚拟变量D i 。
【计量经济学】虚拟变量的回归

Standardi zed
C o effic ien ts
Beta
-.5827 1.2955 -.7047
t 26.9488 -12.4994 3.6711 -2.0158
Sig. .0000 .0000 .0006 .0496
30
UNi 2.74911.1507Dt 1.5294Vt 0.8511(DtVt ) t (26.896)(3.6288) (12.5552)(1.9819)
不同。 4、1 1且 2 2 ;相异回归, 所有这些情形都说明模型发生了结构性变化,在 前面曾经讲到的邹至庄检验对结构性变化有很好 的描述,下面将用虚拟变量模型来处理结构性变 化,某些地方有着比邹检验更好的性质。
18
19
§11.7 比较两个回归:虚拟变量法
将储蓄-收入模型中两期数据进行合并,重新建立以下
3
如果一个模型中的自变量全都是虚拟变量,通常对这
种模型的分析方法称之为方差分析。(为什么把这种
模型称为方差分析模型?)
一个教授年薪的模型:
Yi a Di ui 其中 Y表示教授的年薪
1 若是男教授 Di 0 若是女教授
E(Yi | Di 0) E(Yi | Di 1)
4
根据所给数据可以估计出如下结果:
wm表示夜袭工资, w0 表示主业工资,
race=0白人,
race=1非白人;
urban=0非城里人, urban=1城里人;
reg=0非西部,
reg =1西部;
hisch=0非毕业, hisch=1中学毕业;
age表示年龄。
15
当所有虚拟变量都为0时,可以得到白人、 非城镇、非西部、非中学毕业夜袭者的平 均小时工薪模型:
虚拟变量回归模型:计量经济学

对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。
计量经济学第八章关于虚拟变量的回归.

类的截距。
2
2:级差截距系数
教龄X
1
0
薪金与性别:估计结果
1,若是男性 Di 0,若是女性
ˆ 17.969 1.371X 3.334D Y i i i se : (0.192) (0.036) (0.155) t : (93.61) (38.45) (21.455) r 2 0.993
一、虚拟变量的性质
例:教授薪金与性别、教龄的关系
男教授平均薪金和女 教授平均薪金水平相 差2,但平均年薪对 教龄的变化率是一样 的
Yi=1+2Di+Xi+I (1) 1,若是男性 D 其中:Yi=教授的薪金, Xi=教龄, Di=性别 0,若是女性 i 女教授平均薪金:E(Yi | X i , Di 0) 1 X i 被赋予0值的 男教授平均薪金:E(Yi | X i , Di 1) (1 2) X i 类别是基底(基 准),1是基底 男教授
比较英国在第二次大战后重建时期和重建后时期的总 储蓄-收入关系是否发生变化。数据如表。 Yt 1 2 Dt 1 X t 2 ( Dt X t ) t
D=1,重建时期
级差截距:区分两 个时期的截距 级差斜率系数:区分 两个时期的斜率 =0,重建后时期
D=1 D=0
E(Yt | Dt 0, X t ) 1 1 X t E(Yt | Dt 1, X t ) (1 2 ) ( 1 2 ) X t
男教授平均薪金水平比 女教授显著高$3.334K (男:21.3,女:17.969)
1,若是女性 Di 0,若是男性
ˆ 21.303 1.371X 3.334D Y i i i se : (0.182) (0.036) (0.155) t : (117.2) (38.45) (21.455)
虚拟变量回归

这里的 D1i 和 D2i代表的是两个不同的定性变量,各分为两种类
型基础类型: E(Yi Xi , D1 0, D2 0) 0 1Xi
对比类型: E(Yi Xi , D1 1, D2 0) (0 1) 1Xi
E(Yi Xi , D1 0, D2 1) (0 2 ) 1Xi
E(Yi Xi , D1 1, D2 1) (0 1 2 ) 1 Xi
差异
●一个定性变量有多种类型时,虚拟变量可同时取值为0,
但不能同时取值为1,因同一定性变量的各类型间“非此
即彼”
17
4、解释变量包含一个定量变量和两个定性变量
例如模型: Yi 0 1D1i 2D2i X i ui
Y为文化支出,X为收入
D1i 0 农村居民 D1i 1 城镇居民
D2i 0 高中以下文化程度 D2i 1 高中及以上文化程度
如 伊拉克战争、“911事件”、四川汶川大地震
● 时间序列分析中——作为季节(月份)的代表
● 分段回归——研究斜率、截距的变动
● 比较两个回归模型的差异
● 虚拟被解释变量模型:被解释变量本身是定性变量
● 面板数据回归中的应用
6
二、虚拟变量模型
虚拟变量模型:包含有虚拟变量的模型称虚拟变量模型 三种类型: 1. 解释变量中只包含虚拟变量
D1 1, D2 0, D3 0时
Yi 1 X i ui
D2 1, D1 0, D3 0时
Yi 2 X i ui
D3 1, D1 0, D2 0时
Yi 3 X i ui
11
第二节 虚拟解释变量回归
定性变量作为解释变量,既可以影响模型的截距,也可以 影响模型的斜率,还可以同时影响截距和斜率
虚拟变量回归课件

例1
(1)
D
=
1 0
男 女
( 2)D=1 0
改 革 开 放 以 后 改 革 开 放 以 前
(3)D1 =0 1
天气阴 其 他(4)D2
=1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
虚拟变量回归
14
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
虚拟变量回归
11
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
虚拟变量回归
12
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问题的 目的出发予以界定。
虚拟变量回归
16
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的
数量关系。回归模型的设定为:Y i= 0 + 1 X i+ u i( 1 )
现在要考虑城镇居民和农村居民之间的差异,如何办?
为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
非数值性的因素。 基本思想: 直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
虚拟变量回归
10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中:
为某人的工资水平, 为工作年限,为一个普通变量。
为虚拟变量:
则:
中学及以下教育水平的员工平均工资水平:
大学教育水平的员工平均工资水平:
研究生及以上教育水平的员工平均工资水平:
模型含义:通过 的显著性检验判断教育水平是否对工资差异有显著的影响。
散点图略。
(3)对一个普通变量与两个两分虚拟变量的回归
则 为截距差异, 为斜率差异。
Estimation Equation:
S = C(1) + C(2)*D1 + C(3)*Y + C(4)*(D1*Y)
结果:
为截距差异, 为斜率差异,在统计上都通过了1%的显著性检验,表明两个时期的回归结构是相异的。
相对于chow检验的优越性:(1)可以清楚的知道两个时期的差异究竟是截距差异、斜率差异,还是截距差异与斜率差异共存。(2)由于合并而增加了自由度,提高了参数估计的精度。
例:种族及性别差异对薪金的影响。
假定薪金除了受工作年限、性别的影响之外,还受种族的影响。
为某人的工资水平, 为工作年限,为一个普通变量。
为虚拟变量:
则:
白人男性的工资水平:
白人女性的工资水平:
其他人种男性的平均工资:
其他人种女性的平均工资:
3、虚拟变量的应用:检验回归模型的稳定性
数字实例:英国1946-1963年的个人储蓄与个人收入的数据。
注意:如果虚拟变量回归涉及到异方差问题,可以用前面提过的方法进行异方差调整。
虚拟变量的应用实例:
论文:外商直接投资、产业结构与中国的出口竞争力
其中: 为某人的工资水平, 为虚拟变量:
如果影响工Leabharlann 的其他因素保持不变,由上述模型很容易得到:
女性的平均工资水平:
男性的平均工资水平:
斜率 反映了男性与女性的平均工资差别。
数据:
Estimation Equation:
=====================
Y = C(1) + C(2)*D1
则女性的平均工资为18单位、男性的平均工资为18+3.28=21.28单位,男性与女性的工资差别为3.28单位。
计量经济学专题:(1)虚拟变量的回归
1、虚拟变量的性质
与有明确尺度量化了的变量(GDP、产量、价格、成本、汇率等)不同,虚拟变量是一种定性性质的变量,如性别、种族、国籍等只涉及“是”与“非”两种状态的变量。
虚拟变量的取值只取0或1。1表示某种性质出现,0表示某种性质不出现。
例:研究性别差异对工资的影响。可以建立如下模型:
2、虚拟变量应用的扩展:同时含有一般变量与虚拟变量的模型
(1)对一个普通变量与一个两分虚拟变量的回归
把工资差异模型扩展,工资收入还取决于工作年限,则上述模型可以变为:
其中: 为工作年限,为一个普通变量。
模型含义:
女性的平均工资水平:
男性的平均工资水平:
男性与女性的工资与工作年限之间有相同的斜率,但有不同的截距,两者之间的平均工资相差 单位。如果模型中 通过显著性检验,则可以认为男性与女性之间存在工资差异。
散点图略。
注意:区分两种类别,只需要一个虚拟变量,如果引入两个虚拟变量,则会造成多重共线性。一般来说,如果一个定性变量有m个类别,则只需要引入m-1个虚拟变量就可以了。
(2)对一个普通变量与一个多分虚拟变量的回归
如:研究一个企业员工教育程度对工资的影响。
假设教育程度分为3类:中学及以下教育程度、大学教育程度、研究生及以上教育程度。
检验重建时期(1946-1955)与重建后时期(1956-1963)英国的居民储蓄行为是否有结构性的变化。
即检验是否在重建时期(1946-1955)储蓄模型为:
而重建后时期(1956-1963)储蓄模型为:
可以用虚拟变量建立一个模型:
其中 为虚拟变量:
则重建时期的消费模型为:
重建后时期的消费模型为: