第三章3静定结构受力分析(平面刚架)
合集下载
结构力学第三章静定结构受力分析

MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
第三章静定平面刚架讲解

A C
x
L
B 斜梁的反力与相应简支 梁的反力相同。
(2)内力 求斜梁的任意截面C的内力,取隔离体AC:
a
相应简支梁C点的内力为:
FP1 A
FYA
x
MC FNC C
FQC
MC0
=
FY
0 A
x
FP1 (x
a)
FQ0C = FY A FP1 FN0C = 0
Fp1 M0
C
斜梁C点的内力为:
MC = FYA x FP1 (x a) = MC0
F0 YA
F0 QC
FQC = (FYA FP1)Cos = FQ0CCos
FNC = (FYA FP1)Sin = FQ0CSin
结论:斜梁任意点的弯矩与水平梁相应点相同, 剪力和轴力等于水平梁相应点的剪力在沿斜梁 切口及轴线上的投影。
例:求图示斜梁的内力图。
q
A
L
解:a、求反力
B
XA =0
FNDC=8k0N
A
MDC=24kN.m(下拉)
FQDB=8kN D FNDB=6kN
MDB=16kN.m(右拉)
8kN
B
6kN C 6kN
2m
8kN
B24kN.m
6kN
4m
6kN
-6kN 8kN
∑Fx = 8-8 = 0 ∑Fy = -6-(-6) = 0
16kN.m 6kN
∑M = 24-8 - 16 = 0
Fx = 0 : FNCE = 0 .45 kN
校核 Fy= (3.13+0.45)sin +(1.793.58)cos
= 3.58 1.79×2 = 0
结构力学3静定刚架受力分析

C
∑F = 0,
x
XB + XC = 0, XC = −P(↓)
XC
YC
B
XB
YB
3)取整体为隔离体 取整体为隔离体 ∑Fy = 0,YA +YB = 0,YA = −YB = −P(↓) l ∑ M A = 0, M A + P × 2 − YB × l = 0, 1 M A = Pl (顺时针转 ) 2
Pl
Pl
P
l
l
l
练习: 练习 试找出图示结构弯矩图的错误
练习: 练习 试找出图示结构弯矩图的错误
本章小结
一. 刚架的受力特点 二. 刚架的支座反力计算 三. 刚架指定截面内力计算 四.刚架弯矩图的绘制 五.计算结果的校核
作业
3-3 (a) 3-7(a) 3-8(c)
P
P
Pl
P
P
P
P
Pl
P
P
连接两个杆端的刚结点, 连接两个杆端的刚结点 §3-3 静定刚架受力分析 ,若 结点上无外力偶作用, 结点上无外力偶作用,则两 三. 刚架指定截面内力计算 个杆端的弯矩值相等, 个杆端的弯矩值相等,方向 与梁的指定截面内力计算方法相同. 与梁的指定截面内力计算方法相同. 相反. 相反.
第三章 静定结构受力分析
§3-3 静定刚架受力分析
§3-3 静定刚架受力分析
一. 刚架的受力特点
刚架是由梁柱组成的含有刚结点的杆件结构
1 2 ql l 8
梁
桁架
1 2 ql 8
弯矩分布均匀 可利用空间大
刚架
§3-3 静定刚架受力分析
二. 刚架的支座反力计算
静定刚架的分类: 静定刚架的分类 三铰刚架 (三铰结构 三铰结构) 三铰结构
§3-3 静定平面刚架

qa ∑ M A = 0,FyB = (↑) 2 qa ∑ Fy = 0,FyA = − (↓) 2
qa
q
A
qa 2
qa 2
Step2:求控制截面的内力。设弯矩内侧受拉为正。
FNAC
M AC
M AC = 0 FQAC = qa FNAC qa = 2
M CB
FNCB
C
B qa
FQCB
2
qa
F A QAC
FNBA
M BA
M BC = −6.23KN .m FQBA M = −6.23KN .m BA FQBC = 3.86 KN FNBC = −2.74 KN FQBA = −1.348 KN FNBA = −4.5 KN
1.384 KN 4.5 KN
A
1KN / m
FNCB
FQCB
M CB
C B A 1.384 KN 4.5 KN
§3-3 静定平面刚架
平面刚架:由直杆组成的具有刚结点的结构,且各杆轴线和外力作用 线都处于同一平面内。
一、刚架的特征
变形特征:刚结点处,各杆端不能产生 变形特征 相对移动和转动,变形前后各杆所夹角 度不变。
受力特征:刚结点能够承 受力特征 受和传递弯矩 使 结构中内力分布相对比较 均匀、合理,减小弯矩的 峰值,节省材料
3、组合刚架:先进行几何组成分析,分清附属部分和基本部分,先计 算附属部分的支座反力,再计算基本部分的支座反力
例1:三铰刚架支座反力的求解
思路:尽量每列一个方程就能求解一个未知力 FAy=30KN(↑),FBy=10KN(↑) FBx=6.67KN(←) ,FAx=6.67KN(→)
例2:组合刚架支座反力的求解
qa
q
A
qa 2
qa 2
Step2:求控制截面的内力。设弯矩内侧受拉为正。
FNAC
M AC
M AC = 0 FQAC = qa FNAC qa = 2
M CB
FNCB
C
B qa
FQCB
2
qa
F A QAC
FNBA
M BA
M BC = −6.23KN .m FQBA M = −6.23KN .m BA FQBC = 3.86 KN FNBC = −2.74 KN FQBA = −1.348 KN FNBA = −4.5 KN
1.384 KN 4.5 KN
A
1KN / m
FNCB
FQCB
M CB
C B A 1.384 KN 4.5 KN
§3-3 静定平面刚架
平面刚架:由直杆组成的具有刚结点的结构,且各杆轴线和外力作用 线都处于同一平面内。
一、刚架的特征
变形特征:刚结点处,各杆端不能产生 变形特征 相对移动和转动,变形前后各杆所夹角 度不变。
受力特征:刚结点能够承 受力特征 受和传递弯矩 使 结构中内力分布相对比较 均匀、合理,减小弯矩的 峰值,节省材料
3、组合刚架:先进行几何组成分析,分清附属部分和基本部分,先计 算附属部分的支座反力,再计算基本部分的支座反力
例1:三铰刚架支座反力的求解
思路:尽量每列一个方程就能求解一个未知力 FAy=30KN(↑),FBy=10KN(↑) FBx=6.67KN(←) ,FAx=6.67KN(→)
例2:组合刚架支座反力的求解
结构力学第3章

D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
第三章3静定结构受力分析(平面刚架)

MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
§3-3 静定平面刚架
一. 刚架的受力特点
梁
1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。
第3章 多跨静定梁和静定平面刚架

A
q
YB
MB
MA
O
YA
+
M
YB
M M
M
MA
MB
M M M
(二) 多跨静定梁的组成形式及分层关系图 单跨静定梁组成的多跨静定梁形式:
(三) 多跨静定梁的受力分析及内力图的绘制
多跨静定梁的受力分析要利用分层关系图。 从力的传递来看:荷载作用在基本部分时,附 属部分不受影响;荷载作用在附属部分时,则基本部 分产生内力。 多跨静定梁的计算是先计算附属部分,后计算 基本部分。将附属部分的支座反力反向,就得附属部 分作用于基本部分的载荷。 先利用分层关系拆成单跨梁,从附属程度最高 跨开始,向下逐跨计算。
dM Q dx d 2M q 2 dx
(2)增量关系
Q P
M m
(3)积分关系 由d Q = – q· dx
MA
q(x)
MB
QB QA q( x) dx
xA
xB
由d M = Q· dx
QA QB
M B M A Q( x) dx
xA
xB
弯矩和剪力的图形特征: 1. 在无荷载的梁段上,剪力为常量,Q图是一水平直线,M 图为一倾斜直线。 2. 在均布荷载的梁段上,Q图是一倾斜直线,弯矩图为二次 抛物线形,曲线的凸向与荷载指向相同。 3. 在集中荷载作用处,Q图有突变呈阶形变化,突变数值等 于集中力的大小,而M图有一转折点,其尖顶的突出方向 与荷载的指向相同。 4. 在集中力偶作用处,Q图无变化,而M图有阶形突变,突 变数值等于集中力偶的大小,集中力偶两侧M图的切线相 互平行。
Q 图没有变化。
Q 图为斜直线,荷载向
结构力学 第三章 静定梁和静定平面钢架

2、截面法 若要求某一横截面上的内力,假想用一平面沿杆轴垂直方向将该 截面截开,使结构成两部分;在截开后暴露的截面上用力(内力)代 替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成为外力,因此,
由任一部分的静力平衡条件,均可列出含有截面内力的静力平衡方程。 解该方程即将内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),即:轴力FN 、 剪力FQ和弯矩Μ 。
dFN/dx=-qx
dFQ/dx=-qy dM/dx=Q
d2M/dx2=-qy
增量关系: DFN=-FPx
DFQ=-FPy
DM=m
1)微分关系及几何意义: dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qy (1)在无荷载区段,FQ图为水平直线;
当FQ≠0时,Μ图为斜直线;
右右为正。
FQ=截面一侧所有外力在杆轴垂直方向上投影的代数和。左上为正, 右下为正。
Μ =截面一侧所有外力对截面形心力矩代数和。弯矩的竖标画在杆
件受拉一侧。
例3-1-1 求图(a)所示简支梁在图示荷载下截面的内力。
解:1)支座反力 ∑ΜA=0 FBy×4﹣10×4×2﹣100× (4/5)×2=0 Fby=60kN (↑) ∑ΜB=0 FAy=60kN (↑) ∑Fx= 0 FAx+100×(3/5)=0 FAx=-60kN (← ) 由 ∑Fy= 0 校核,满 足。
(下侧受拉)
区段叠加法求E、D截面弯矩; ΜE=20×42/8+120/2=100kNm ΜD=40×4/4+120/2=100kNm
(下侧受拉) (下侧受拉)
内力应考虑
说明:集中力或集中力偶作用点,注意对有突变的 分两侧截面分别计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YB
P 2
()
例2: 求图示刚架的支座反力
q
ql2 解:
ql
Fx 0, X A ql 0, X A ql()
l
A
Fy 0,YA ql 0,YA ql()
XA
l 2
MA YA
l 2
M A 0, M A ql l ql2 0,
M A 2ql2 (逆时针转)
C
B
XB
例3: 求图示刚架的支座反力
QDC=-6kN NDC=0 MDC=24kN.m(下拉)
8 6
- +
Q kN
6
+
N kN
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算 三. 刚架指定截面内力计算 四.刚架的内力分析及内力图的绘制 五.刚架弯矩图的绘制
做法:拆成单个杆,求出杆两端的弯矩,按与单跨 梁相同的方法画弯矩图.
l/2
D
反.
l/4
P
l/4
A
B
XA
解:1)取附属部分
C
X D P()
l
l
YA
YB
YC
YC P / 4() YD P / 4()
A XA
YA
YD X D
D
XD
B
YD
YB
2)取基本部分
P C
X A P() YA P()
YB P / 4() YC
思考题: 图示体系支反力和约束力的计算途径是怎样的?
一. 刚架的受力特点
梁
1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
第三章 静定结构受力分析
§3-3 静定平面刚架
一. 刚架的受力特点
刚架是由梁柱组成的含有刚结点的杆件结构。
与铰结点相比,刚结点具有不同的特点。从变 形角度来看,在刚结点处各杆不能发出相对转 动,因而各杆间的夹角保持不变。从受力角度 来看,刚结点可以承受和传递弯矩,因而在刚 架中弯矩是主要内力。
§3-3 静定平面刚架
2.三铰刚架(三铰结构)的支座反力(约束力)计算
方法:取两次隔离体,每个隔离体包含一或两个刚片,建立六
个平衡方程求解--双截面法.
例1: 求图示刚架的支座反力
解:1)取整体为隔离体
P
XA YA
XC
C
A
B
l
l
l 2
l 2
MA Fy
0, P 0,YA
l 2
YB
l
0,
YB
YB 0,YA YB
MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。
④画图:画M图时,将两端弯矩竖标画在受拉侧,连以直 线,再叠加上横向荷载产生的简支梁的弯矩图。Q,N 图要标
P MA
XC
解:1)取整体为隔离体
C
l
2
Fx 0, XB P()
A
l 2
YA
C
B
l
2
YB
l
2
2)取右部分为隔离体
X B
MC
0,
X
B
l
YB
l 2
0,YB
2P()
Fy 0,YC YB 0,YC YB 2P()
Fx 0, XB XC 0, XC P()
3)取整体为隔离体
YC
Fy 0,YA YB 0,YA YB P()
l
2
解:
Fx 0, X B P() l P
MB
Fy 0,YA 0
2
A
MB 0, MB pl / 2(顺时针转) YA
l
例4: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
N AB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
1 Fx 0, NAB XC 2 ql()
如静定刚架仅绘制其弯矩图,并不需要求出全部反力, 只需求出与杆轴线垂直的反力。
分段 定点 连线
1、悬臂刚架 可以不求反力,由自由端开始直接求作内力图。
例题1: 作图示结构弯矩图
Pl / 2
Pl / 2
l/2
练习: 作弯矩图
PP
P l/2
l
Pl / 2
l
2Pl
l
l
Pl
Pl
l
Pl
2、简支型刚架弯矩图 简支型刚架绘制弯矩图时,往往只须求出一个与 杆件垂直的支座反力,然后由支座作起。
4kN/m
2kN
1.5m
A 7kN M
C 1.5m
B
Q BC
C
Q CB
QCB 5.8kN, QBC 7kN
B
2kN
A
4m
B
2.75kN
C
Q
B
N BA
5.8kN
7.5kN A
N
N CB
C
2kN
N BC
YC
NBA 7.25kN
NBC 2.75kN
C NCB 6.85kN
6.85kN
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
2
YA
解: YB P / 2()
2
B
l
XB
2
YB
YA P / 2()
X B P / 4() X A P / 4()
P/4
P/4
M 2 Pl / 4(右侧受拉) M1 Pl / 4(上侧受拉) M1 M 2 (外侧受拉)
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
例题2: 作图示结构弯矩图 练习: 作图示结构弯矩图
ql2 / 2
q
q ql / 2 l
ql
l
ql l / 2 l/2
l
练习: 作图示结构弯矩图
P
l
P l/2
l
l/2
l
l
l
例题3: 作图示结构弯矩图
P
Pl / 2
Pl / 4
P
Pl / 2
l
Pl / 4
l 3Pl / 4
3Pl / 4
l
l
l
练习: 作图示结构弯矩图
方法:切断两个刚片之间的约束,取一个刚片为隔离体,假定 约束力的方向,由隔离体的平衡建立三个平衡方程.
例1: 求图示刚架的支座反力
C
B
C
B
l
2
YB
P
lP
A
l
2
A X A YA
解:
Fx 0, X A P 0, X A P()
MA
0, P
l 2
YB
l
0,YB
P 2
()
Fy
0,YA
YB
0,YA
+,-号;竖标大致成比例。
NDC QDC
1m
8kN
QDA MDA NDA
QDA=8kN NDB MDB NMDDAA==08k0NQ.DmB (左D拉)
8kN.m 8kN
MDC
8QkNDC=-6kAN NDC=0 MDC=24kDN.m(下拉)
6kN C
QDB=8kN
6kN
NM8DDkBBN==61k6NkN.mB(右拉)
P
2
() P () 2
X B Fx 0, X A P XB 0
2
2
YB
2)取右部分为隔离体
C YC
B
XB
l
P
MC
0,
XB
l
YB
2
0,
XB
P4
()
Fy Fx
0,YC YB 0, X B
0,YC YB XC 0, XC
P
4
() 2 ()
YB
例2: 求图示刚架的支座反力和约束力
2m
8kN
B24kN.m
6kN
4m