第05章 热力学第二定律

合集下载

《热力学第二定律》 讲义

《热力学第二定律》 讲义

《热力学第二定律》讲义一、热力学第二定律的引入在我们生活的这个世界中,热现象无处不在。

从烧开水时的水汽蒸腾,到冬天取暖时的热量传递,热的变化和流动贯穿于我们的日常生活。

而热力学第二定律,则是用来描述热现象中能量转换和传递的重要规律。

想象一下,一个热的物体和一个冷的物体相互接触,热量会自发地从热的物体流向冷的物体,直到它们的温度相等。

但是,你有没有想过,为什么热量不会自发地从冷的物体流向热的物体呢?这就是热力学第二定律所要探讨的核心问题之一。

二、热力学第二定律的表述热力学第二定律有多种表述方式,其中最常见的有克劳修斯表述和开尔文表述。

克劳修斯表述:热量不能自发地从低温物体传递到高温物体而不引起其他变化。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。

为了更好地理解这两种表述,我们来举几个例子。

假如在一个封闭的房间里,有一台没有外接电源的冰箱。

如果热量能够自发地从冰箱内部的低温区传递到外部的高温环境,那么冰箱内部就会越来越冷,而房间却不会因为接收了这些热量而有任何其他变化。

但在现实中,这是不可能发生的。

再比如,有一个热机,它从高温热源吸收了一定的热量,并将其中一部分转化为有用功。

如果能够从单一热源吸收热量并完全转化为有用功,而不向低温热源排放任何热量,那么这样的热机就是“永动机”,但根据热力学第二定律,这种情况是不可能实现的。

三、热力学第二定律的实质热力学第二定律的实质是揭示了自然界中一切与热现象有关的实际过程都是不可逆的。

什么是不可逆过程呢?比如说,一滴墨水滴入一杯清水中,墨水会逐渐扩散,最终使整杯水都变得有颜色。

但是,我们不可能让这杯已经混合均匀的水自动地恢复到墨水和清水分离的状态。

再比如,一块光滑的冰块在常温下会逐渐融化成水,而这些水不会自动地再重新凝结成原来形状规则的冰块。

这些过程一旦发生,就无法自发地逆向进行,这就是不可逆过程。

而热力学第二定律正是说明了这类不可逆过程的方向性。

西建工程热力学课件05热力学第二定律

西建工程热力学课件05热力学第二定律

效率只能小于100%

(t
w q0
)
理想气体 T 过程 q = w
热二律与第二类永动机
第二类永动机:设想的从单一热源取 热并使之完全变为功的热机。
这类永动机 并不违反热力
学第一定律
但违反了热 力学第二定律
第二类永动机是不可能制造 成功的 环境是个大热源
热一律与第一类永动机
第一类永动机:不消耗任何能量而能不 断做功的机器。
自发过程的方向性
功量 功量
摩擦生热
100% 发电厂 40%
热量 热量
放热
自发过程具有方向性、条件、限度
自然界过程的方向性表现在不同的方面 能不能找出共同的规律性? 能不能找到一个判据?
热力学第二定律
§5.1 热二律的表述与实质
热二律的表述有 60-70 种,
1851年 开尔文-普朗克表述
热功转换的角度
克劳修斯表述:
完全等效!!!
违反一种表述,必违反另一种表述!!!
证明1、违反开表述导致违反克表述
反证法:假定违反开表述
热机A从单热源吸热全部作功
Q1 = WA 用热机A带动可逆制冷机B 取绝对值
Q1’ = WA + Q2’
T1 热源
Q1
Q1’
A WA B
Q1’ -Q2’= WA = Q1
Q2’
Q1’ -Q1 = Q2’ 违反克表述
例题
Q2' Q1
T2 T0 T2
C
Q2'
1
T0 T1
T2
Q1
T0 T2
0
T1
Q1 W
Q2 T0
Q1’
Q2’ T2(<T0)

第05章 热力学第二定律

第05章 热力学第二定律

第五章 热力学第二定律1.基本概念热力学第二定律:开尔文说法:只冷却一个热源而连续不断作功的循环发动机是造不成功的。

克劳修斯说法:热不可能自发地、不付代价地从低温物体传到高温物体。

第二类永动机:从单一热源取得热量,并使之完全转变为机械能而不引起其他变化的循环发动机,称为第二类永动机。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。

定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环。

制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温称为制冷。

制冷机:从低温冷藏室吸取热量排向大气所用的机械称为制冷机。

热泵:将从低温热源吸取的热量传送至高温暖室所用的机械装置称为热泵。

理想热机:热机内发生的一切热力过程都是可逆过程,则该热机称为理想热机。

卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环,称为卡诺循环。

卡诺定理:1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关。

2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环。

自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程。

2.常用公式熵的定义式:⎰=∆21T qs δ J/kg K工质熵变计算:12s s s -=∆,⎰=0ds工质熵变是指工质从某一平衡状态变化到另一平衡状态熵的差值。

因为熵是状态参数,两状态间的熵差对于任何过程,可逆还是不可逆都相等。

1.1212ln lnv v R T T c s v +=∆理想气体、已知初、终态T 、v 值求ΔS 。

2.1212ln ln P P R T T c s P -=∆ 理想气体已知初、终态T 、P 值求ΔS 。

热力学第二定律ppt课件

热力学第二定律ppt课件

从单一热源吸收热量,全 部用来做功而不引起其它 变化叫做第二类永动机。
热力学第二定律的另一种表述就是: 第二类永动机不可能制成。
P61
对宏观过程方向的说明,都可以作为热二的表述。 例如:气体向真空的自由膨胀不可逆;
一切宏观自然过程的进行都具有方向性。
P61
柴薪时期
煤炭时期
石油时期
P61-62
Q2=Q1+W Q1=Q2+W
热机工作时能否将从高温热 库吸收的热量全部用来做功?
不能,从高温热库吸收的热量的一部分 用来做功,剩余的部分释放到低温热库。

Q1
热机工作:
P60
燃料燃烧 冷凝器或大气
漏气热损 散热热损 摩擦热损
燃料产生的 热量Q
输出机械功W
W< Q
P60
P61
对周围环境不产生 热力学方面的影响, 如吸热、放热、做 功、压强变化等。
P59
适用于宏观过程对微观过程不适用
P59
电冰箱通电后箱内温度低于箱外温度,并且还会 继续降温,直至达到设定的温度。显然这是热量从低 温物体传递到了高温物体。这一现象是否违背热力学 第二定律呢?
不违背。电冰箱能实现热量从低温物体传给高温 物体,但这不是自发地进行的,需要消耗电能。
制冷机工作时热量是自发地 从低温热库传到高温热库吗? 不是,有外界做功。
3.4 热力学第二定律
P59
可能发生这样的逆过程吗? 热量自发地由高温物体向低温物体传递的过程是不可逆的
可能发生这样的逆过程吗?
功可以自动转化为热 , 但热却不能自动转化为功。 通过摩擦而使功转变为热的过程是不可逆的。
热现象
物体间的传热 气体的膨胀

动力热力学第05章 热力学第二定律

动力热力学第05章  热力学第二定律

§ 5-2 可逆循环分析及其热效率
一、卡诺循环(是两个热源的可逆循环)
组成:四个可逆过程—— 1.绝热压缩a—b;
2.定温吸热b—c;
3.绝热膨胀c—d; 4.定温放热d—a。
p
b •
•c a •
T
b• a•
•c
•d △s s
•d v
w net q1 q 2 q2 t 1 q1 q2 q1
1
TL 1 Th
卡诺循环,概括性卡诺 循环,任意工质
作业:5-4。机械 1,4
§5-3 卡诺定理
定理一:在相同温度的高温热源和相同温度的低温热源之间 工作的一切可逆循环,其热效率都相等,与可逆循 环的种类无关,与采用何种工质也无关。 解释: 热机C:理想气体,卡诺循环 T1
Q1 WC C Q2c
循环吸热 q1 Tds
1H2
• b T1 •2 • c T2 s
循环放热 q 2 Tds (大小)
1L2
• L ⊿s
根据中值定理:
q1 Tds T1s
1H2
q 2 Tds T 2 s
1L2
平均吸热温度:
T a • 1• d• H • • b T1 •2 • c T2 s 平均放热温度:
第二类永动机不可能实现(第二定律的又一说法)
第一类永动机:不消耗能量作功。违反第一定律。
第二类永动机:从单一热源吸热并全部转化功,即热效 率为百分之百。违反第二定律。
从第二定律的表述上可以看出:
方向性问题 比 能量守恒问题 更具直观性。 故 历史上先发现方向性问题,后发现能量转换与守恒。
为什么第二定律会有不同的说法? 热现象是各种各样的,它们都有方向性的题。这 个方向性问题,是各种不同热现象的共同本质。人们 可以利用不同的过程揭示热现象的方向性的本质,故 有不同的说法。

热力学第二定律具体内容

热力学第二定律具体内容

热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。

工程热力学:6第五章 热力学第二定律

工程热力学:6第五章 热力学第二定律

(5-3)
同样,逆向卡诺循环是最理想、经济性最高,但通常难以实现。
30
三种卡诺循环
T T1
制热
T0
制冷
T2
T1
动力
T2
s
31
四、多热源可逆循环
热源多于两个的可逆循环如 右图所示。要使循环可逆,必须 有无穷个热源和冷源,保持工质 和热源间无温差换热。
此循环的平均吸热温度 T1 和平 均放热温度 T2分别定义为:
属于“天上掉馅饼”,第三类无摩擦。
I.
违背热力学第一定律(热效率大于100%)。20世纪90年
代山东枣庄有人发明了一个“耗电12kW,可发电36kW”的
发电机,即为一例。类似专利申请美国专利局已有数以千计,
但尚无成功报道。
II.
违背热力学第二定律(热效率等于100%)。如果此类机
器能够制造成功,由于太阳能、地热能和海洋热能等的巨大,
汽车停止时摩擦产生热,但热消失时 汽车能否行驶?
4
热力学第一定律
序言
能量之间数量的关系 能量守恒与转换定律
不足之处:未表明能量传递或转化时的 方向、条件和限度。
低温物体会吸热,温度逐渐升高;高温 物体会放热,温度逐渐降低。但热量能 否无条件的由低到高?
5
热力学第一定律
序言
能量之间数量的关系 能量守恒与转换定律
第五章 热力学第二定律
序言 5-1 热力学第二定律 5-2 可逆循环分析及其热效率 5-3 卡诺定理 5-4 熵参数、热过程方向的判据 5-5 熵增原理 5-6 熵方程 5-7 (火用)参数的基本概念 热量(火用) 5-8 工质(火用)及系统(火用)平衡方程 5-9 热力学温标
目录
1

热力学第二定律 课件

热力学第二定律  课件
答案:BCD
拓展二 热力学第一、第二定律的比较及两类永动机 的比较
1.一个放在水平地面上的物体,靠降低温度,能不 能把内能自发地转化为动能,使这个物体运动起来?
提示:不可能,机械能和内能的转化过程具有方向性, 内能转化成机械能是有条件的.
2.什么是第二类永动机?为什么第二类永动机不可 能造成?
提示:能够从单一热源吸收热量并把它全部用来做 功,而不引起其他变化的热机称为第二类永动机.第二类 永动机不可能制成的原因是因为机械能和内能转化过程 具有方向性,尽管机械能可以全部转化为内能,但内能却 不能全部转化为机械能,而不引起其他变化.
提示:不会降低室内的平均温度.若将一台正在工作 的电冰箱的门打开,尽管可以不断向室内释放冷气,但同 时冰箱的箱体向室内散热,就整个房间来说,由于外界通 过导线不断有能量输入,室内的温度会不断升高.
1.在热力学第二定律的表述中,“自发地”“不产 生其他影响”“单一热库”“不可能”的含义.
(1)“自发地”是指热量从高温物体“自发地”传给 低温物体的方向性.在传递过程中不会对其他物体产生 影响或借助其他物体提供能量等.
答案:B
热力学第二定律
知识点一 热力学第二定律的第一种表述
提炼知识 1.热力学第二定律: (1) 一 切 与 热 现 象 有 关 的 宏 观 自 然 过 程 都 是 不 可 逆 的.如物体间的传热,气体的膨胀、扩散……都有特定 的方向性. (2)反映宏观自然过程方向性的定律就是热力学第二 定律.
2.热力学第二定律的第一种表述,克劳修斯表述: 热量不能自发地从低温物体传到高温物体.
(2)“不产生其他影响”的含义是发生的热力学宏观 过程只在本系统内完成,对周围环境不产生热力学方面 的影响.如吸热、放热、做功等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24 热力学第二定律的实质:论述热力过程的方向性及能质退化或贬值的客观规律。

克劳修斯说法:不可能把热量从低温物体传到高温物体而不引起其他变化。

开尔文说法:不可能制造只从一个热源取热使之完全变成机械能而不引起其他变化的循环发动
机。

(第二类永动机):只冷却单一热源而连续做功的机械。

卡诺循环热效率的结论:1.热效率的大小之决定于热源温度T1和冷源温度T2 2. 卡诺循环热效率总是小于一。

3.会适用于任何工质。

孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。

卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环。

卡诺定理:1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关。

2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环。

自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程。

克劳修斯不等式:0≤⎰
r T Q δ 任何循环的克劳修斯积分永远小于零,可逆过程时等于零。

开口系统熵方程:
1122s m s m s s s sur sys iso -+∆+∆=∆。

相关文档
最新文档