纯电动汽车整车电控系统的研究

合集下载

纯电动汽车整车控制器(vcu)研究

纯电动汽车整车控制器(vcu)研究

车辆工程技术 2 车辆技术纯电动汽车整车控制器(VCU)研究宋述铨(天津优控智行科技有限公司,天津 300000)摘 要:电动汽车主要由电池管理系统(BMS),整车控制系统(VCS),以及电机控制器(MCU)等构成。

整车控制器(VCU)是电动汽车的重要控制结构,对汽车的各种信息进行检测、对车内通信网络和异常信息进行监控等,能够提高整车驾驶性能,进行制动能量回馈完善能源管理。

提升整车舒适性,使用户获得完美体验。

关键词:纯电动汽车;整车控制器;完美体验 随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。

传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。

纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。

随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。

本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。

1 整车电控系统组成 整车电控系统主要由整车控制器VCU为核心,通过硬线信号指挥各控制器使能,通过CAN总线信号控制储能系统、电机系统等关键总成执行相应的上下电动作以及扭矩指令。

最终完成整车的驾驶运行以及高压充电。

其中,低压部分完成车辆控制器供电和信号采集通讯。

高压部分通过高压线束将动力电池的电能传输到空调压缩机、电动机等高压供电设备,实现动力电能的传输。

其中电机、电池、电控系统被称为“三电”系统,主要包括:1.1 整车控制器 整车控制器系统为整车的运行大脑,具有高可靠性、高运行效率、逻辑缤密性。

整车控制系统上电后首先运行初始化程序并且自检,在自身没有问题后驱动端口使能储能系统、电机系统上电。

储能系统和电机系统完成上电后同样分别进行上电自检。

所有系统自检无故障且驾驶员有上高压指令时,整车控制系统通过总线驱动储能系统、电机系统完成上高压动作。

1.2 储能系统 储能系统包括动力电池组和BMS管理单元。

27174063_纯电动汽车学习入门(九)——整车控制系统(上)

27174063_纯电动汽车学习入门(九)——整车控制系统(上)

◆文/北京 李玉茂纯电动汽车学习入门(九)——整车控制系统(上)(接上期)一、概述1.整车控制系统整车控制系统(VMS)是电动汽车的神经中枢,承担了各系统的数据交换、信息传递、动力电池能量管理、驾驶人意图解析、安全监控、故障诊断等作用,对电动汽车动力性、经济性、安全性和舒适性等有很大的影响。

整车控制系统分成三大子系统,如图1所示,包括低压电气系统、高压电气系统、网络控制系统。

图中弱电控制部件称作ECU(ECM),强电控制部件称作控制器。

(1)低压电气系统主要由12V电池、低压线路、点火开关、继电器、电动水泵、电动制动真空泵、电动助力转向器、ICM(组合仪表)等组成。

作用是为各电子控制单元、各高压部件控制器、各12V电动辅助设备供电。

(2)高压电气系统主要由动力电池、驱动电机、MCU(驱动电机控制器)、OBC(车载充电机)、DC/DC变换器、空调压缩机、压缩机控制器、PTC、PTC控制器等组成。

作用是将电能转换成机械能,或者整流、逆变、直流电压变换。

(3)网络控制系统主要由V C U (整车控制单元)、B M S (电池管理系统)、RMS(远程通信终端)、网关、CAN总线等组成。

作用是控制低压电气系统和高压电气系统。

2.整车控制单元(1)VCU基本作用整车控制单元英文缩写VCU,英文全称Vehicle Controller Unit,如图2所示。

VCU是整车控制系统的核心部件,VCU接收加速踏板、制动踏板、车速和剩余电量等信息,通过网络综合控制驱动车所需要的工作部件,属于整个车辆的管理协调型控制部件。

图2 VCU(2)VCU分层管理VCU的组成包括微处理器、电源及保护电路模块、I/O接口图1 整车控制系统和调试模块、A/D模数转换模块、CAN总线通讯模块等,根据信号重要程度和实现次序,运算分为四层,如图3所示。

图3 VCU分为四层运算①数据交换管理层,接收CAN总线信息,对馈入VCU的物理量进行采集处理,并通过CAN总线发送控制指令,通过I/O接口提供对显示单元和继电器等的驱动信号,该层的功能是实现其他功能的基础和前提。

纯电动重卡整车控制策略开发浅析

纯电动重卡整车控制策略开发浅析

纯电动重卡整车控制策略开发浅析摘要:步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。

相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。

主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。

众多的技术路线其控制策略也不尽相同。

本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。

关键词:新能源重卡;整车控制器;控制策略;控制系统;引言步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。

受乘用车带动,重卡领域的电动化也在快速推进,各大重卡主机厂开始相继积极谋划布局。

着眼全局,基于国家能源安全及环保的大力推进,汽车的电动化承担着国家产业结构升级的大任,正以摧枯拉朽的不可逆之势迅速崛起,一个新的赛道已经出现。

相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。

主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。

众多的技术路线其控制策略也不尽相同。

本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。

1新能源重卡系统概述1.1新能源重卡系统简述图1纯电动重卡简图如图1所示,动力电池作为车辆的动力源,为车辆提供行驶的能量或者在能量回收时储存能量。

多合一控制器控制转向油泵,打气泵、低压蓄电池DC供电、空调及PTC和氢堆DCDC的配电。

如果是氢燃料重卡,氢堆作为增程系统为车辆行驶提供额外的能量。

电机控制器驱动电机工作,整车控制器控制车辆上所有控制模块协同工作。

1.2新能源重卡高压系统介绍图2纯电动系统架构图如图2所示,新能源技术兴起于乘用车,重卡入局较晚,由于两者面对的客户群体和工况不一样,高低压架构也有所区别。

纯电动汽车整车控制器的构成、原理、功能说明

纯电动汽车整车控制器的构成、原理、功能说明

纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。

整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。

现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。

对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。

国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。

1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。

集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。

集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。

分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。

整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。

分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。

典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。

电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。

典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。

纯电动汽车电控系统的工作原理

纯电动汽车电控系统的工作原理

纯电动汽车电控系统的工作原理
纯电动汽车电控系统是指通过电能储存系统(如电池组)为动力源,通过电动机驱动车辆前进、制动、转向等等,并通过电控单元对电机和电池组进行实时监测和控制的系统。

其主要工作原理如下:
1. 电能储存:纯电动汽车采用电池组储存电能,电池组的电压、电流、温度等参数会不断变化,因此需要对电池组进行实时监测和控制。

2. 电机驱动:电池组通过电控单元输出电能,驱动电机转动以推动车辆前进、制动、转向等操作。

3. 能量回收:在制动或惯性滑行时,电机通过反向转动将动能转化为电能储存在电池组中,以实现能量回收,提高能源利用效率。

4. 车速控制:电控单元根据车速信号和驾驶员的指令控制电机输出电能,从而控制车速。

5. 压缩制动:电控单元根据制动信号控制电机回转,使车轮减速,达到制动效果。

6. 转向控制:电控单元通过控制电机转速差实现转向,例如左转时,左侧轮胎电机转速增加,右侧轮胎电机转速减小。

总之,纯电动汽车电控系统的工作原理是通过电池组储存电能,通过电控单元实时监测和控制电池组和电机,从而实现车辆的驱动、制动、转向等操作。

- 1 -。

纯电动汽车整车控制策略研究

纯电动汽车整车控制策略研究

纯电动汽车整车控制策略研究董伟【摘要】随着纯电动汽车的快速发展,整车电控系统成为一种非常重要的应用技术.为了更加深入研究纯电动汽车整车控制策略,阐述了整车电控系统的重要性以及研究的必要性,介绍了纯电动汽车整车基本结构,并对整车控制策略进行详细分析.纯电动汽车整车控制策略的研究对整车控制系统的设计开发具有较强的指导意义.【期刊名称】《现代制造技术与装备》【年(卷),期】2018(000)007【总页数】3页(P51-53)【关键词】纯电动汽车;电控系统;整车控制器;控制策略【作者】董伟【作者单位】三门峡职业技术学院,三门峡 472000【正文语种】中文与传统汽车的控制系统相比,纯电的汽车电控系统的控制单元数量与复杂程度高出很多。

电控系统是保证纯电动汽车整车功能集成和优化的核心单元,为保证纯电动汽车各部件系统在最佳工况下能够协调运行,需要制定相应的控制系统和控制策略。

纯电动汽车电控系统主要包括整车控制系统、电池管理系统、电机控制系统以及能量回收系统等环节。

各系统之间要协调工作,方能保证整车的稳定性和安全性。

可以说整车控制系统是纯电的汽车的核心技术之一,对纯电的汽车的发展意义重大。

1 纯电动汽车系统概述1.1 纯电动汽车系统结构组成纯电动汽车仅仅依靠动力电池组提供的电能作为动力源驱动电动机转动,以此为整车提供动力。

纯电动汽车结构主要包括电机驱动系统、能源管理系统、整车控制单元、充电控制单元、电源变换装置(DC/DC)及仪表显示系统等[1]。

纯电动汽车系统结构如图1所示。

图1 纯电动汽车整车控制结构动力电池为整车的能量来源,而电池管理系统主要负责监控电池的状态,提高电池的利用率;电机是纯电动汽车的动力部件及能量回收的核心部件,而电机控制系统将动力电池的直流高压电转换成三相交流电驱动电机转动;整车控制器采集挡位信号和踏板信号等,控制电池的放电及电机的运行为整车提供动力;仪表为驾驶者提供车辆运行状况信息。

1.2 整车控制单元汽车整车控制单元(VCU)是纯电动汽车整车控制系统的核心部件。

整车控制系统的组成与功能

整车控制系统的组成与功能
CAN总线使用的“时分多路传输”
CAN 总线系统-基础概念
二进制:二进制是计算技术中广泛采用的一种数制。二进 制数据是用0和1两个数码来表示的数。
60
00 111100
80
01 010000
CAN 总线组成 CAN 总线 通信节点
硬件
通信节点
软件
数据传输终端
数据传输线
数据传输终端
CAN 总线组成-硬件(导线)
各控制单元之间的所有信息都通过两根数据线进行交换——CAN数 据总线
通过该种数据传递形式,所有的信息,不管控制单元的多少和信息 容量的大小,都可以通过这两条数据线进行传递,能大规模的减少 系统的复杂性。
CAN 总线-优点
5 个控制器 10 个连接线
40-60 个控制器... 780-1000 个连接线
二、整车控制器的主要功能: 6. 车辆状态监测和显示 Ø 整车控制器应该对车辆的状态进行实时检测, 并且将各 个子系统的信息发送给车载信息显示系统, 其过程是通过 传感器和 CAN 总线, 检测车辆状态及其动力系统及相关 电器附件相关各子系统状态信息驱动显示仪表, 将状态信 息和故障诊断信息通过数字仪表显示出来。显示内容包括: 车速、里程、电机的转速、温度、电池的电量、电压、电 流、故障信息等。
为了减少干扰, CAN-Bus的传输线采用双绞线,其绞距为 20mm,截面积为0.35mm2或0.5mm2 。
CAN 总线组成-硬件(导线)
修理要求: 修理时不能有大于50mm的线段不绞合。 修理点之间的距离至少要相隔100 mm,以避免干扰。
CAN 总线组成-硬件(导线信号) 导线上的具体是什么样的电信号呢?
二、整车控制器的主要功能: 4. 制动能量回馈控制 Ø 电动汽车的电机可以工作在再生制动状态,对制动能 量进行回收利用是电动汽车和传统能源汽车的重要区别。 整车控制器根据行驶速度、驾驶员制动意图和动力电池组 状态( 如电池荷电状态SOC 值) 进行综合判断后,对制动 能量回馈进行控制。如果达到回收制动能量的条件,整车 控制器向电机控制单元发送控制指令,使电机工作在发电 状态,将部分制动能量储存在动力电池组中,提高车辆能 量利用效率。

纯电动汽车电控系统的工作原理

纯电动汽车电控系统的工作原理

纯电动汽车电控系统的工作原理
纯电动汽车电控系统是通过控制器对电池组、电机和车辆其他电
气元件进行控制和管理,以实现电动汽车的加速、制动、定速巡航、
转向等功能。

在纯电动汽车电控系统中,控制器是核心部件,负责对整个系统
进行控制和调度。

控制器接收车辆各部件反馈的信息并进行处理,再
向各部件发送对应的控制指令。

电池组是纯电动汽车的能量来源,通过控制器对电池组电流、电
压和温度等参数进行监测和调整,保证电池组的安全可靠运行。

电机是实现车辆驱动的主要部件,通过控制器控制电机的电流输
出和转速,实现车辆的加速和转向等功能。

除此之外,纯电动汽车电控系统中还包括了充电系统、辅助电气
系统和车载网络等部分,以满足电动汽车的充电、照明、通信和娱乐
等多种需求。

总的来说,纯电动汽车电控系统是车载电气系统关键的组成部分,通过对系统各部件进行控制和管理,实现车辆的正常运行和高效能耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯电动汽车整车电控系统的研究
在能源危机和环境问题的双重压力下,纯电动汽车以节能环保、 效率高、噪音小的优点受到了国内外的高度重视。而电动汽车 上的电气节点数量很多,方便并可靠地实现车上各个节点间信息 的实时共享是提高电动汽车性能的必要条件,基于此本文针对整 车电控系统进行了研究和设计。
本文首先论述了纯电动汽车整车电控系统和CAN总线的国内外研 究现状及发展方向;对CAN总线技术进行了详细的分析,计算出了 课题所选用的参数;对整车电控系统进行了结构设计与需求分析, 基于SAEJ1939应用层协议,设计了适用于纯电动汽车整车电控系 统的通信协议,完成了网络节点分配、参数设置、标识符分配以 及报文分组的具体设计。其次,以TI公司的TMS320F2812为主控 制芯片,对中央控制单元进行了硬件设计,完成了硬件电路调试。
再次,本文对人机显示系统进行了设计及配置,包括对界面进行 了设计及布局,分析了液晶屏控制指令,同时分配变量地址,最终 进行液晶屏界面配置。液晶屏界面在DGUS软件上信网络进行监测,并对数据进 行了具体分析,给出了 CAN节点的平稳波形,通过反复的调试与 修改,实现了电机驱动控制系统、充电机系统、电池采集单元、 中央控制单元之间的通信,并进行了装车实验,成功实现了各系 统之间的通信与状态信息的实时显示,并从屏幕上直接进行相应 的控制操作,验证了本系统硬件电路和软件设计,以及通信协议 设计的正确性。
在硬件电路设计的基础上针对整车电控系统进行了软件设计,软 件开发环境为CCS3.3,并进行了软硬件联合调试,验证程序编写 的正确性。电机驱动控制系统与充电机系统通过串行通信接口 连接,充电机系统与电池采集单元通过CAN总线与中央控制单元 相连,中央控制单元通过串行通信接口与迪文液晶屏相连,进而 实现各系统之间的信息通信和信号实时处理。
相关文档
最新文档