汽车行业大数据应用案例

合集下载

AI技术在汽车行业的创新应用案例

AI技术在汽车行业的创新应用案例

AI技术在汽车行业的创新应用案例引言:近年来,人工智能(Artificial Intelligence, AI)技术的迅猛发展带来了许多领域的革新与变革,其中汽车行业是其中一个得益最大的领域之一。

AI技术在汽车行业的应用不仅提高了车辆的性能与安全性,还为用户带来了更智能化、便捷化的交通出行体验。

本文将介绍几个具有代表性的AI技术在汽车行业中创新应用案例。

一、自动驾驶技术助力汽车行业变革随着人工智能和机器学习算法的发展,自动驾驶技术逐渐成为现实。

基于AI 技术,汽车可以通过感知周围环境并作出决策从而实现自主导航。

谷歌旗下子公司Waymo是自动驾驶领域里炙手可热的企业之一,他们在美国亚利桑那州进行了长时间测试并推出了搭载自动驾驶系统的出租车服务。

这项创新技术不仅提高了乘客乘坐体验,还为未来交通提供了更多可能性。

二、语音识别技术提升汽车智能化体验在AI技术的帮助下,语音识别技术得以在汽车行业中得到广泛应用。

通过与车辆内置语音助手的互动,驾驶者可以轻松地控制娱乐系统、导航系统和空调等功能。

苹果公司的CarPlay和谷歌的Android Auto都是相应的解决方案,它们不仅可以识别人类语言和指令,还可以通过预测用户意图来提供更智能化的服务。

这种创新应用让用户在驾驶过程中更加安全、便捷。

三、拥堵预测与交通优化利用AI技术,许多厂商正在研究如何通过数据分析来预测道路拥堵情况并优化交通流量。

Uber是一个成功案例。

他们利用大数据分析和机器学习算法,为司机和乘客提供实时交通情报,并显示最佳路线以避免拥堵点。

这种AI技术的创新应用不仅改善了交通状况,也提高了城市居民的出行效率。

四、智能安全监控系统人工智能还为汽车行业带来了更先进、智能化的安全监控系统。

例如,特斯拉的Autopilot系统结合了计算机视觉和高级驾驶辅助系统,能够实时感知车辆周围的情况并预测潜在危险。

该系统能够对道路上的交通标志、行人和其他车辆进行识别,并通过自动刹车和保持在车道内等功能来提高车辆的安全性。

大数据分析在汽车行业中的应用案例解析

大数据分析在汽车行业中的应用案例解析

大数据分析在汽车行业中的应用案例解析随着科技的不断进步和网络的普及,汽车行业也逐渐进入了大数据时代。

大数据分析在汽车行业中的应用,对于提升汽车生产制造、营销销售、售后服务等环节的效率和智能化具有重要作用。

本文将分析几个大数据在汽车行业中的应用案例,以展示大数据分析在汽车行业中的重要性和价值。

一、智能驾驶智能驾驶是当下汽车行业的热点之一,也是大数据分析在汽车行业中的重要应用领域。

通过收集车辆传感器、GPS导航等数据,并结合地图数据和交通信息,大数据分析可以帮助汽车实现自动驾驶、道路识别、自动导航等功能。

比如,特斯拉公司通过大数据分析,使得其汽车能够实现自动驾驶功能,提高了行驶的安全性和舒适度。

二、智能制造大数据分析在汽车制造环节的应用,可以提高生产效率、降低生产成本,并帮助企业进行智能决策。

例如,通过收集车间设备运行数据、生产工艺参数等信息,并进行大数据分析,可以帮助企业优化生产流程,提高生产效率和质量。

同时,通过对供应链和物流数据的分析,企业可以更好地掌握市场需求,进行精细化备货和供应链管理。

三、智能销售大数据分析在汽车销售环节的应用,可以提供消费者需求的深入洞察,并帮助企业进行精准的市场定位和客户维护。

通过分析社交媒体、在线评论、消费者行为数据等大数据,汽车企业可以了解消费者的购车偏好、需求和行为,为其提供个性化的产品和服务。

比如,通过大数据分析,汽车企业可以精准定位目标用户,并根据用户的偏好进行定制化推荐,提高销售转化率和用户满意度。

四、智能售后服务大数据分析在汽车售后服务环节的应用,可以改进维修和保养的效率,提高客户满意度。

通过收集车辆故障数据、行驶数据等信息,并进行大数据分析,企业可以实现故障预测、定制化保养计划等功能。

同时,通过与车主手机APP、客服平台等进行数据互通,企业可以实现智能化的远程故障诊断、在线预约维修等服务,提高售后服务的质量和效率。

总结:大数据分析在汽车行业中的应用案例,涵盖了智能驾驶、智能制造、智能销售和智能售后服务等方面。

大数据对汽车行业的影响与应用

大数据对汽车行业的影响与应用

# 大数据对汽车行业的影响与应用## 引言随着信息技术的发展和智能化的进步,大数据技术在各个行业中的应用越来越广泛,汽车行业也不例外。

大数据技术的应用正在为汽车行业带来深远的影响和变革。

通过收集、分析和利用海量的汽车相关数据,大数据技术可以帮助汽车企业实现智能化制造、提升用户体验、优化供应链管理,并推动出行方式的创新。

本文将探讨大数据对汽车行业的影响与应用,并介绍一些相关的案例和实践。

## 大数据对汽车行业的影响与应用### 1. 智能化的汽车制造大数据技术可以帮助汽车企业实现智能化的汽车制造。

通过分析生产线上的传感器数据、工艺参数数据和零部件数据等,企业可以实时监测生产过程,及时发现问题并采取相应的措施。

大数据还可以帮助企业优化生产计划和资源配置,提高生产效率和产品质量。

### 2. 提升用户体验与个性化服务大数据技术可以帮助汽车企业提升用户体验和提供个性化服务。

通过分析车辆传感器数据、车主行为数据和地理位置数据等,企业可以了解用户的驾驶习惯、偏好和需求,提供个性化的驾驶模式和定制化的服务。

大数据还可以帮助企业实现智能化的导航系统、语音识别系统和车载娱乐系统,提升用户的便利和满意度。

### 3. 优化供应链管理与成本控制大数据技术可以帮助汽车企业优化供应链管理和成本控制。

通过分析供应链数据、物流数据和市场需求数据等,企业可以准确预测零部件的需求量和采购时间,优化供应链的配送和库存管理,降低物流成本和库存风险。

大数据还可以帮助企业进行成本分析和效益评估,提高成本控制的精细化和可视化。

### 4. 智能驾驶与交通安全大数据技术在智能驾驶和交通安全方面的应用也日益重要。

通过分析车辆传感器数据、交通数据和天气数据等,企业可以实现智能驾驶辅助功能,如自动刹车、车道保持和交通拥堵提示等。

大数据还可以帮助企业进行交通事故预测和风险评估,提高交通安全性和行车效率。

### 5. 出行方式的创新与共享经济大数据技术对出行方式的创新和共享经济的发展也起到了重要的推动作用。

大数据在汽车行业中的应用案例

大数据在汽车行业中的应用案例

大数据在汽车行业中的应用案例随着科技的不断发展,大数据已经成为当今社会中的一个热门话题。

大数据的应用广泛而深远,尤其在汽车行业中,其应用案例更是让人瞩目。

本文将介绍几个在汽车行业中应用大数据的案例,旨在探讨大数据对汽车行业的积极影响和未来发展趋势。

1. 智能驾驶与车辆安全智能驾驶是汽车行业中的一个重要发展方向,而大数据在智能驾驶中的应用起到了关键作用。

通过收集车辆传感器产生的大量数据,如雷达、摄像头、激光雷达等,结合人工智能和深度学习技术,可以实现车辆的自主感知、决策和控制。

通过分析和处理这些大数据,智能驾驶系统可以更加准确地感知周围环境、预测道路状况,并做出及时的反应,从而提高车辆的安全性和驾乘舒适性。

2. 数据驱动的产品设计与改进在汽车设计和制造过程中,大数据的应用也发挥了重要作用。

通过收集和分析车辆使用数据,生产厂商可以了解消费者的使用习惯、行驶偏好和需求,从而针对不同人群和市场开发适应性更强的产品。

例如,通过分析大量用户使用数据,厂商可以了解到某一车型在哪些方面存在缺陷或改进空间,并针对性地进行产品改进。

3. 智慧交通管理和交通预测大数据在智慧交通领域的应用也越发凸显。

通过收集和分析车辆位置、速度、行驶轨迹等数据,智慧交通系统可以实时监测道路情况、交通流量和路况信息,从而提供准确的交通导航和路线规划,帮助驾乘人员更快捷、高效地抵达目的地。

同时,基于大数据的交通预测算法可以提前预测交通拥堵状况,为城市交通管理者提供科学决策依据,优化交通流动,减少拥堵情况的发生。

4. 智能售后服务与用户体验优化大数据还可以在汽车售后服务和用户体验方面发挥作用。

通过分析车辆的使用情况、维修记录以及用户的反馈数据,汽车服务提供商可以快速识别车辆故障或问题,并提供个性化、精准的售后服务。

同时,通过数据分析还可以提前预测零部件的寿命和维修周期,为用户提供更加贴心的服务,优化用户体验。

总之,大数据在汽车行业中的应用案例举不胜举,涵盖了智能驾驶、产品设计与改进、智慧交通管理和用户服务等多个领域。

大数据分析在汽车行业中的应用案例

大数据分析在汽车行业中的应用案例

大数据分析在汽车行业中的应用案例随着科技的快速发展和互联网的普及,大数据分析在各行各业中发挥着越来越重要的作用。

汽车行业作为一个重要的制造业,也逐渐意识到大数据分析的价值,并开始在自身的业务中广泛应用。

本文将从生产、销售和售后服务三个方面来介绍大数据分析在汽车行业中的应用案例。

生产领域:在汽车生产过程中,大数据分析可以帮助汽车制造商优化生产流程,提高生产效率和质量。

通过分析各个生产环节的数据,汽车制造商可以识别潜在的生产瓶颈,并采取相应的措施加以改进。

例如,根据大数据分析的结果,制造商可以调整生产线上各个工序之间的协调关系,减少生产时间和成本。

此外,大数据分析还可以帮助制造商预测消费者需求,根据市场趋势和消费者反馈,调整生产计划,提早布局,更好地满足市场需求。

销售领域:大数据分析在汽车销售领域的应用主要体现在市场调研、客户分析和销售预测方面。

通过对市场和消费者的数据进行分析,汽车销售商可以更好地了解不同地区和不同消费群体的需求,制定相应的营销策略,提高销售效益。

例如,根据大数据分析的结果,销售商可以确定特定地区的消费者偏好和购车行为,进而开展有针对性的广告宣传和销售活动,提高销售转化率。

此外,大数据分析还可以帮助销售商预测销售趋势和市场走向,提前做好市场布局和产品供应,以应对市场变化。

售后服务领域:大数据分析在汽车售后服务领域的应用可以帮助提供更加精准和个性化的服务。

通过对车辆运行数据的分析,售后服务提供商可以实时监测车辆的状态和故障信息,提前预警维修需求,并及时做出相应的维修安排。

同时,大数据分析还可以帮助售后服务提供商了解车主的使用习惯和行为特征,根据不同车主的需求,提供量身定制的售后服务方案,提升顾客满意度和忠诚度。

此外,通过对售后服务数据的分析,售后服务提供商还可以发现潜在的产品质量问题,并提供有效的解决方案,提高产品质量和售后服务质量。

总结:大数据分析在汽车行业中的应用案例可以帮助企业在生产、销售和售后服务等方面实现效率和效益的提升。

大数据分析在汽车行业的应用案例

大数据分析在汽车行业的应用案例

大数据分析在汽车行业的应用案例随着科技的不断进步,大数据分析在各行各业中发挥着重要作用。

在汽车行业,大数据分析也逐渐成为提升竞争力和发展创新的关键因素。

本文将介绍几个关于大数据分析在汽车行业应用的案例。

案例一:智能驾驶技术随着自动驾驶技术的发展,汽车制造商利用大数据分析为智能驾驶提供了强大的支持。

通过收集车辆传感器和相机数据,大数据分析可以实时监控车辆状态、道路状况以及周围环境。

基于这些数据,汽车可以做出更准确的决策,避免潜在的危险和事故。

案例二:用户行为分析大数据分析在汽车行业中被广泛应用于用户行为分析。

汽车制造商和销售商可以通过收集和分析顾客的购车偏好、用车习惯和行驶数据,了解用户需求并根据市场需求进行产品改进和市场定位。

此外,大数据分析还可以提供个性化的推荐和购车建议,从而提高用户满意度和购车体验。

案例三:供应链管理优化在汽车制造过程中,供应链管理是关键的一环。

大数据分析可以帮助汽车制造商优化供应链,提高生产效率和减少成本。

通过收集和分析供应链中的数据,制造商可以实时监测原材料的需求和供应情况,及时做出调整,避免库存积压和生产延误,从而提高整体供应链的效率和可靠性。

案例四:售后服务改进大数据分析对于汽车售后服务的改进也起到了重要作用。

通过收集和分析车辆的使用数据和维修记录,汽车制造商和售后服务提供商可以提前发现和解决潜在的故障问题。

此外,大数据分析还可以实时监测车辆的状况,提供个性化的保养建议和维修服务,从而提高用户的满意度和忠诚度。

结语大数据分析在汽车行业中有着广泛的应用,从智能驾驶技术到用户行为分析,再到供应链管理和售后服务改进,都展现了其巨大的潜力和优势。

随着技术的不断演进和数据的不断积累,大数据分析在汽车行业的应用将继续深入发展,并为行业创新和发展带来更多的机会和挑战。

大数据在汽车行业的应用案例

大数据在汽车行业的应用案例

大数据在汽车行业的应用案例大数据在汽车行业的应用案例:1. 驾驶行为分析:通过对车辆的大数据进行收集和分析,可以了解驾驶员的行为习惯,如加速、刹车、转向等。

这些数据可以用于评估驾驶员的安全性能,并为驾驶员提供个性化的驾驶建议。

2. 故障预测和维修优化:通过对车辆传感器和故障诊断系统产生的大数据进行分析,可以预测车辆的故障和维修需求。

这可以帮助汽车制造商和维修服务提供商优化维修计划,减少车辆故障对用户的影响。

3. 车辆安全监控:利用车辆传感器和摄像头等设备产生的数据,可以实时监控车辆的行驶状态,如车速、转向角度、车道偏离等。

这可以帮助驾驶员和车辆管理者及时发现潜在的安全问题,并采取相应的措施。

4. 交通拥堵预测和优化:通过分析车辆的实时位置数据和交通流量数据,可以预测道路的交通拥堵情况,并提供优化的交通导航方案。

这可以减少驾驶员的通勤时间和燃料消耗,提高交通效率。

5. 车辆定位和防盗:利用车辆的定位系统和数据分析技术,可以实时追踪车辆的位置,并在车辆被盗时提供警报和追踪功能。

这可以提高车辆的安全性,减少车辆的损失。

6. 车辆健康监测:通过对车辆传感器和车辆状态数据进行分析,可以监测车辆的健康状况,如发动机的工作状态、车身结构的损伤等。

这可以提前发现潜在的故障和问题,并采取相应的维修措施,减少车辆故障的发生。

7. 驾驶员行为评估:通过对驾驶员的驾驶行为数据进行分析,可以评估驾驶员的驾驶能力和安全性。

这可以用于驾驶员的培训和评估,提高驾驶员的安全意识和驾驶技能。

8. 智能驾驶:大数据在智能驾驶领域的应用非常广泛,包括自动驾驶、自适应巡航控制、车道保持辅助等。

通过对车辆传感器和其他车辆数据的实时分析,可以实现车辆的自主驾驶和智能交通系统的建设。

9. 电动车充电优化:通过分析电动车的充电需求和充电设备的使用情况,可以优化电动车充电站点的布局和充电策略,提高充电效率和用户满意度。

10. 车辆保险定价:通过对车辆的行驶数据和驾驶员的驾驶行为进行分析,可以为车辆保险公司提供更准确的定价策略。

大数据在汽车行业的应用案例

大数据在汽车行业的应用案例

大数据在汽车行业的应用案例随着科技的不断进步和大数据技术的广泛应用,汽车行业也开始充分利用大数据分析来提升效率、改善用户体验,并推动行业的创新发展。

以下是几个大数据在汽车行业应用的案例。

一、智能驾驶和无人驾驶技术大数据在智能驾驶和无人驾驶技术方面发挥着关键作用。

通过收集车辆传感器和外部环境数据,车辆可以实时分析路况、交通状况和行车习惯等信息,从而做出相应的决策。

例如,谷歌通过收集全球范围内的汽车数据,帮助自动驾驶汽车学习和适应各种驾驶场景,提高安全性和驾驶效率。

二、预测性维护和故障预警大数据分析技术可以帮助汽车制造商和维修商进行预测性维护和故障预警。

通过监测和分析车辆传感器数据、车载系统数据和实时路况等信息,可以预测车辆部件的寿命和故障风险,并提前采取相应的维护措施。

例如,特斯拉使用大数据分析来监控电池寿命和车辆性能,提供更准确的维护建议和优化方案。

三、智能导航和交通优化利用大数据分析技术,汽车导航系统可以实时获取交通流量、道路条件和车辆位置等信息,为驾驶者提供最佳的路线规划和交通优化建议。

例如,百度地图通过分析海量用户数据,可以实时预测交通拥堵情况,并向驾驶者提供更快捷的路线选择,减少交通拥堵时间和燃料消耗。

四、车辆保险和风险评估大数据分析对车辆保险和风险评估也起到了重要作用。

通过分析车辆的驾驶行为、路况、车辆状况和历史事故数据等信息,保险公司可以更准确地评估每个驾驶者的风险水平,定制个性化的保险方案,并提供更合理的保费计算。

相比传统的统计分析方法,大数据分析可以提供更全面、精确的风险评估和保险定价。

五、个性化用户体验和智能服务大数据分析技术可以帮助汽车制造商和销售商了解用户习惯、兴趣和需求,从而提供更个性化的产品和服务。

通过分析用户的行为数据、社交媒体数据和购买记录等信息,汽车公司可以推荐最适合用户的汽车配置和功能,提供智能化的驾驶辅助和娱乐系统,并实现与其他智能设备的连接和互操作。

综上所述,大数据在汽车行业的应用案例丰富多样,从智能驾驶到用户体验,从维护保养到保险评估,大数据分析技术为汽车行业带来了巨大的变革和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车行业大数据应用案例在未来,各个产业都将成为数据产业,汽车也将如此。

目前,互联网所掌握的消费者喜好、生活习惯等数据信息如果应用到汽车行业,将使汽车产品更加智能,大数据的应用甚至能够影响到汽车产业的生产制造,帮助汽车企业生产出更加符合消费者需求的产品。

凯文凯利认为:“在未来,各个产业都将成为数据产业,汽车也将如此。

目前,互联网所掌握的消费者喜好、生活习惯等数据信息如果应用到汽车行业,将使汽车产品更加智能,大数据的应用甚至能够影响到汽车产业的生产制造,帮助汽车企业生产出更加符合消费者需求的产品。

”在贵阳大数据论坛上,马凯副总理提出:大数据是国家战略资源,部分公共数据资源也将逐步开放,让企业用互联网+更好的服务社会。

基于汽车行业超长的产业链,从不同的层面看,汽车大数据必然是多维度的,有不同的理解和看法,我们试从各行业角度试加分析:先看一组数据:中国有3亿驾驶员,1.5亿车主,100多个品牌6000多款车,24000多家4S店,44万家维修厂,600万家洗车行......主机厂:汽车大数据的顶层和基础主机厂是汽车的制造者,他们领先的设计、技术及制造能力和知识产权,使其在整个汽车生态链中起绝对主导作用——所有的零部件设计及软件系统,都由主机厂主导,所有衍伸产品都以主机厂的产品设计规格为标准(适配软件、模具、型号、规格尺寸乃至汽车改装和汽车电子产品以及汽车用品等等)。

同时,主机厂有完善的零部件配套、物流配送、销售体系,所有该体系内的企业都要按照其标准化模式运行;原始汽车维修技术资料以及CRM和ERP 系统:4S店的后台管理系统由主机厂提供,能够调取车主的姓名、住址、行驶证数据及通联、保险、维修保养记录(车主脱离4S店体系之前)。

主机厂零部件数据包括包括字段:配件名称、配件代码、品牌、型号、年代、替代配件、替代关系、图示、价格等等。

机动车整车信息及价格数据:车型代码、车型名称、车型分类、排量、核定载客、核定载质量、整备质量、厂商名称、品牌名称、车系名称、价格、上市年份、备注等全面的车辆信息。

大数据在主机厂的角色定位是在生产制造领域提升生产效率,降低成本。

在客户需求层面,打造未来C2B模式的电商平台,4S店需要做针对性更强的精准营销:即利用现代计算机技术搜集、处理、分析企业的客户资料,包括现有客户情况、产品购买和使用情况分布(客户购买时间、方式、金额,以及维修保养频率和花费等),还通过对数据库信息的分类、筛选、匹配和运算等技术手段,实现销售线索挖掘、客户价值细分和客户管理等功能,寻找销售线索、找到最有价值的客户群体,通过个性化营销策略,配合直复营销的手段,在降低大众传播营销成本的同时,与客户建立稳定、长期的关系,从而达到企业商业目标的实现以及企业利润的增长。

作为技术和资本密集型的生产性企业,传统的零部件企业成功的模式,是产品质量达到主机厂要求,成功进入主机厂的配套体系。

例如对车载电子企业来说,就是车机或云后视镜进入前装系统。

零部件配套企业在生产的同时也得到了主机厂的数据支持。

由于历史原因和主机厂的垄断,相当多的配件厂只为主机厂配套,甚至没有销售部门。

《关于征求促进汽车维修业转型升级提升服务质量的指导意见》明确规定,鼓励原厂配件生产企业向汽车售后市场提供原厂配件和具有自主商标的独立售后配件,允许4S店向非授权维修企业或终端用户转售原厂配件。

对零部件厂的而言,借助关键数据的取得,建立独立的售后体系以及完善的销售网络,自建或与第三方电商平台合作打通汽车零部件的O2O销售环节正当其时。

配件商:链接配件的生产者和使用者作为最终与维修厂直接打交道的配件商来说,其数据包括两个范畴,私有云—电脑中的的进销存和销售渠道或平台。

对于动辄数万种库存的配件商来讲,汽配城开店+在线QQ模式的传统营销模式必然被取代,移动互联网时代,需要结盟或连锁,依靠第三方电商平台或建立完善的数据检索平台,将私有云转化为能被维修厂快速检索的公有云平台是必须经历的过程和唯一途径。

配件电商:零部件和价格数据库(非常有前景的大数据)需要能提供包含6000余款车型、千万条配件和价格数据,特别是常用车型易损件,需要全面覆盖。

配件价格数据库需要要具备以下特点:(一)配件数据量大将庞杂的汽车配件数据进行标准化管理,将配件名称、编号、图片进行对照,涵盖进口、合资、国产全部品牌能够满足维修厂日常查询需求。

(二)专业性强1、配件信息:配件分类、配件属性、配件图,与原厂匹配和同步。

2、配件价格体系:正厂参考价、4S店参考价、同质配件价。

3、配件价格时效强:配件价格实时维护,与市场同步,能够做到有价有货。

4、覆盖面广:系统使用者包括配件商、修理厂,需要在双方建立简单易查询和交易的逻辑关系平台。

5、易用性强:提供了定型查询、简易查询、易损件查询、模糊查询等多种查询方式。

智能引擎:智能标准化引擎需要有智能化自动名称匹配。

可将零配件的各种名称进行识别及标准化处理:通过多维度智能化处理手段,解决配件查询的复杂性和瓶颈。

提高数据管理效率和准确性。

商业价值的实现:建立完善的数据库,仅仅是服务汽车后市场O2O的基础,而最终用配件编码直接关联到当地的配件商且能实现在线下单、支付乃至配送并且有质量保证和追溯体系才是汽配大数据商业价值转化的终极核心。

维修厂作为直接与车以及车主打交道的维修厂包括4S店,能够记录车辆的维修、保养情况,行驶里程,其数据对未来进入二手车交易时,起精准评估的作用。

除配件查询,维修厂还需要使用汽车维修技术数据以及工时数据库。

数据库包含大部分常见车型的标准工时、工时单价、拆装逻辑及总成包含关系。

支持实际使用过程中,各类影响因素的动态参数较正。

能够准确计算事故维修中的拆装、钣金、喷漆等主要工时项目金额。

除了使用第三方数据,维修厂在汽车维修中,也记录了大量数据:以高端豪华车维修的华胜和中鑫之宝为例,通过大量维修数据,可以精准的做出某款车型的养护成本及使用可靠性的数据分析报告。

保险公司希望通过大数据分析了解车主的车价、年龄、性别、车型、住址、驾龄、历史赔付记录、历史违章记录、个人消费信用、安全气囊等保护装置和防盗装置等多个维度,他们甚至愿意免费送OBD给车主,目的是读取车辆行驶轨迹、行驶里程、驾驶习惯、油耗、速度,,以便对车险进行评估。

车险经营将从保额定价过渡到车型定价,对保险业而言,是一个很大的挑战。

甚至驾驶员的驾驶习惯和性格,都对保险定价有很大的影响,“零整比”的研究报告,告诉汽车消费者,不同品牌车辆的零整比最高达到了12.7倍,不同车型,不同的年代同样都数据支持对车险进行精算,再比如事故查勘时,也需要有原厂配件的数据做一个价格比对进行理赔估算,保险的行业内部数据都相对有限,所以,需要更多利用外部数据。

车联网车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。

它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。

第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。

第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。

第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。

汽车联网后产生的大量数据,最终数据的使用和分析者:保险公司(用于风险和价格评估)主机厂(用于智能驾驶)政府(用于智慧交通乃至智慧城市的管理)附上中汽协信息委员会的一份文件,目前商用车已经有了车联网的强制要求,乘用车方面,中汽协信息委目前在联合电信运营商、保险公司、主机厂和车联网企业制定行业标准,将北斗应用推广到汽车前装市场。

重点开发高清视频。

电子后视,卫星导航,卫星通讯广播,安全引导,无线宽带,多屏互联,智能语音和集成ETC等功能。

咨询公司(舆情分析)对某一时段互联网搜索量进行分析,确定市场人气、关注车型、地域关注度等信息,同时,通过对论坛、微博、微信等社交媒体的分析,判断出这款汽车在市场上的受欢迎程度。

运用工具建模,做舆情分析和用户画像,提供给4S店导流以及主机厂做评估参考,同时兼具营销的功能,例如销售线索挖掘,帮助企业获得新客户:通过客户数据分析,找出客户的共同的特征,再利用这些特征到潜在客户数据库里去筛选出可能成为目标客户的名单,作为营销人员推销的对象。

营销人员就可以针对这些名单发送定向窄众广告资料或进行营销活动,既可以降低成本,又提高了营销的成功率。

最后提到后市场的O2O及洗车和上门养护企业等等。

汽车后市场的O2O互联网公司,经过积累,有了相当的底层数据,但不是数据公司,其商业模式仍是通过各种方式集客和导流及线下服务,从增加车主黏性出发增加服务性收入。

政府是所有的大数据最顶层的记录者和管理者:1)公安部交管局交管局有3亿驾驶员,1.5亿车主数据,出行轨迹,违章记录,每月车辆上牌数据等等,例如做数据分析,可以分析出每月的200多万台新上牌车的概况:国产车、进口车乃至二手车,车辆品牌、型号、颜色、车主年龄、性别、地域分布,由此可以对车主与车型的关联情况进行精准画像:各品牌车主的地域分布和年龄、空间地理位置、消费习惯,二手车或进口车的交易量和品牌型号分布等等多个维度。

2)海关海关的进出口数据包括了汽车及零部件的进出口国别、数量、型号、价格。

3)税务总局汽车全产业链价格信息和成交记录4)高速公路管理局车辆的出行记录基于汽车的大数据应用场景很多,未来,汽车联网后的从出厂到报废的全生命周期,都将时时产生和上传数据,车辆的:空间位置、速度、时间、影像等等,总而言之,在不同的维度,从汽车的生产销售、维修保养、金融服务需要大数据支持,未来的智能交通、智慧城市管理更离不开大数据的支持,随着互联网+战略的推进,一个个信息孤岛的联通,相信未来,大数据将成为更多企业的营销利器、在带来效率提高的同时,也带给普通百姓更多的出行便利!移动互联网,把我们从IT时代带到DT时代,汽车作为互联网时代的第四块屏幕,未来改变的将不仅是汽车行业的商业模式,还将改变很多消费类行业的营销渠道。

相关文档
最新文档