煤化工空分系统介绍共26页文档

合集下载

空分技术要点及操作详解

空分技术要点及操作详解

空分技术要点与操作详解空分作为化工生产中重要的一个环节,其产生的工业气体用途广泛,作用重大。

煤化工空分装置基本术语1、空气存在于地球表面的气体混合物。

接近于地面的空气在标准状态下的密度为1.29kg/m3。

主要成分是氧、氮和氩;以体积含量计,氧约占20.95%,氮约占78.09%,氩约占0.932%,此外还含有微量的氢及氖、氦、氪、氙等稀有气体。

根据地区条件不同,还含有不定量的二氧化碳、水蒸气及乙炔等碳氢化合物。

2、加工空气指用来分离气体和制取液体的原料空气。

3、氧气分子式O2,分子量31.9988(按1979年国际原子量),无色、无臭的气体。

在标准状态下的密度为 1.429kg/m3,熔点为54.75K,在101.325kPa压力下的沸点为90.17K。

化学性质极活泼,是强氧化剂。

不能燃烧,能助燃。

4、工业用工艺氧用空气分离设备制取的工业用工艺氧,其含氧量一般小于98%。

(体积比)5、工业用气态氧用空气分离设备制取的工业用气态氧,其氧含量大于或等于99.2%。

(体积比)6、高纯氧用空气分离设备制取的氧气,其氧含量大于或等于99.995%(体积比)。

7、氮气分子式N2,分子量28.0134(按1979年国际原子量),无色、无臭、的惰性气体。

在标准状态下的密度为 1.251kg/m3,熔点为63.29K,在101.325kPa压力下的沸点为77.35K。

化学性质不活泼,不能燃烧,是一种窒息性气体。

8、工业用气态氮用空气分离设备制取的工业用气态氮,其氮含量大于或等于98.5%(体积比)。

9、纯氮用空气分离设备制取的氮气,其氮含量大于或等于99.995%(体积比)。

10、高纯氮用空气分离设备制取的氮气,其氮含量(体积比)大于或等于99.9995%。

11、液氧(液态氧)液体状态的氧,为天蓝色、透明、易流动的液体。

在101.325kPa 压力下的沸点为90.17K,密度为1140kg/m3。

可采用低温法空气分离设备制取液态或用气态氧液化制取。

煤化工行业配套空分的流程特点

煤化工行业配套空分的流程特点

煤化工行业配套空分的流程特点谭芳【摘要】介绍了在煤化工行业常压煤气化技术和加压煤气化技术不同的工艺特点下空分氧气产品和氮气产品的需求和实现方法,并分别介绍了相应空分装置流程的各自特点,为具体选择高效节能的煤化工配套空分装置流程提供了参考.【期刊名称】《低温与特气》【年(卷),期】2013(031)003【总页数】4页(P5-8)【关键词】煤化工;煤气化;空分装置;流程;特点【作者】谭芳【作者单位】杭州杭氧股份有限公司,浙江杭州310014【正文语种】中文【中图分类】TH49中国“缺油少气相对富煤”的现状决定了发展煤化工行业在我国具有举足轻重的地位。

煤气化是清洁利用煤炭资源的重要途径和手段。

配套的空分装置提供作为气化剂的氧气、合成原料气的氧气和氮气及输送气。

不同的煤气化工艺因其工作温度、工作压力和最终产品的差异,决定了作为空分装置的氧气、氮气的压力和产量等要求的不同,也决定了煤化工行业中空分装置的流程选择。

1 常压煤气化技术空分装置流程特点常压固定层无烟煤(或焦炭)富氧连续气化技术以富氧空气为气化剂,连续气化无烟煤或焦炭,是对落后的常压固定层间歇式气化技术的改进。

恩德粉煤气化技术属流化床气化炉,气化炉内压力控制在14 kPa左右,为常压下操作,适用于气化褐煤、长焰煤、不粘煤和弱粘煤,以替代无烟煤和焦炭等高成本的原料。

一般使用氧含量大于50% 的富氧空气或氧气。

富氧空气一般是由空气鼓风机来的空气与空分装置生产的纯度为99% 以上的氧气混合而得到。

上述两种煤气化技术的气化炉压力都不高,一般不高于25 kPa,考虑到管网的压力损失,要求出空分装置的氧气压力在30~80 kPa左右,可以选择外压缩空分流程或自增压空分流程。

早先的外压缩空分流程通过提高空压机的排压,使空分装置的氧气压力达到要求,但此流程能耗高。

后改为不直接提高空压机排压,通过生产压力为12~15 kPa左右的低压氧气,经氧压机增压至所需压力进入用户管网,但需增加氧压机的投资成本和运行维护成本。

空分气化工艺及设备简要介绍2003资料

空分气化工艺及设备简要介绍2003资料

膨胀机组:从空压机来的一定压力的气体在膨胀机中进 行膨胀做功,为气体分离提供冷量。
低温液体泵:包括液氧泵、液氮泵等。
板翅式换热器:进行流体冷热交换。材质为铝制,翅片 间采用钎焊焊接。
精馏塔:分上塔、主冷、下塔三部分组成。
气化炉:目前常用的水煤浆气化炉(德士古气化炉、 华理四喷嘴等)和干粉气化炉(航天气化炉、壳牌 气化炉等),16万吨煤制油示范厂采用的是德士古 气化炉,伊泰新疆能源有限公司采用的12台航天炉 +3台德士古气化炉。德士古气化炉燃烧室内壁内
工艺烧嘴 : 是水煤浆气化炉的核心设备 ,其功能有二:一是雾化煤浆,二是与炉体匹 配形成适宜的流场。
煤浆及氧气通过工艺烧嘴进入气化炉反应 室。通过专用的烧嘴冷却水系统保护气化炉燃 烧室中高温环境下的工艺烧嘴。一般的工艺烧 嘴为三流道预混式烧嘴,氧气走中心和外环隙 ,煤浆走中间Байду номын сангаас隙。烧嘴易于磨损。
破渣机位于气化炉底部与锁斗之间,用来破碎炉 中产生的大块炉渣,以保证正常固体粒度的炉渣 能顺利进入锁斗。是由壳体、动力装置、油马达, 以及连接在马达旋转轴上的破碎刀片组成。
气化:原料煤通过棒磨机,制成合格的料浆后,通过高压煤浆 泵加压送入气化炉,与氧气在气化炉反应室内发生气化反应, 生成以CO、H2和CO2为主要成分的粗煤气。
变换:CO与H2O在变换触媒、高温等作用下反应生成CO2和 H2,也就是将CO变换成CO2,从水出提出H2。
低温甲醇洗:利用低温甲醇在低温下对CO2和H2S等酸性气良 好的吸收能力,对CO2和H2S等酸性气进行脱除,使变换气得 到净化,送到F-T合成单元。
衬耐火砖,顶置单烧嘴。航天炉燃烧室内衬水冷壁 盘管,盘管外表面有耐火浇注料,保护盘管,水冷 壁吸收热量后副产蒸汽。气化炉上部是燃烧室,下 部是激冷室。德士古与航天炉都采用激冷流程,反 应产生的粗煤气经过激冷环、下降管在水中洗涤, 进行渣气分离,气体洗涤后进行合成气洗涤塔。渣 进入 破渣机进行破碎后排出气化炉。

煤化工空气分离及其工艺流程分析

煤化工空气分离及其工艺流程分析

煤化工空气分离及其工艺流程分析发布时间:2023-01-04T03:02:19.886Z 来源:《新型城镇化》2022年23期作者:毕翠玉[导读] 空气分离是指利用一定的物理技术,根据气体的物理性质对不同的气体进行分离,如氧、氮等常见气体,以及氦、氩等稀有气体进行区分。

山东华鲁恒升化工股份有限公司山东省 253000摘要:近年来,煤化工行业发展迅速,呈上升趋势,煤化工生产规模也在不断扩大,对各种生产设施和设备提出了更高的要求。

特别是空分设备的选型更注重工艺流程的合理性和安全性。

确定合适的空分装置工艺流程是煤化工企业生产活动中的关键问题之一。

为了保证空分装置的安全高效运行,煤化工企业必须选择正确的工艺流程,控制好安全运行的关键点。

关键词:煤化工;空气分离;工艺流程1煤化工空气分离的概念及其运行意义空气分离是指利用一定的物理技术,根据气体的物理性质对不同的气体进行分离,如氧、氮等常见气体,以及氦、氩等稀有气体进行区分。

空分设备是煤化工行业的重要设备。

随着煤化工的发展,对空分设备的要求越来越高。

煤化工空分装置的运行可以大大提高煤的转化率,提高煤化工企业的生产效率和生产质量,保证其生产目标的实现,为煤化工企业创造更多的经济效益,促进煤化工企业的可持续发展。

空分设备的运行强调安全,只有安全运行才能保证其运行的稳定,才能保证生产目标的实现。

选择正确的工艺流程,掌握合理的工艺流程选择是空分设备安全运行的前提之一。

2 煤化工空气分离工艺概述2.1低温加工低温空气分离理论是生产气态或液态氧气、氮气和氩气最有效、最经济的专业技术。

空分装置(ASU)采用传统多塔低温精馏塔的全流程,从压缩空气中获得高效、纯度高的氧气。

低温技术还可以以较低的增量成本生产高纯度的N2,作为有益的副产品流。

此外,还可以将液氧、液氧、液氮导入产品石英砂岩中,存储产品备份数据或副产品市场销售数据,增加固定资产和能源工程成本。

为了根据规模效应降低产品成本,再次对如何提高每列设备的生产效率进行科学研究。

煤化工空分系统介绍

煤化工空分系统介绍


为了保证连续供气,需要两个以上的吸附塔 交替工作。再生的方法可采用加热提高温度 的方法(TSA),或降低压力的方法(P SA)。这种方法流程简单,操作方便,运 行成本较低,但不能获得高纯度的产品,氧 纯度通常在93% 左右,适合配套于氧气用量 不大,产品纯度要求不高的装置。

3 、膜分离法。利用有机物聚合膜的渗透选择性, 当空气通过薄膜或中空纤维膜时,氧分子穿透薄 膜的速度约为氮分子的4-5倍,从而实现氧氮 的分离。这种方法装置简单,操作方便,启动快, 投资少,氮富氧浓度一般适宜在35% 左右,规模 也只适宜于小型装置,用于富氧燃烧和医疗保健 等方面。
3.氮气广泛用于冶金、电子与石油工业、化工、食品、 医疗、高科技行业,在本项目主要作为保护气、置 换气、汽提气,用在全厂各工段。 4、氩气用于金属冶炼、机械、电子、照明等行业,在 本项目中没有使用。 5、空气分离,简称空分。 空分作为公用工程的一部分,主要任务是为气化工 段提供纯氧。并为全厂各个工段提供符合标准的仪 表空气、工艺空气和不同压力规格的氮气。副产品 为液氧、液氮、液氩,可作为产品出售,提高投资 收益。生产过程中排放的冷凝液送到脱盐水站,回 收利用。
要将空气液化,就需要将空气冷却到 -173 ℃以下,这种制取高纯度产品的方法 叫做深度冷冻法,而利用沸点差将液空分离的 过程就是精馏过程。由于提取产品纯度高,装 置可以大型化,普遍应用于空分行业。
2 、变压吸附法。利用分子筛对不同的分子具有选 择吸附的特点,有的分子筛对氮具有较强的吸附性 能,让氧分子通过,因而获得纯度较高的氧气;有 的分子筛对氧据有较强的吸附性能,让氮分子通过, 因而获得纯度较高的氮气。由于吸附剂的吸附量有 限,当吸附某种分子达到饱和时,就没有继续吸附 的能力,需要将被吸附的物质赶掉,才能恢复吸附 能力,这一过程叫再生。

煤化工空分设备流程特点及选择

煤化工空分设备流程特点及选择

煤化工空分设备流程特点及选择发表时间:2018-09-18T15:26:10.877Z 来源:《基层建设》2018年第25期作者:武洪智[导读] 摘要:空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。

大唐呼伦贝尔化肥有限公司内蒙古呼伦贝尔市 021000摘要:空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。

本文从煤气化技术对氧气、氮气产品规格的要求,氧气、氮气的实现形式等方面,介绍煤气化工空分设备的流程特点及选择。

关键词:空分设备;煤化工;流程特点;流程选择一‘煤化工行业发展意义及煤气化技术1.1有序发展煤炭产业是国家能源发展战略的一个重要方面中国是煤炭主导型化石能源资源相对丰富的国家,按照《BP世界能源统计2009》的数据,我国煤炭储量占世界总储量的13.9%,居世界第二,石油和天然气储量分别占世界总储量的1.2%和1.3%,我国的能源资源呈现“多煤、少油、少气”的局面。

在这种形势下,发挥中国煤炭资源优势,采用先进可靠技术,有序发展煤炭和煤炭相关的洁净煤、燃煤发电、煤化工等煤基能源产业,适当缓解中国石油短缺的矛盾,就成为“节约优先、立足国内、多元发展、依靠科技、保护环境、互利合作,构筑稳定、经济、清洁、安全能源供应体系,以能源的可持续发展支持经济社会的可持续发展”国家能源发展战略的一个重要方面。

1.2煤化工产业发展现状传统煤化工产业以生产基础原料为基本特征。

主要有“煤—焦炭、煤—电石—PVC、煤—煤气化—合成氨—尿素”三条产业路线,主要生产焦炭、电石、PVC和合成氨等产品,为钢铁、农业等行业提供原材料。

现代煤化工以洁净、高效煤气化替代石油生产附加值较高的石化产品和燃料为基本特征。

现代煤化工基本上以低端的烟煤、褐煤为原材料,主要包括煤制气、煤制烯烃、煤制油、煤制醇醚和煤制乙二醇,大幅提升煤炭经济价值,是技术、资金、人才密集型产业。

现代煤化工公用工程基础知识,空分装置说明

现代煤化工公用工程基础知识,空分装置说明

3 空分装置3.1 工艺设计基础3.1.1装置生产能力空分装置制氧能力:30000Nm3/h3.1.2 装置组成空分装置由如下4工序组成:(1)空气压缩工序;(2)空气净化工序;(3)空气分离工序;(4)液氧液氮液氩贮存工序。

空分装置、工序、主项编码如下表。

3.1.3 原料、产品和催化剂等规格(1)原料本装置原料为空气。

原料空气质量规格(杂质含量)如下表:(2)产品规格(3)化学品规格3.1.4 原料、催化剂和化学品消耗量3.1.5 公用工程物料规格及消耗3.2 工艺说明3.2.1 生产方法及工艺特点空分装置以空气为原料,通过离心式空气压缩、分子筛空气净化、两级空气精馏的方法将空气分离为氧气和氮气,供煤气化装置、备煤装置及公用工程系统使用。

空分装置副产的仪表空气供全厂装置正常生产时使用,副产的液氧液氮液氩外售。

空分装置采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵内压缩”工艺技术,此技术是成熟的工艺技术,有以下主要特点:●用高效的两级精馏制取高纯度的氧气和氮气;●用增压透平膨胀机,利用气体膨胀的输出功直接带动增压风机以节省能耗,提高制冷量;●热交换器采用高效的铝板翅式换热器,使结构紧凑,传热效率高;●采用分子筛净化空气,具有流程简单、操作简便、运行稳定、安全可靠等优点,大大延长装置的连续运转周期;●采用液氧泵内增压流程,使空分装置操作运行更加安全;采用DCS控制,使空分装置始终在最佳经济点运行。

3.2.2 工艺流程简述从大气吸入的空气经空气过滤器(S01101)滤去灰尘杂质后,入空气压缩机(K01101)加压至0.5MPa(G),然后进入空气冷却塔(C01201)。

空气在空冷塔下段,与循环冷却水逆流接触而降温。

然后通过上段与经冷水机组冷却的冷冻水逆流接触,降温后入分子筛吸附器(C02103A/B),清除空气中的水份、二氧化碳和碳氢化合物。

已净化的空气一部分作为仪表空气供全厂用户使用,剩余部分进入冷箱(Z01301)进行深冷分离。

空分工艺、设备基础知识(图文示例)

空分工艺、设备基础知识(图文示例)
52
空分工艺流程与设备
自洁式空气过滤器的功能: 空气中杂质与灰尘被带进透平压缩机,会引起工作伦
和叶片及导流器的磨损加剧,被带到冷却器中会造成 表面污染,导致传染系数下降,阻力增加。
53
空分工艺流程与设备
54
空分工艺流程与设备
自洁式过滤器特点 1、 过滤器阻力小(0.3~0.8kpa) 2、 适应性广,反吹耗气少(仅为 0.1~0.5m3/min) 3、 占地面积小,结构简单、防腐性能好、日常维护量小 4、 过滤效率高,平均过滤效率对 1um 粒子而言可达 99.5%以上。
33
空气分离理论基础
热力学基本定律 1、热力学第一定律 功和热量能相互转化。 理想绝热条件下,空分装置透平膨胀机对外做功等于
进、出口的焓差。 L0=i1-i2 L0: 对外做功 i1/i2:出口焓值/进口焓值
34
空气分离理论基础
热力学第二定律 热不可能自发的、不付代价的从一个物体传给另一个
16
空气分离理论基础
(2)空气中水分和二氧化碳的清除 加工空气中的水分和二氧化碳由于凝固点较高,在进
入空分装置低温设备后将会形成冰和干冰,堵塞低温 设备的通道,而影响空分装置的正常工作。为此需要 利用分子筛纯化器预先把空气中的水分和二氧化碳清 除掉。进入分子筛纯化器的空气温度约为8℃,出纯化 器的空气温度由于分子筛吸附而产生的吸附热约上升 到14℃左右。
空气及其组成气体的性质 空气是一种多组分混合气体,其主要组成是氧、氮、
氩、二氧化碳,还有微量的稀有气体、甲烷及其他碳 氢化合物等。此外,空气中还有少量而不定的水蒸气 及灰尘等。
O2
N2
Ne
Kr
He
Ar
28
空气分离理论基础
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
煤化工空分系统介绍
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
谢谢你的阅读
相关文档
最新文档