高考数学真题汇编直线与圆文(解析版)
2023年高考数学总复习历年真题题型归纳与模拟预测9-1直线与圆带讲解

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第9章 解析几何9.1 直线与圆从近三年高考情况来看,圆的标准方程的求法是命题的热点,求解时,常利用配方法把圆的一般方程转化为标准方程,并指出圆心坐标及半径;直线与圆的位置关系常结合其他知识点进行综合考查,求解时重点应用圆的几何性质,一般为选择题、填空题,难度中等,解题时应认真体会数形结合思想,培养充分利用圆的简单几何性质简化运算的能力.1.(2022•乙卷)过四点(0,0),(4,0),(﹣1,1),(4,2)中的三点的一个圆的方程为 x 2+y 2﹣4x ﹣6y =0(或x 2+y 2﹣4x ﹣2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x ﹣2y −165=0) . 【解答】解:设过点(0,0),(4,0),(﹣1,1)的圆的方程为x 2+y 2+Dx +Ey +F =0, 即{F =016+4D +F =02−D +E +F =0,解得F =0,D =﹣4,E =﹣6, 所以过点(0,0),(4,0),(﹣1,1)圆的方程为x 2+y 2﹣4x ﹣6y =0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为x 2+y 2﹣4x ﹣2y =0. 过点(0,0),(﹣1,1),(4,2)圆的方程为x 2+y 2−83x −143y =0. 过点(4,0),(﹣1,1),(4,2)圆的方程为x 2+y 2−165x ﹣2y −165=0.故答案为:x 2+y 2﹣4x ﹣6y =0(或x 2+y 2﹣4x ﹣2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x ﹣2y −165=0). 2.(2022•北京)若直线2x +y ﹣1=0是圆(x ﹣a )2+y 2=1的一条对称轴,则a =( ) A .12B .−12C .1D .﹣1【解答】解:圆(x ﹣a )2+y 2=1的圆心坐标为(a ,0), ∵直线2x +y ﹣1=0是圆(x ﹣a )2+y 2=1的一条对称轴,∴圆心在直线2x +y ﹣1=0上,可得2a +0﹣1=0,即a =12. 故选:A .3.(2022•甲卷)设点M 在直线2x +y ﹣1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为 (x ﹣1)2+(y +1)2=5 .【解答】解:由点M 在直线2x +y ﹣1=0上,可设M (a ,1﹣2a ),由于点(3,0)和(0,1)均在⊙M 上,∴圆的半径为√(a −3)2+(1−2a −0)2=√(a −0)2+(1−2a −1)2, 求得a =1,可得半径为√5,圆心M (1,﹣1), 故⊙M 的方程为(x ﹣1)2+(y +1)2=5, 故答案为:(x ﹣1)2+(y +1)2=5.4.(2022•新高考Ⅱ)设点A (﹣2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是 [13,32] .【解答】解:点A (﹣2,3),B (0,a ),k AB =a−32,所以直线AB 关于y =a 对称的直线的向量为:3−a2,所以对称直线方程为:y ﹣a =3−a2⋅x ,即:(3﹣a )x ﹣2y +2a =0, (x +3)2+(y +2)2=1的圆心(﹣3,﹣2),半径为1, 所以√4+(3−a)2≤1,得12a 2﹣22a +6≤0,解得a ∈[13,32].故答案为:[13,32].5.(2022•新高考Ⅰ)写出与圆x 2+y 2=1和(x ﹣3)2+(y ﹣4)2=16都相切的一条直线的方程 x =﹣1(填3x +4y ﹣5=0,7x ﹣24y ﹣25=0都正确) .【解答】解:圆x 2+y 2=1的圆心坐标为O (0,0),半径r 1=1, 圆(x ﹣3)2+(y ﹣4)2=16的圆心坐标为C (3,4),半径r 2=4, 如图:∵|OC |=r 1+r 2,∴两圆外切,由图可知,与两圆都相切的直线有三条. ∵k OC =43,∴l 1的斜率为−34,设直线l 1:y =−34x +b ,即3x +4y ﹣4b =0, 由|−4b|5=1,解得b =54(负值舍去),则l 1:3x +4y ﹣5=0;由图可知,l 2:x =﹣1;l 2与l 3关于直线y =43x 对称,联立{x =−1y =43x,解得l 2与l 3的一个交点为(﹣1,−43),在l 2上取一点(﹣1,0),该点关于y =43x 的对称点为(x 0,y 0),则{y 02=43⋅x 0−12y 0x 0+1=−34,解得对称点为(725,−2425). ∴k l 3=−2425+43725+1=724,则l 3:y =724(x +1)−43,即7x ﹣24y ﹣25=0.∴与圆x 2+y 2=1和(x ﹣3)2+(y ﹣4)2=16都相切的一条直线的方程为: x =﹣1(填3x +4y ﹣5=0,7x ﹣24y ﹣25=0都正确).故答案为:x =﹣1(填3x +4y ﹣5=0,7x ﹣24y ﹣25=0都正确).题型一.直线与方程1.(2020•新课标Ⅲ)点(0,﹣1)到直线y =k (x +1)距离的最大值为( ) A .1B .√2C .√3D .2【解答】解:方法一:因为点(0,﹣1)到直线y =k (x +1)距离d =√k +1=√k 2+2k+1k 2+1=√1+2kk 2+1;∵要求距离的最大值,故需k >0; ∵k 2+1≥2k ,当且仅当k =1时等号成立, 可得d ≤√1+2k2k =√2,当k =1时等号成立.方法二:由y =k (x +1)可知,直线y =k (x +1)过定点B (﹣1,0), 记A (0,﹣1),则点A (0,﹣1)到直线y =k (x +1)距离d ≤|AB |=√2. 故选:B .2.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x ﹣y ﹣3=0的距离为( )A .√55B .2√55C .3√55D .4√55【解答】解:由题意可得所求的圆在第一象限,设圆心为(a ,a ),则半径为a ,a >0. 故圆的方程为(x ﹣a )2+(y ﹣a )2=a 2,再把点(2,1)代入,求得a =5或1, 故要求的圆的方程为(x ﹣5)2+(y ﹣5)2=25或(x ﹣1)2+(y ﹣1)2=1. 故所求圆的圆心为(5,5)或(1,1); 故圆心到直线2x ﹣y ﹣3=0的距离d =|2×5−5−3|√2+1=2√55或d =|2×1−1−3|√2+1=2√55;故选:B .3.(2016•新课标Ⅱ)圆x 2+y 2﹣2x ﹣8y +13=0的圆心到直线ax +y ﹣1=0的距离为1,则a =( ) A .−43B .−34C .√3D .2【解答】解:圆x 2+y 2﹣2x ﹣8y +13=0的圆心坐标为:(1,4), 故圆心到直线ax +y ﹣1=0的距离d =√a +1=1,解得:a =−43, 故选:A .4.(2018•新课标Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A .[2,6]B .[4,8]C .[√2,3√2]D .[2√2,3√2]【解答】解:∵直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x =0,得y =﹣2,令y =0,得x =﹣2, ∴A (﹣2,0),B (0,﹣2),|AB |=√4+4=2√2,∵点P 在圆(x ﹣2)2+y 2=2上,∴设P (2+√2cosθ,√2sinθ), ∴点P 到直线x +y +2=0的距离:d =√2cosθ+√2sinθ+2|√2=|2sin(θ+π4)+4|√2,∵sin (θ+π4)∈[﹣1,1],∴d =|2sin(θ+π4)+4|√2∈[√2,3√2],∴△ABP 面积的取值范围是:[12×2√2×√2,12×2√2×3√2]=[2,6].故选:A .题型二.圆的方程1.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4B .5C .6D .7【解答】解:如图示:半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时,连结OB ,A 在OB 上且AB =1,此时距离最小, 由OB =5,得OA =4,即圆心到原点的距离的最小值是4, 故选:A .2.(2016•天津)已知圆C 的圆心在x 轴正半轴上,点M (0,√5)在圆C 上,且圆心到直线2x ﹣y =0的距离为4√55,则圆C 的方程为 (x ﹣2)2+y 2=9 . 【解答】解:由题意设圆的方程为(x ﹣a )2+y 2=r 2(a >0), 由点M (0,√5)在圆上,且圆心到直线2x ﹣y =0的距离为4√55, 得a 2+5=r 2√5=4√55,解得a =2,r =3.∴圆C 的方程为:(x ﹣2)2+y 2=9. 故答案为:(x ﹣2)2+y 2=9.3.(2019•北京)设抛物线y 2=4x 的焦点为F ,准线为l ,则以F 为圆心,且与l 相切的圆的方程为 (x ﹣1)2+y 2=4 . 【解答】解:如图,抛物线y 2=4x 的焦点为F (1,0),∵所求圆的圆心F ,且与准线x =﹣1相切,∴圆的半径为2. 则所求圆的方程为(x ﹣1)2+y 2=4. 故答案为:(x ﹣1)2+y 2=4.4.(2015•新课标Ⅱ)已知三点A (1,0),B (0,√3),C (2,√3)则△ABC 外接圆的圆心到原点的距离为( ) A .53B .√213C .2√53D .43【解答】解:因为△ABC 外接圆的圆心在直线BC 垂直平分线上,即直线x =1上, 可设圆心P (1,p ),由P A =PB 得 |p |=√1+(p −√3)2, 得p =2√33 圆心坐标为P (1,2√33),所以圆心到原点的距离|OP |=1+(2√33)2=√1+129=√213, 故选:B .题型三.直线与圆的位置关系1.(2020•新课标Ⅲ)若直线l 与曲线y =√x 和圆x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【解答】解:设直线l 与曲线y =√x 相切于M (a ,b ),(a >0),则由(√x)′=12√x 可知,曲线y =√x 在点P 处的切线方程为y −√a =12√a −a),即y −x2√a √a2=0,该方程即为直线l 的方程, ∵直线l 与圆相切,∴√a2√1+14a=√55,解得a=1,故直线l的方程为y=12x+12.故选:D.2.(2016•新课标Ⅲ)已知直线l:mx+y+3m−√3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2√3,则|CD|=4.【解答】解:由题意,|AB|=2√3,∴圆心到直线的距离d=3,∴√3|√m2+1=3,∴m=−√33∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|=|AB|cos30°=2√3√32=4.故答案为:4.3.(2021•北京)已知直线y=kx+m(m为常数)与圆x2+y2=4交于M,N,当k变化时,若|MN|的最小值为2,则m=()A.±1B.±√2C.±√3D.±2【解答】解:圆C:x2+y2=4,直线l:y=kx+m,直线被圆C所截的弦长的最小值为2,设弦长为a,则圆心C到直线l的距离d=√4−(a2)2=√4−a24,当弦长取得最小值2时,则d有最大值√4−1=√3,又d=|m|√1+k ,因为k2≥0,则√1+k2≥1,故d 的最大值为|m|=√3,解得m =±√3. 故选:C .4.(2020•新课标Ⅰ)已知⊙M :x 2+y 2﹣2x ﹣2y ﹣2=0,直线l :2x +y +2=0,P 为l 上的动点.过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |•|AB |最小时,直线AB 的方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣1=0C .2x ﹣y +1=0D .2x +y +1=0【解答】解:化圆M 为(x ﹣1)2+(y ﹣1)2=4, 圆心M (1,1),半径r =2.∵S 四边形PAMB =12|PM|⋅|AB|=2S △P AM =|P A |•|AM |=2|P A |=2√|PM|2−4. ∴要使|PM |•|AB |最小,则需|PM |最小,此时PM 与直线l 垂直. 直线PM 的方程为y ﹣1=12(x ﹣1),即y =12x +12, 联立{y =12x +122x +y +2=0,解得P (﹣1,0).则以PM 为直径的圆的方程为x 2+(y −12)2=54.联立{x 2+y 2−2x −2y −2=0x 2+y 2−y −1=0,相减可得直线AB 的方程为2x +y +1=0.故选:D .(多选)5.(2021•新高考Ⅰ)已知点P 在圆(x ﹣5)2+(y ﹣5)2=16上,点A (4,0),B (0,2),则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=3√2D .当∠PBA 最大时,|PB |=3√2【解答】解:∵A (4,0),B (0,2), ∴过A 、B 的直线方程为x4+y 2=1,即x +2y ﹣4=0,圆(x ﹣5)2+(y ﹣5)2=16的圆心坐标为(5,5), 圆心到直线x +2y ﹣4=0的距离d =|1×5+2×5−4|√1+2=11√5=11√55>4, ∴点P 到直线AB 的距离的范围为[11√55−4,11√55+4],∵11√55<5,∴11√55−4<1,11√55+4<10,∴点P 到直线AB 的距离小于10,但不一定大于2,故A 正确,B 错误;如图,当过B 的直线与圆相切时,满足∠PBA 最小或最大(P 点位于P 1时∠PBA 最小,位于P 2时∠PBA 最大),此时|BC |=√(5−0)2+(5−2)2=√25+9=√34, ∴|PB |=√|BC|2−42=√18=3√2,故CD 正确. 故选:ACD .(多选)6.(2021•新高考Ⅱ)已知直线l :ax +by ﹣r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【解答】解:∵点A 在圆C 上, ∴a 2+b 2=r 2,∵圆心C (0,0)到直线l 的距离为d =2√a 2+b2=2√a 2+b2=r ,∴直线与圆C 相切,故A 选项正确, ∵点A 在圆C 内, ∴a 2+b 2<r 2,∵圆心C (0,0)到直线l 的距离为d =|0×a+0×b−r 2|√a 2+b =|r 2|√a 2+b r ,∴直线与圆C 相离,故B 选项正确, ∵点A 在圆C 外, ∴a 2+b 2>r 2,∵圆心C(0,0)到直线l的距离为d=|0×a+0×b−r2|√a2+b =|r2|√a2+br,∴直线与圆C相交,故C选项错误,∵点A在直线l上,∴a2+b2=r2,∵圆心C(0,0)到直线l的距离为d=2√a2+b =2√a2+b=r,∴直线与圆C相切,故D选项正确.故选:ABD.题型四.圆与圆的位置关系1.(2016•山东)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2√2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2(a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=a√2,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2√2,∴2√R2−d2=2√a2−a22=2√a22=2√2,即√a22=√2,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN=√12+12=√2,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.1.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2﹣2x ﹣3=0B .x 2+y 2+4x =0C .x 2+y 2+2x ﹣3=0D .x 2+y 2﹣4x =0 【解答】解:设圆心为(a ,0)(a >0),由题意知圆心到直线3x +4y +4=0的距离d =|3a+4|√3+4=3a+45=r =2,解得a =2,所以圆心坐标为(2,0) 则圆C 的方程为:(x ﹣2)2+y 2=4,化简得x 2+y 2﹣4x =0故选:D .2.已知直线y =ax 与圆C :x 2+y 2﹣6y +6=0相交于A 、B 两点,C 为圆心.若△ABC 为等边三角形,则a 的值为( )A .1B .±1C .√3D .±√3【解答】解:根据题意,圆C :x 2+y 2﹣6y +6=0即x 2+(y ﹣3)2=3,其圆心为(0,3),半径r =√3, 直线y =ax 与圆C :x 2+y 2﹣6y +6=0相交于A 、B 两点,若△ABC 为等边三角形,则圆心C 到直线y =ax 的距离d =32,则有√1+a 2=32, 解可得:a =±√3;故选:D .3.两圆x 2+y 2+4x ﹣4y =0和x 2+y 2+2x ﹣8=0相交于两点M ,N ,则线段MN 的长为( )A .4B .35√5C .125√5 D .65√5【解答】解:根据题意,圆x 2+y 2+4x ﹣4y =0的圆心为(﹣2,2),半径r 1=2√2,圆x 2+y 2+2x ﹣8=0的圆心为(﹣1,0),半径r 2=3,两圆x 2+y 2+4x ﹣4y =0和x 2+y 2+2x ﹣8=0相交于两点M ,N ,直线MN 的方程为(x 2+y 2+4x ﹣4y )﹣(x 2+y 2+2x ﹣8)=0,变形可得:2x ﹣4y +8=0,即x ﹣2y +4=0,圆x 2+y 2+2x ﹣8=0的圆心到直线x ﹣2y +4=0的距离d =√1+4=3√55, 则|MN |=2×√r 22−d 2=2×√9−95=12√55;故选:C .4.已知直线l :y =√3x +m 与圆C :x 2+(y ﹣3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+√6或3−√6B .3+2√6或3−2√6C .9或﹣3D .8或﹣2【解答】解:圆心到直线l 的距离d =√3+1=|m−3|2, 若∠ACB =120°,则|m−3|2×2=√6,解得:m =3±√6,故选:A .5.已知a 为常数,圆C :x 2+2x +y 2﹣2ay =0,过圆C 内一点(1,2)的动直线l 与圆C 交于A ,B 两点,当∠ACB 最小时,直线l 的方程为2x ﹣y =0,则a 的值为( )A .2B .3C .4D .5【解答】解:将圆C 的方程变形 可得,(x +1)2+(y ﹣a )2=1+a 2,圆心C (﹣1,a ),半径r =√1+a 2,若使得∠ACB 最小,则弦长最小,弦心距最大,故当(1,2)与圆心C (﹣1,a )的连线与2x ﹣y =0垂直时,满足题意,所以a−2−1−1=−12, 故a =3.故选:B .6.过圆T :x 2+y 2=4外一点P (2,1)作两条互相垂直的直线AB 和CD 分别交圆T 于A ,B 和C ,D 点,则四边形ABCD 面积的最大值为 √15 .【解答】解:如图所示,由O 作AB ,CD 的垂线OE ,OF ,连接OP ,BD ,记OE=d1,OF=d2,则d12+d22=5.AE=BE=√4−d12,PE=√5−d12=d2,CF=DF=√4−d22,PF=√5−d22=d1,故S四边形ABCD=S△PBD﹣S△P AC=12PB⋅PD−12PA⋅PC=12[(PE+BE)⋅(PF+FD)−(PE−AE)⋅(PF−CF)]=12[(d2+√4−d12)(d1+√4−d22)−(d2−√4−d12)(d1−√4−d22)]=12×2(d2√4−d12+d1√4−d22)=d2√4−d12+d1√4−d22≤√(d12+d22)(8−d12−d22)=√5×3=√15.当且仅当d1=d2时取等号.故答案为:√15.。
高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。
2021年高考数学真题和模拟题分类汇编专题11直线与圆含解析

专题11 直线与圆一、选择题部分1.(2021•新高考全国Ⅰ卷•T11)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则()A. 点P 到直线AB 的距离小于10B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,PB =当PBA ∠最大时,PB =【答案】ACD .【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=, 圆心M 到直线AB4==>,所以,点P 到直线AB42-<,最大值为4105+<,A 选项正确; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM ==4MP =,由勾股定理可得BP ==CD 选项正确.故选ACD.2.(2021•江苏盐城三模•T3)同学们都知道平面内直线方程的一般式为Ax +By +C =0,我们可以这样理解:若直线l 过定点P 0(x 0,y 0),向量→n =(A ,B )为直线l 的法向量,设直线l 上任意一点P (x ,y ),则→n ⋅→P 0P =0,得直线l 的方程为,即可转化为直线方程的一般式.类似地,在空间中,若平面α过定点Q 0(1,0,-2),向量→m =(2,-3,1)为平面α的法向量,则平面α的方程为A .2x -3y +z +4=0B .2x +3y -z -4=0C .2x -3y +z =0D .2x +3y -z +4=0 【答案】C .【考点】新情景问题下的直线方程的求解【解析】由题意可知,平面α的方程为2(x -1)-3(y -0)+1 (z +2)=0,化简可得,2x -3y +z =0,故答案选C .3.(2021•河南焦作三模•理T9)已知曲线y =与直线kx ﹣y +k ﹣1=0有两个不同的交点,则实数k 的取值范围是( ) A .B .C .D .【答案】A . 【解析】由曲线y =,得(x ﹣2)2+y 2=1(y ≥0),是以(2,0)为圆心半径为1的上半个圆,直线kx ﹣y +k ﹣1=0过点D (﹣1,﹣1),如图,过D (﹣1,﹣1)与A (1,0)两点的直线的斜率k ==;设过(﹣1,﹣1)且与圆(x ﹣2)2+y 2=1相切的直线方程为y +1=k (x +1), 即kx ﹣y +k ﹣1=0. 由=1,解得k =0或k =.∴要使曲线y =与直线kx ﹣y +k ﹣1=0有两个不同的交点,则实数k 的取值范围是:.4.(2021•河北张家口三模•T4)“a >0”是“点(0,1)在圆x 2+y 2﹣2ax ﹣2y +a +1=0外”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B .【解析】将x 2+y 2﹣7ax ﹣2y +a +1=3化为标准方程,得(x ﹣a )2+(y ﹣1)3=a 2﹣a .当点(0,1)在圆x2+y2﹣2ax﹣5y+a+1=0外时,有解得a>1.所以“a>3”是“点(0,1)”在圆x7+y2﹣2ax﹣2y+a+1=0外”的必要不充分条件.5.(2021•山东聊城三模•T4.)已知直线l:(a−1)x+y−3=0,圆C:(x−1)2+y2=5.则“ a=−1”是“ l与C相切”的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B.【考点】必要条件、充分条件与充要条件的判断,直线与圆的位置关系【解析】【解答】圆C:(x−1)2+y2=5的圆心为(1,0),半径r=√5,=√5,由直线l和C相切可得:圆心到直线的距离d=√(a−1)2+1,解得2a2−a−3=0,解得a=−1或a=32的充分不必要条件,故答案为:B.故a=−1是a=−1或a=32,再由充分必要条件即可判断B正确。
(完整版)全国高考数学直线与圆的方程试题汇编

全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。
2012年高考真题汇编——理科数学(解析版)9:直线与圆

2012高考真题分类汇编:直线与圆1.【2012高考真题重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是(1) 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心【答案】C【解析】直线1+=kx y 恒过定点)1,0(,定点到圆心的距离21<=d ,即定点在圆内部,所以直线1+=kx y 与圆相交但直线不过圆心,选C.2.【2012高考真题浙江理3】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件【答案】A【解析】当1=a 时,直线1l :02=+y x ,直线2l :042=++y x ,则1l //2l ;若1l //2l ,则有012)1(=⨯-+a a ,即022=-+a a ,解之得,2-=a 或1=a ,所以不能得到1=a 。
故选A.4.【2012高考真题陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.5.【2012高考真题天津理8】设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞【答案】D【解析】圆心为)1,1(,半径为 1.直线与圆相切,所以圆心到直线的距离满足1)1()1(|2)1()1|22=+++-+++n m n m (,即2)2(1n m mn n m +≤=++,设z n m =+,即01412≥--z z ,解得,222-≤z 或,222+≥z6.【2012高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】43。
2015届高考数学总复习 第十章 第二节直线与圆的位置关系课时精练试题 文(含解析)

第二节 直线与圆的位置关系1.(2013·韶关二模) 如图所示,⊙O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则⊙O 的半径等于________.解析:由射影定理知CD 2=BD ·AD ,所以AD =2,所以圆的半径为12AB =AD +DB 2=5.答案:52.(2013·湖北卷)如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E ,若AB =3AD ,则CE EO的值为__________.解析:由射影定理知 CE EO =CD 2OD 2=AD ·BD OA -AD 2=AD AB -AD ⎝ ⎛⎭⎪⎫12AB -AD 2=8. 答案:83.(2012·湛江二模)如图,Rt△ABC 中,∠C =90°,∠A =30°,圆O 经过点B ,C 且与AB ,AC 分别相交于点D ,E .若AE =EC =23,则圆O 的半径R =________.解析:连接BE ,因为∠C =90°,所以BE 为圆O 的直径.因为∠A =30°,AC =43,所以BC =4.在Rt△BCE 中,由勾股定理得BE =27,所以圆O 的半径R =7.答案:74.(2013·广州三校广一模后适应性训练)如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为__________.解析:在Rt△AOD 中,AO =2,DO =1,所以AD =22+12=5,又BD =1,由相交弦定理得AD ·DE =3DO ·BD ,即5DE =3×1,所以DE =355.答案:3555.如图,点A 、B 、C 是圆O 上的点,且AB =2,BC =6,∠CAB =2π3,则∠AOB 对应的劣弧长为__________.解析:连接CO ,因为∠CAB =2π3,所以AB 优弧所对的圆心角为4π3,从而∠BOC =2π3,在等腰三角形BOC 中可求得半径OB =2,因为AB =2,所以△AOB 为等腰直角三角形,所以∠AOB 对应的劣弧长为2π2.答案:2π26.(2012·韶关模拟)如图,AB 是圆O 的直径,AD =DE ,AB =8, BD =6,则AD AC=________.解析:因为AD =DE ,所以∠ABD =∠DAE .又∠ADC 为公共角,所以△ADC ∽△BDA .所以AD AC=BD AB =68=34. 答案:347.(2012·深圳调研)如图所示,AB 是圆O 的直径,弦AD 和BC 相交于点P ,连接CD .若∠APB =120°,则CD AB等于________.解析:连接AC ,依题意∠APC =60°,因为AB 是圆O 的直径,所以∠ACP =90°.所以cos ∠APC =PC PA =12.又△PAB ∽△PDC ,所以CD AB =PC PA =12.答案:128.(2013·揭阳二模)如图,C 、D 是半圆周上的两个三等分点,直径AB =4,CE ⊥AB ,垂足为E ,与BD 相交于点F ,则BF 的长为__________.解析:依题意知∠DBA =30°,则AD =2,过点D 作DG ⊥AB 于G ,则AG =BE =1,所以BF =BE cos 30°=233.答案:2339.(2012·陕西卷)如图所示,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.解析:连接AD .在Rt△ABD 中,DE ⊥AB ,所以DE 2=AE ·EB =5.在Rt△EBD 中,EF ⊥DB ,所以DE 2=DF ·DB =5.答案:510.如图,PA 切圆O 于点A ,割线PBC 经过O ,OB =PB =1,OA 绕着点O 逆时针旋转60°到OD ,PD 交圆O 于点E 则PE 的长为________.答案:37711.(2013·陕西卷)如图,弦AB 与CD 相交于⊙O 内一点E ,过E 作BC 的平行线与AD 的延长线相交于点P .已知PD =2DA =2, 则PE =__________.解析:因为BC ∥PE ,所以∠BCD =∠PED ,且在圆中,由∠BCD =∠BAD 得∠PED =∠BAD ,所以△EPD ∽△APE ,于是PE PA =PDPE, 得PE 2=PA ·PD =3×2=6,所以PE = 6.答案: 612.(2012·天津卷)如图所示,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB=1,EF =32,则线段CD 的长为________.解析:由相交弦的性质可得AF ·FB =EF ·FC ,∴FC =AF ·FB EF =3×132=2.又∵FC ∥BD ,∴AC AD =FC BD =AF AB =34,即BD =83.由切割定理得BD 2=DA ·DC =4DC 2,解得DC =43.答案:4313.(2013·陕西咸阳二模)如图,A 、B 是两圆的交点,AC 是小圆的直径,D 、E 分别是CA 、CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则AB =______________.解析:设BC =AD =x ,则由切割线定理得, CA ·CD =CB ·CE ,即4(4+x )=x (x +10),解得x =2,即CB =2,又AC 是小圆的直径,所以AB =CA 2-CB 2=42-22=2 3. 答案:2 314.(2012·辽宁卷)如图所示,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连接DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB , 同理∠ACB =∠DAB , 所以△ACB ∽△DAB .从而AC AD =ABBD,即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD . 又∠ADE =∠BDA ,得△EAD ∽△ABD .从而AE AB =ADBD,即AE ·BD =AD ·AB .结合(1)的结论,得AC =AE .。
高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)考向一 求圆的方程【母题来源】2022年高考全国乙卷(理科)【母题题文】过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【试题解析】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭; 【命题意图】本题考查圆的一般方程的形式,通过解方程组求一般方程中的系数. 【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为低档题,是历年高考的热点. 常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的一般方程的形式; (2)解方程组;(3)一般式转化为标准式. 考向二 直线与圆的位置关系【母题来源】2022年高考全国甲卷(文科)【母题题文】 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.【答案】22(1)(1)5x y -++=【试题解析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R , 2222(3)(12)(2)-+-=+-=a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.【命题意图】本题考查直线与圆的位置关系,通过圆心到直线的距离与半径的关系求解.【命题方向】这类试题在考查题型选择、填空题出现,多为低档题,是历年高考的热点.常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的标准方程; (2)求出圆心到直线的距离;(3)由直线与圆的位置关系确定圆心到直线的距离与半径之间的关系. 真题汇总及解析一、单选题1.(湖北省新高考联考协作体2021-2022学年高二下学期期末数学试题)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案. 【详解】直线()2140x m y +++=与直线320x my --=垂直, 则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件. 故选:B.2.(2022·四川乐山·高一期末)圆222440x y x y +-+-=关于直线10x y +-=对称的圆的方程是( ) A .22(3)16x y -+= B .22(3)9x y +-= C .22(3)16x y +-= D .22(3)9x y -+= 【答案】D 【解析】【分析】先求得圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标,进而即可得到该圆的方程. 【详解】圆222440x y x y +-+-=的圆心坐标为(1,2)-,半径为3 设点(1,2)-关于直线10x y +-=的对称点为(,)m n ,则211121022n m m n +⎧=⎪⎪-⎨+-⎪+-=⎪⎩ ,解之得30m n =⎧⎨=⎩ 则圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标为(3,0) 则该圆的方程为22(3)9x y -+=, 故选:D .3.(2022·四川成都·模拟预测(文))直线410mx y m 与圆2225x y +=相交,所得弦长为整数,这样的直线有( )条 A .10 B .9 C .8 D .7【答案】C 【解析】 【分析】求出过定点(4,1)32(5,6),最长的弦长为直径10,则弦长为6的直线恰有1条,最长的弦长为直径10,也恰有1条,弦长为7,8,9的直线各有2条,即可求出答案. 【详解】直线410mx y m 过定点(4,1),圆半径为5, 最短弦长为2251732(5,6),恰有一条,但不是整数;弦长为6的直线恰有1条,有1条斜率不存在,要舍去; 最长的弦长为直径10,也恰有1条; 弦长为7,8,9的直线各有2条,共有8条, 故选:C .4.(2022·广西柳州·模拟预测(理))已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点23AB =k =( ) A .15B .43C .12D .512【答案】B 【解析】 【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k-=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解方程即可求出答案. 【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k -=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解得:43k =. 故选:B.5.(2022·全国·模拟预测)直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( ) A .25B .4 C .3D .22【答案】A 【解析】 【分析】直接利用直线被圆截得的弦长公式求解即可. 【详解】由题意圆心()1,2C ,圆C 的半径为3, 故C 到:3410l x y +-=22381234+-=+,故所求弦长为2223225-=故选:A.6.(2022·全国·模拟预测)若圆()()()22140x a y a -+-=>与单位圆恰有三条公切线,则实数a 的值为( ) A 3B .2 C .2D .23【答案】C 【解析】 【分析】两圆恰有三条公切线,说明两圆为外切关系,圆心距12d r r =+. 【详解】由题,两圆恰有三条公切线,说明两圆为外切关系(两条外公切线,一条内公切22121a +=+,结合0a >解得22a =故选:C.7.(2022·湖南岳阳·模拟预测)已知点A (2,0),B (0,﹣1),点P 是圆x 2+(y ﹣1)2=1上任意一点,则PAB △ 面积最大值为( ) A .2 B .45C .51D .52【答案】D 【解析】 【分析】结合点到直线距离公式及图形求出圆上点P 到直线AB 距离的最大值,由此可求PAB △面积的最大值.【详解】 由已知=5AB要使PAB △的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为21x y+=-1,即x ﹣2y ﹣2=0, 圆心(0,1)到直线AB 的距离为d 022455--==, 故P 到直线AB 451, 所以PAB △面积的最大值为()114551=522AB d ⎫⨯⨯+⎪⎪⎝⎭故选:D .8.(2022·河南安阳·模拟预测(理))已知圆22:(2)(6)4-+-=C x y ,点M 为直线:80l x y -+=上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( )A .22(7)(1)4-+-=x yB .22(1)(7)4-+-=x yC .22(7)(1)2-+-=x yD .22(1)(7)2-+-=x y【答案】D 【解析】 【分析】根据给定条件,利用切线长定理求出四边形CAMB 周长最小时点M 的坐标即可求解作答. 【详解】圆22:(2)(6)4-+-=C x y 的圆心(2,6)C ,半径2r =,点C 到直线l 的距离22221(1)d ==+-依题意,CA AM ⊥,四边形CAMB 周长2222||2||42424CA AM CM CA d +=+-+-242(22)48=+-=,当且仅当CM l ⊥时取“=”,此时直线:80CM x y +-=,由8080x y x y -+=⎧⎨+-=⎩得点(0,8)M ,四边形CAMB 的外接圆圆心为线段CM 中点(1,7)222(1)(7)2-+-=x y .故选:D9.(2022·全国·模拟预测(理))已知圆C 过圆221:42100C x y x y ++--=与圆222:(3)(3)6C x y ++-=的公共点.若圆1C ,2C 的公共弦恰好是圆C 的直径,则圆C的面积为( ) A .115πB .265πC 130πD .1045π【答案】B【解析】 【分析】根据题意求解圆1C ,2C 的公共弦方程,再计算圆2C 中的公共弦长即可得圆C 的直径,进而求得面积即可 【详解】由题,圆1C ,2C 的公共弦为2242100x y x y ++--=和22(3)(3)6x y ++-=的两式相减,化简可得2110x y -+=,又()23,3C -到2110x y -+=的距离()2232311512d --⨯+==+-,故公共弦长为22262655⎛⎫-= ⎪⎝⎭,故圆C 265C 的面积为265π故选:B10.(2022·广东·深圳市光明区高级中学模拟预测)已知圆:C 22(1)4x y -+=与抛物线2(0)y ax a =>的准线相切,则=a ( ) A .18B .14C .4D .8【答案】A 【解析】 【分析】求出抛物线的准线方程,利用圆与准线相切可得124a-=,求解即可. 【详解】因为圆:C 22(1)4x y -+=的圆心为(1,0),半径为2r =抛物线2(0)y ax a =>的准线为14y a=-,所以124a -=,即18a =, 故选:A.二、填空题11.(2022·江苏南京·模拟预测)已知ABC 中,()30A -,,()3,0B ,点C 在直线3yx 上,ABC 的外接圆圆心为()0,4E ,则直线EC 的方程为______. 【答案】344y x =+ 【解析】 【分析】圆心E 到点B 的距离即为半径,可得到外接圆的方程,联立圆的方程与直线的方程,得到C 点坐标,利用直线方程两点式即可求解. 【详解】因为ABC 的外接圆圆心为()0,4E ,所以ABC 22345+=, 即ABC 的外接圆方程为()22425x y +-=.联立()223425y x x y =+⎧⎪⎨+-=⎪⎩,解得47x y =⎧⎨=⎩,或30x y =-⎧⎨=⎩, 所以()4,7C 或()3,0C -(与A 点重合),舍, 所以直线EC 的方程为747440y x --=--,即344y x =+. 故答案为:344y x =+.12.(2022·天津二中模拟预测)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________. 34【解析】 【分析】将圆2C 的方程写成标准形式,然后根据两圆外切,可得圆心距离为半径之和,可得m ,接着计算2C 到直线的距离,最后根据圆的弦长公式计算可得结果. 【详解】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m()()224030225-+--=-m ,解得16m = 所以2:C ()()22439x y -++=2C 到直线的距离为2243211-=+d 2C 的半径为R 则直线:0l x y +=被圆2C 所截的弦长为22129342-=-R d 故答案为: 3413.(2022·安徽·合肥市第八中学模拟预测(文))直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________.【答案】1 【解析】 【分析】求出直线MN 过定点A (1,1),进而判断点A 在圆内,当OA MN ⊥时,|MN |取最小值,利用两直线斜率之积为-1计算即可. 【详解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1), 因为22113+<,即点A 在圆223x y +=内. 当OA MN ⊥时,|MN |取最小值,由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,∴1m =, 故答案为:1.14.(2022·上海静安·模拟预测)已知双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,右焦点和圆心重合,则该双曲线的标准方程为____________.【答案】22154x y -=【解析】 【分析】根据已知条件得出双曲线的渐近线方程及圆的圆心和半径,进而得出双曲线的焦点坐标,利用双曲线的渐近线与圆相切,得出圆心到渐近线的距离等于半径,结合双曲线中,,a b c 三者之间的关系即可求解. 【详解】由题意可知,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=.由圆C 的方程为()2234x y -+=,得圆心为()3,0C ,半径为2r =.因为右焦点和圆心重合,所以双曲线右焦点的坐标为3,0.3c =又因为双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,22302b a a b ⨯±⨯=+22c=,解得2b =.所以222945a c b =-=-=,所以该双曲线的标准方程为22154x y -=.故答案为:22154x y -=.15.(2022·全国·哈师大附中模拟预测(理))已知函数()22x xe ef x e -=(其中e是自然对数的底数),若在平面直角坐标系xOy 中,所有满足()()0f a f b +>的点(),a b 都不在圆C 上,则圆C 的方程可以是______(写出满足条件的一个圆的方程即可).【答案】221x y +=(答案不唯一) 【解析】 【分析】根据题意,得到()(2)0f x f x +-=,且关于点(1,0)中心对称,得到2a b +>,进而化简得到2x y +≤,即可得到答案. 【详解】由题意,函数222e e ()e e ex x x xf x --==-在R 上单调递增,且()(2)0f x f x +-=, 所以曲线()y f x =关于点(1,0)中心对称,所以()()0f a f b +>,即2a b +>, 在平面直角坐标系xOy 中所有满足()()0f a f b +>,即2a b +>的点(,)a b 都不在圆C 上,所以圆C 上的点都满足2x y +≤,即圆C 在2x y +≤表示的半平面内, 故圆C 可以是以原点为圆心,半径为1的圆,圆C 的方程可以为221x y +=. 故答案为:221x y +=(答案不唯一).三、解答题16.(2022·江苏·南京市天印高级中学模拟预测)已知动点(),M x y 是曲线C 上任一点,动点M 到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,圆M 的方程为()2221x y +-=.(1)求C 的方程,并说明C 是什么曲线;(2)设1A 、2A 、3A 是C 上的三个点,直线12A A 、13A A 均与圆M 相切,判断直线23A A 与圆M 的位置关系,并说明理由. 【答案】(1)答案见解析(2)若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切,理由见解析 【解析】 【分析】(1)由抛物线的定义可得出曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,进而可求得曲线C 的方程;(2)分析可知直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,其中1x 、2x 、3x 两两互不相等,利用二次方程根与系数的关系以及点到直线的距离公式以及几何法判断可得出结论.(1)解:由题设知,曲线C 上任意到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,因此,曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,故曲线C 的方程为2x y =.(2)解:若直线23A A 的斜率不存在,则直线23A A 与曲线C 只有一个交点,不合乎题意,所以,直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,则1x 、2x 、3x 两两互不相等,则1222121212A Ax x k x x x x -==+-,同理1313A A k x x =+,2323A A k x x =+, 所以直线12A A 方程为()()21121y x x x x x -=+-,整理得()12120x x x y x x +--=,同理可知直线13A A 的方程为()13130x x x y x x +--=, 因为直线12A A 与圆M ()12212211x x x x +=++,整理可得()222121211230x x x x x -++-=,同理可得()222131311230x x x x x -++-=,所以2x 、3x 为方程()2221111230x x x x x -++-=的两根,则11x ≠±,所以,1232121x x x x +=--,21232131x x x x -=-,圆心M 到直线23A A ()2211221231222123122111321211112111x x x x x x x x x x x x +-+-+-===+++⎛⎫+- ⎪--⎝⎭,所以直线23A A 与圆M 相切. 综上,若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程; (2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.17.(2022·四川成都·模拟预测(理))点P 为曲线C 上任意一点,直线l :x =-4,过点P 作PQ 与直线l 垂直,垂足为Q ,点()1,0F -,且2PQ PF =. (1)求曲线C 的方程;(2)过曲线C 上的点()()000,1M x y x ≥作圆()2211x y ++=的两条切线,切线与y 轴交于A ,B ,求△MAB 面积的取值范围.【答案】(1)22143x y +=(2)212S ⎡∈⎢⎣ 【解析】 【分析】(1)设点(),P x y ,通过2PQ PF =得到等式关系,化简求得曲线方程; (2)设切线方程()00y y k x x -=-,通过点到切线的距离,化简成k 的一元二次方程,再韦达定理得出12,k k 与00,x y 的等式关系,再求出||AB 弦长,消去12,k k ,再求面积即可.(1)设(),P x y ,由2PQ PF =,得()2241x x y +=++22143x y +=,所以曲线C 的方程为22143x y +=;(2)设点()00,M x y 的切线方程为()00y y k x x -=-(斜率必存在),圆心为()1,0F -,r =1所以()1,0F -到()00y y k x x -=-的距离为:00211k y kx d k-+-==+平方化为()()2220000022110x x k x y k y +-++-=,设P A ,PB 的斜率分别为1k ,2k则()0012200212x y k k x x ++=+,201220012y k k x x -=+ 因为P A :()010y y k x x -=-,令x =0有010A y y k x =-,同理020B y y k x =-所以()()()()222200000201212120414214A B x y x x y AB y y x k k x k k k k +-+-=-=-=+-=又因为22004123y x =-代入上式化简为0062x AB x +=+ 所以3200000006611122222MABx x x S x AB x x x ++=⋅⋅=⋅=++△[]01,2x ∈ 令()3262x x f x x +=+,[]1,2x ∈,求导知()f x 在[]1,2x ∈为增函数,所以2126S ∈⎢⎣.18.(2022·陕西·交大附中模拟预测(理))已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-=(2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程; (2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围.(1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意;所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=, 23111+=+k k ,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=.(2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO 可得()222232x y x y +-+整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,()221233a a ≤+-,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考试题分类汇编:7:直线与圆
一、选择题
1.【2012高考山东文9】圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B
【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为
17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.
2.【2012高考安徽文9】若直线01-+-y x 与圆2)(2
2=+-y a x 有公共点,则实数a 取值范围是
(A ) [-3,-1] (B )[-1,3]
(C ) [ -3,1] (D )(-∞,-3]U[1,+∞) 【答案】C
【解析】圆2
2
()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d ,
则 1231d r a a ≤=
⇔
≤⇔+≤⇔-≤≤。
3.【2012高考重庆文3】设A ,B 为直线y x =与圆2
2
1x y += 的两个交点,则||AB =
(A )1 (B (C (D )2 【答案】D
【解析】直线y x =过圆2
2
1x y +=的圆心(0,0)C ,则AB 为圆的直径,所以||AB =2,选D.
4.【2012高考浙江文4】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的
A 充分不必要条件
B 必要不充分条件
C 充分必要条件
D 既不充分也不必要条件 【答案】A
【解析】当
121
a a =+,解得1a =或2a =-.所以,当a =1是,两直线平行成立,因此是充分条件;当两直线平行时,1a =或2a =-,不是必要条件,故选A.
5.【2012高考陕西文6】已知圆2
2
:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能 6.【答案】A.
【解析】圆的方程可化为4)2(2
2=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.
6.【2012高考辽宁文7】将圆x 2
+y 2
-2x-4y+1=0平分的直线是 (A )x+y-1=0 (B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=0 【答案】C
【解析】圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C 【点评】本题主要考查直线和圆的方程,难度适中。
7.【2012高考湖北文5】过点P (1,1)的直线,将圆形区域{(x ,y )|x 2
+y 2
≤4}分两部分,使.这两部分的面积之差最大,则该直线的方程为 A.x+y-2=0 B.y-1=0 C.x-y=0 D.x+3y-4=0 【答案】A
【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即
20+-=x y .故选A.
【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.
8.【2012高考广东文8】在平面直角坐标系xOy 中,直线3450x y +-=与圆2
2
4x y +=相交于A 、B 两点,则弦AB 的长等于
A. 1 【答案】B
【解析】圆心(0,0)到直线3450x y +-=的距离1d =
=,则
2
2222(
)2132
AB r d =-=-=,所以AB =
9.【2102高考福建文7】直线与圆x 2
+y 2
=4相交于A,B 两点,则弦AB 的长度等于
A. 【答案】B .
【解析】求弦长有两种方法,一、代数法:联立方程组⎩⎨
⎧=+=-+4
232
2y x y x ,解得A 、B 两点的坐标为)3,1()0,2(-、,所以弦长32)30()12(||2
2
=-++=AB ;二、几何法:根据直线和圆的方程易知,圆心到直线的距离为
1)
3(122
2
=+,又知圆的半径为2,所以弦长
32122||22=-=AB .
二、填空题
10.【2012高考上海文4】若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小 为 (结果用反三角函数值表示) 【答案】2
1
arctan
【解析】因为直线的方向向量为),1(2)21,1(2)1,2(k ==,即直线的斜率2
1
=
k ,即21tan =
α,所以直线的倾斜角2
1arctan =α。
11.【2012高考浙江文17】定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的
距离,已知曲线C 1:y=x 2+a 到直线l:y=x 的距离等于曲线C 2:x 2+(y+4)2
=2到直线l:y=x 的距离,则实数a=_______. 【答案】74
【解析】C 2:x 2
+(y +4) 2
=2,圆心(0,—4),圆心到直线l :y =x
的距离为:
d ==,故曲线C 2到直线l :y =x
的距离为d d r d '=-==
另一方面:曲线C 1:y =x 2
+a ,令20y x '==,得:12
x =
,曲线C 1:y =x 2
+a 到直线l :y =x 的距离的点为(12,14a +)
,7
4
d a '===
⇒=
. 12.【2102高考北京文9】直线x y =被圆4)2(2
2
=-+y x 截得弦长为__________。
【答案】22
【解析】将题目所给的直线和圆图形画出得到如图所示的情况,半弦长
2l
,圆心到直线的距离d ,以及圆半径r 构成了一个直角三角形。
因为2=r ,夹角︒45,因此22
==d l
,所
以22=l 。
13.【2012高考江西文14】过直线x+y-=0上点P 作圆x 2
+y 2
=1的两条切线,若两条切线
的夹角是60°,则点P 的坐标是__________。
【答案】)2,2(
【解析】如图:
由题意可知060=∠APB ,由切线性质可知
030=∠OPB ,在直角三角形OBP 中,22==OB OP ,又点P 在直线022=-+y x 上,
所以不妨设点P )22,(x x -,则2)22(22=-+=x x OP ,即4)22(22=-+x x ,整
理得02222
=+-x x ,即0)2(2=-
x ,所以2=x ,即点P 的坐标为)2,2(。
法二:如图:
由题意可知0
60=∠APB ,由切线性质可知
030=∠OPB ,在直角三角形OBP 中,22==OB OP ,又点P 在直线022=-+y x 上,
所以不妨设点P )22,(x x -,则2)22(22=-+=
x x OP ,圆心到直线的距离为
22
22=-=
d ,所以OP 垂直于直线022=-+y x ,由⎩⎨⎧==-+x
y y x 0
22,解得
⎪⎩⎪⎨
⎧==2
2
y x ,即点点P 的坐标为)2,2(。
14.【2012高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为
228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径
的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】
4
3。
【考点】圆与圆的位置关系,点到直线的距离
【解析】∵圆C 的方程可化为:()2
241x y -+=,∴圆C 的圆心为(4,0),半径为1。
∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有 公共点;
∴存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤。
∵min AC 即为点C 到直线2y kx =-的距
离
,
∴
2≤,解得
403
k ≤≤。
∴k 的最大值是
43。
15.【2012高考天津文科12】 设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆2
2
4x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 。
【答案】3
【解析】直线与两坐标轴的交点坐标为)0,1
(
),1,0(m
B n A ,直线与圆相交所得的弦长为2,圆心到直线的距离d 满足31412
22=-=-=r d ,所以3=
d ,即圆心到直线的距离
312
2=+-=
n m d ,所以31
22=
+n m 。
三角形的面积为mn
n m S 211121=⋅=,又
312122=+≥=
n m mn S ,当且仅当6
1
==n m 时取等号,所以最小值为3。