matlab 实验一运算基础与矩阵处理

合集下载

MATLAB)课后实验答案[1]

MATLAB)课后实验答案[1]

MATLAB)课后实验答案[1]实验⼀ MATLAB 运算基础1. 先求下列表达式的值,然后显⽰MATLAB ⼯作空间的使⽤情况并保存全部变量。

(1) 0122sin851z e =+(2) 221ln(1)2z x x =++,其中2120.455i x +??=?- (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ?≤=-≤,其中t =0:0.5:2.5 解: M ⽂件:z1=2*sin(85*pi/180)/(1+exp(2))x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) t=0:0.5:2.5;z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建⽴⼀个字符串向量,删除其中的⼤写字母。

解:(1) 结果:m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2). 建⽴⼀个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:ch='ABC123d4e56Fg9';k=find(ch>='A'&ch<='Z');ch(k)=[]ch =实验⼆ MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对⾓阵,试通过数值计算验证22E R RS A O S +??=。

【精选】数学实验一矩阵运算与Matlab命令24

【精选】数学实验一矩阵运算与Matlab命令24
B1=[b11 b12 b13 b14 ;b21 b22 b23 b24; b31 b32 b33 b34]
运行
17
矩阵的运算(矩阵的加减、数乘、乘积)
C=A1+B1 D=A1-B1 syms c, cA=c*A1 A2=A1(:,1:3), B1 G=A2*B1
18
矩阵的运算(矩阵的加减、数乘、乘积)
求解方程组Ax=b x=A\b 若A为可逆方阵, 输出原方程的解x; 若A为nxm(n>m)阵, 且A’A可逆,输出
原方程的最小二乘解x.
21
矩阵的运算(求解线性方程组)
求矩阵方程:
设A、B满足关系式:AB=2B+A,求B。 其中A=[3 0 1; 1 1 0; 0 1 4]。
取出A的1、3行和1、3列的交叉处元素 构成新矩阵A1
程序
A=[1 0 1 1 2;0 1 -1 2 3;

3 0 5 1 0;2 3 1 2 1],
vr=[1, 3];vc=[1, 3];
A1=A(vr, vc)
观察结果
26
分块矩阵(矩阵的标识)
将A分为四块,并把它们赋值到矩阵B 中,观察运行后的结果。
3
2
2

35 20 60 45
, B 10
15
50
40

20 12 45 20
将 表 格 写 成 矩 阵 形 式
6
计算
输入下面Matlab指令 A=[4 2 3;1 3 2;1 3 3;3 2 2], B=[35 20 60 45;10 15 50 40;20

3 0 5 1 0;2 3 1 2 1]

matlab矩阵及其运算实验所需知识点准备

matlab矩阵及其运算实验所需知识点准备

matlab矩阵及其运算实验所需知识点准备
在进行MATLAB矩阵及其运算实验之前,需要准备以下知识点:
1. MATLAB基本语法和操作:了解MATLAB的基本操作,包括变量定义、赋值和操作符的使用等。

2. 矩阵定义和表示:了解矩阵在MATLAB中的定义和表示方法,包括行向量、列向量以及二
维矩阵的表示。

3. 矩阵运算:熟悉MATLAB中常用的矩阵运算,包括矩阵加法、减法、乘法、转置等。

4. 索引和切片:了解如何使用索引和切片操作来访问和修改矩阵中的元素。

5. 矩阵的特殊操作:了解MATLAB中常用的特殊矩阵操作,包括矩阵的逆、转置、行列式、
特征值和特征向量等计算。

6. 线性方程组求解:了解如何使用MATLAB求解线性方程组,包括高斯消元法、LU分解法、迭代法等。

7. MATLAB中的函数和脚本:了解如何在MATLAB中编写函数和脚本程序,以实现复杂的矩阵运算和算法。

以上是进行MATLAB矩阵及其运算实验所需的基础知识点,但根据实验的具体要求,可能还
需要进一步的准备。

根据实际情况,可以深入学习MATLAB的其他高级特性和函数库,以更
好地应对实验和问题解决。

实验一 MATLAB运算基础

实验一 MATLAB运算基础

实验一MATLAB运算基础一、实验目的1.熟悉启动和退出MATLAB的方法。

2.熟悉MATLAB命令窗口的组成。

3.掌握建立矩阵的方法。

4.掌握MATLAB各种表达式的书写规则以及常用函数的使用。

二、实验内容1.先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。

(1)z1=2sin85°1+e2(2)z2=12ln(x+1+x2),其中x=21+2i−0.455(3)z3=e0.3a−e−0.3a2sin(a+0.3)+ln0.3+a2,a=−3.0,−2.9,…,,2.9,3.0(4)z4=t2,t2-1,t2-2t+1,0≤t<11≤t<22≤t<3,其中t=0:0.5:2.5解:(1)z1=2*sin(85*pi/180)/(1+exp(1)*exp(1));(2)x=[2,1+2i;-0.45,5];z2=0.5*log(x+sqrt(1+x*x));(3)a=-3.0:0.1:3.0;z3=(exp(0.3*a)-exp(-0.3*a))/2.*sin(a+0.3)+log((0.3+a)/2); (4)t=0:0.5:2.5;z4=t.^2-(1-2.*t).*(t<3&t>=2)-(t<2&t>=1);运行结果:z1 =0.2375z2 =0.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044iz3=Columns 1 through 270.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i0.7913 + 3.1416i 0.7822 + 3.1416i 0.7602 + 3.1416i0.7254 + 3.1416i 0.6784 + 3.1416i 0.6196 + 3.1416i0.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i0.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i-0.0771 + 3.1416i-0.2124 + 3.1416i -0.3566 + 3.1416i-0.5104 + 3.1416i -0.6752 + 3.1416i -0.8536 + 3.1416i-1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i-1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416iColumns 28 through 61-37.0245 -3.0017 -2.3085 -1.8971-1.5978 -1.3575 -1.1531 -0.9723 -0.8083 -0.6567 -0.5151 -0.3819-0.2561 -0.1374 -0.02550.07920.1766 0.2663 0.3478 0.42060.4841 0.5379 0.5815 0.61450.6366 0.6474 0.6470 0.63510.6119 0.5777 0.5327 0.47740.4126 0.3388z4 =Columns 1 through 60 0.2500 0 1.2500 7.0000 10.2500 使用情况:a 1x61 488 doublet 1x6 48 doublex 2x2 64 double complexz1 1x1 8 doublez2 2x2 64 double complexz3 1x61 976 double complexz4 1x6 48 double2.已知:A=1234−4347873657,B=13−12033−27求下列表达式的值:(1)A+6*B和A−B+I(其中I为单位矩阵)(2)A*B和A.*B(3)A^3和A.^3(4)A/B及A\B(5)[A,B]和[A([1,3],:);B^2]解:A=[12,34,-4;34,7,87;3,65,7];B=[1,3,-1;2,0,3;3,-2,7];I=eye(3);(1)A+6*B;A-B+I;(2)A*B;A.*B(3)A^3;A.^3;(4)A/B;A\B(5)[A,B];[A([1,3],:);B^2];运行结果:(1)ans =18 52 -1046 7 10521 53 49ans =12 31 -332 8 840 67 1(2)ans =68 44 62309 -72 596154 -5 241ans =12 102 468 0 2619 -130 49(3)ans =37226 233824 48604247370 149188 60076678688 454142 118820ans =1728 39304 -6439304 343 65850327 274625 343(4)ans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000ans =-0.0313 0.3029 -0.33240.0442 -0.0323 0.10630.0317 -0.1158 0.1558(5)ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7ans =12 34 -43 65 74 5 111 0 1920 -5 403.设有矩阵A和BA=12367811121349145101516171819202122232425, B=301617−699423713−411(1)求它们的乘积C。

2019年MATLAB)课后实验答案

2019年MATLAB)课后实验答案

实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:: 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

解:(1) 结果:(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5. 下面是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程的解。

(2) 将方程右边向量元素b 3改为再求解,并比较b 3的变化和解的相对变化。

(3) 计算系数矩阵A 的条件数并分析结论。

解: M 文件如下:123d4e56g9实验三 选择结构程序设计1. 求分段函数的值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=,,,,,,时的y 值。

MATLAB)课后实验答案

MATLAB)课后实验答案

实验一 MATLAB 运算基础1、 先求下列表达式得值,然后显示MATLAB 工作空间得使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0、5:2、5 解:4、 完成下列操作:(1) 求[100,999]之间能被21整除得数得个数。

(2) 建立一个字符串向量,删除其中得大写字母。

解:(1) 结果:(2)、 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果就是:实验二 MATLAB 矩阵分析与处理1、 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵与对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5、 下面就是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程得解。

(2) 将方程右边向量元素b 3改为0、53再求解,并比较b 3得变化与解得相对变化。

(3) 计算系数矩阵A 得条件数并分析结论。

解: M 文件如下:实验三 选择结构程序设计1、 求分段函数得值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5、0,-3、0,1、0,2、0,2、5,3、0,5、0时得y 值。

matlab矩阵运算实验报告

matlab矩阵运算实验报告

matlab矩阵运算实验报告Matlab矩阵运算实验报告一、引言矩阵运算是数学和工程领域中的重要概念之一,它在各个领域中都有广泛的应用。

Matlab作为一种强大的数学软件工具,提供了丰富的矩阵运算功能,可以帮助我们进行高效的数值计算和数据处理。

本实验报告将介绍Matlab中的矩阵运算功能,并通过实例展示其在实际问题中的应用。

二、矩阵运算的基本概念矩阵是由若干个数按照行和列排列形成的一个矩形阵列,它是线性代数中的基本工具。

在Matlab中,矩阵可以通过直接输入数值或使用内置函数生成。

矩阵运算包括加法、减法、乘法、转置等操作,这些操作可以对矩阵的每个元素进行运算,也可以对整个矩阵进行运算。

三、矩阵运算的实例分析1. 矩阵的创建与赋值在Matlab中,可以使用以下命令创建一个矩阵,并对其进行赋值操作:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这样就创建了一个3行3列的矩阵A,并对其进行了赋值。

可以通过输入A来查看矩阵A的内容。

2. 矩阵的加法与减法矩阵的加法和减法是按照对应元素进行运算的。

例如,对于两个3行3列的矩阵A和B,可以使用以下命令进行加法运算:C = A + B;同样地,可以使用以下命令进行减法运算:D = A - B;这样就得到了矩阵C和D。

3. 矩阵的乘法矩阵的乘法是按照行乘以列的方式进行的。

例如,对于一个3行2列的矩阵A和一个2行4列的矩阵B,可以使用以下命令进行乘法运算:C = A * B;这样就得到了一个3行4列的矩阵C。

4. 矩阵的转置矩阵的转置是将矩阵的行和列进行交换的操作。

例如,对于一个3行2列的矩阵A,可以使用以下命令进行转置操作:B = A';这样就得到了一个2行3列的矩阵B。

四、矩阵运算的应用实例矩阵运算在实际问题中有着广泛的应用。

以下是一个简单的实例,通过矩阵运算来解决线性方程组的问题。

假设有一个线性方程组:2x + y = 4x + 3y = 6可以将其表示为矩阵形式:A = [2, 1; 1, 3];B = [4; 6];通过矩阵运算可以求解出未知数x和y的值:X = A \ B;这样就得到了未知数x和y的值。

matlab实验一

matlab实验一

实验一、MATLAB基本操作一、基本操作1、命令窗口的简单使用(1)简单矩阵的输入(2)求[12+2×(7-4)]÷32的算术运算结果2、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?说明*与.*的运算特点A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1](3)设a=10,b=20;求i=a/b与j=a\b?a=10,b=20(4)设a=[1 -2 3;4 5 -4;5 -6 7];请设计出程序,分别找出小于0的矩阵元素及其位置。

(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X(:)矩阵变为一维矩阵使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0(8)写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A >> D = A.^B C =3 9 27 D =1 32 7293、 已知⎪⎭⎫ ⎝⎛+⋅=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。

二、运算基础1、 设有矩阵A 和B ,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;1617 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]; 1) 求它们的乘积C2)将矩阵C的右下角3x2子矩阵赋给D2、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab
姓名
学号
学院名称
专业班级
提交日期年月
评阅人____________
评阅分数____________
实验一m atlab运算基础与矩阵处理
一、实验目的
1.熟悉启动和退出MATLAB软件的方法。

2.熟悉MATLAB软件的运行环境。

3.熟悉MATLAB 的基本操作。

4.掌握建立矩阵的方法。

5.掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

6.能用matlab 进行基本的数组、矩阵运算。

7.能用矩阵求逆法解线性方程组。

二、实验内容
1.练习下面指令,写出每个指令的作用。

cd,clear,dir,path,help,who,whos,save,load 。

2.建立自己的工作目录MYBIN 和MYDATA ,并将它们分别加到搜索路径的前面或者后面。

3.求23)]47(*212[÷-+的算术运算结果。

4.求出下列表达式的值,然后显示matlab 工作空间的使用情况并保存全部变量:
5.利用MATLAB 的帮助功能分别查询inv 、plot 、max 、round 函数的功能和用法。

6.写出完成下列操作的命令:
(1) 建立3阶单位矩阵A ;
(2) 建立5*6随机矩阵A ,其元素为[100,200]范围内的随机整数;
(3) 产生均值为1,方差为0.2的500个正态分布的随机数;
(4) 产生和A 同样大小的幺矩阵;
(5) 将矩阵A 的对角线元素加30;
(6) 从矩阵A 提取对角线元素,并以这些元素构成对角阵B 。

7.已知:
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=76538773443412A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=731203321B 求下列表达式的值:
(1) B A K *611+=和I B A K +-=12(其中I 为单位矩阵)
(2) B A K *21=和B A K *.22=
⎥⎦
⎤⎢⎣⎡-+=++=+=545.0212),1ln(21185sin 22221i x x x z e z o 其中
(3) 331^A K =和3.32^
A K =
(4) B A K /41=和A B K \42=
(5) ],[51B A K =和]2:);],3,1([[52^B A K =
8.下面是一个线性方程组: ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡52.067.095.03216/15/14/15/14/13/14/13/12/1x x x (1)求方程的解。

(2)将方程右边向量元素3b 改为0.53,再求解,并比较3b 的变化和解的相对变化。

三、实验收获与体会。

相关文档
最新文档