电力系统中多通道同步采样ADC(AD7606)与浮点DSP(ADSP-21479)通信的设计与实现

合集下载

基于dsp的多通道数据采集系统的设计

基于dsp的多通道数据采集系统的设计

基于dsp的多通道数据采集系统的设计作者:孙元杰周士贵宋磊来源:《软件》2020年第10期摘要:针对DSP内部AD采样电路精度低等问题,设计了一种以AD7606高精度实时的模数转换器,进行采集交流信号,并介绍分析了AD7606得硬件电路和软件设计。

最后通过实验对比了DSP TMS320F28335内部AD和AD7606这两种模数转换得精度,相对于DSP TMS320F28335内部AD,AD7606具有采样精度更高,误差小,能够高速采样,适用于永磁同步电机的数据得采集转换。

关键词: AD7606;硬件电路;高速采样中图分类号: TP274.2 文献标识码: A DOI:10.3969/j.issn.1003-6970.2020.10.026本文著录格式:孙元杰,周士贵,宋磊. 基于DSP的多通道数据采集系统的设计[J]. 软件,2020,41(10):105108【Abstract】: Aiming at the low accuracy of the internal AD sampling circuit of the DSP, a high-precision real-time digital-to-analog converter based on the AD7606 is designed, and the hardware circuit and software design of the AD7606 are introduced and analyzed. Finally, the two AD-analog conversion precisions in the DSP TMS320F28335 and AD7606 are compared throughexperiments. Compared with the DSP TMS320F28335 AD, the AD7606 has higher sampling accuracy, less error, and high real-time performance. Acquisition conversion.【Key words】: AD7606; Hardware circuit; High-speed sampling0 引言隨着永磁同步电机的广泛应用,各种控制算法控制理论的不断在永磁同步电机的控制中应用。

基于STM32及AD7606的16通道同步数据采集系统设计

基于STM32及AD7606的16通道同步数据采集系统设计

基于STM32及AD7606的16通道同步数据采集系统设计摘要: 介绍了基于STM32及AD7606的同步数据采集系统的软硬件设计。

主控芯片采用基于ARM Cortex-M4内核的STM32F407IGT6,实现对AD 采集数据的实时计算并通过以太网络进行数据传输。

A7606为16位、8通道同步采样模数数据采集系统[],利用两片AD7606,可以实现对16路通道的实时同步采样。

经过测试,该系统可以实现较高精度的实时数据采集。

0 引言[此处找书介绍STM32],该芯片主频可达168MHz,具有丰富的片内外设,并且与前代相比增加了浮点运算单元(Floating Point Unit,FPU),使其可以满足数据采集系统中的 [介绍AD7606]1 系统总体方案设计整个系统由传感器模块、信号调理模块、数据采集模块、处理器STM32、及通信模块及上位机系统组成。

系统整体结构框图如图1所示。

本系统是为液态金属电池性能测试设计,需要测量电池的充放电电压、电流以及交流加热系统的电压、电流,并以此计算出整个液态金属电池储能系统的效率。

因此两片AD7606的16个通道分为两组,每组8个通道,这两组分别测量4路直流、交流的电压和电流信号。

AD7606通过并行接口与STM32连接,STM32读取AD 采样数据后进行计算,并将数据通过网络芯片DP83848通过UDP 协议发送给上位机。

上位机负责显示各通道采集信息、绘制波形以及保存数据等。

STM32F407IGT6霍尔直流传感器上位机软件DP83848直流信号交流信号交流互感器调理电路调理电路AD7606AD7606图1 系统整体结构框图2 系统硬件设计2.1 模拟信号采集电路设计 模拟信号的采集包含直流电压、电流,交流电压、电流四部分。

直流信号的采集分别使用霍尔电压传感器HNV025A 和霍尔电流传感器HNC100B ,两种传感器的电路原理图类似,仅以霍尔电压传感器电路原理图为例说明,如图2-1所示。

基于AD7606的同步多通道语音采集系统设计

基于AD7606的同步多通道语音采集系统设计

基于AD7606的同步多通道语音采集系统设计
王森
【期刊名称】《电子质量》
【年(卷),期】2018(0)3
【摘要】语音是用于信息交流的重要媒介,清晰的提取语音信号是准确信息传递的前提,面对日益复杂的声场环境,麦克风阵列系统以优异的性能逐渐替代单麦克风系统.为了更好地应用麦克风阵列实现语音定位与增强,设计了一款包含低噪声前置放大器、信号调理电路和高速多路同步采集ADC的麦克风阵列系统.经过试验,该系统能够清晰准确地实现多路语音信号采集.
【总页数】3页(P31-33)
【作者】王森
【作者单位】山东科技大学电气与自动化工程学院,山东青岛266590
【正文语种】中文
【中图分类】TP274+.2
【相关文献】
1.基于AD7606的多通道数据采集系统设计 [J], 陶海军;张一鸣;曾志辉
2.基于AD7606的SVG数据同步采集系统设计 [J], 黄华钦;刘桂英;周路平;曾林俊;胡宸
3.基于FPGA的多通道同步实时高速数据采集系统设计 [J], 易志强;韩宾;江虹;张秋云
4.基于GD32F407及CL1606的多通道同步采集系统设计 [J], 罗瑞;徐涛;卢少微;
马克明
5.基于AD7606的树莓派多通道数据采集系统设计 [J], 刘喜梅;吕文韬
因版权原因,仅展示原文概要,查看原文内容请购买。

基于AD7606 的可扩展多通道同步采样数据采集系统的布局考虑

基于AD7606 的可扩展多通道同步采样数据采集系统的布局考虑

电路笔记CN-0148连接/参考器件8通道DAS ,内置16位、双极性、同步采样ADCAD7606利用ADI 公司产品进行电路设计Rev.0“Circuits from the Lab” from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. AD7606-66通道DAS ,内置16位、双极性、同步采样ADC放心运用这些配套产品迅速完成设计。

基于DSP和高速A/D的电力系统多通道同步采样

基于DSP和高速A/D的电力系统多通道同步采样

A/D转换结束后产生一个中断信号EOC通知DSP读取数据,DSP通过地址选择相应A/D芯片及相关通道后,将16位数据读回。DSP以A/D转换器采集转换后的三相电压、三相电流实时数据作为计算基础。1.3 DSP核心部分电路 DSP及其外围接口电路是整个系统的核心,它由32位浮点DSP、振荡器+锁相倍频器、电压监测及看门狗电路、片外SDRAM、片外Flash、片外铁电存储器等电路组成。,电路实现了整个系统的上电复位、看门狗、电压检测以及扩展管理芯片对系统复位的功能。
外部的25 MHz振荡器通过倍频芯片和二进制计数器分别对DSP和AD转换器提供同步的150 MHz和3.125 MHz工作时钟。 DSP在上电复位以后,首先通过EDMA方式自动加载Flash前1 kB的Bootload程序,在该Bootload程序里写入后续加载程序的入口地址,即可实现应用程序的自动加载工作。之后对SDRAM进行自检,以避免SDRAM单元出错造成工作不正常或数据出错,同时SDRAM也是DSP存储A/D采样数据、进行数据运算输出的中间及最终结果、通信等数据缓存的场所。 FRAM可以实现在失电下保存数据,并且读写次数超过1012次,可以实现无延时写入。该FRAM通过DSP的McBSP接口相连,存储ADC每个模拟通道的DC偏移、精度修正的数据以及运行时的接线方式等参数。DSP处理完成的数据,通过其内部集成的主机接口(HPI)与上位机进行数据交互,主机可以通过DMA或EDMA方式随机或整块地访问共享RAM7。2 采样系统的软件设计 系统的软件设计基于TMS320C6711D芯片指令集,充分利用其高速,支持浮点运算,流水线操作等特点,采用C语言和汇编语言混合编程,遵循模块化、自顶向下、逐步细化的编程思想。程序使用模块化设计,主要包括采集模块、主循环模块和HPI交互协议模块3大模块,流程框图分别。3 结束语 本系统已经通过各种功能测试,并在国内某知名电表公司的电能质量监测仪产品上成功使用,精确检测电压电流有效值、功率、2~50次电压电流谐波的有效值、相位、电压波动与闪变、三相不平衡等各项电能质量参数,基本精度达到0.2级,谐波监测精度达到A级。该设计方案使用方便、实时性好、抗干扰能力强、测量精度高、性价比优,可在电力系统中广泛应用。

新一代16位8通道同步采样ADC-AD7606在智能电网中的应用

新一代16位8通道同步采样ADC-AD7606在智能电网中的应用

新一代16位8通道同步采样ADC-AD7606在智能电网
中的应用
系统体系结构一个典型的电力二次设备系统示意如图1 所示。

一次
侧的电压电流信号接入二次互感器PT/CT,经过信号调理后输入ADC,采样转换后的数据由CPU/DSP 进行处理,控制信号经隔离后输出,状态信号经隔离后输入。

传统电网向智能电网转变,要求电力二次设备具有更强的接口能力、控制能力、保护能力、测量能力、通信能力和数据处理能力,因此CPU/DSP 和ADC 一般是系统设计中需要考虑的两个关键器件。

ADI 公司的Blackfin 系列处理器以强大的处理能力、高性能以及低成本特点符合电力二次设备市场的发展方向,使设备制造商能够轻松实现各种通用或定制化的功能,可以在不改变(或很少改变)硬件的情况下迅速适应不断发展
的标准和新增功能需求,并大大降低产品研发风险和制造成本。

同时在外设上,Blackfin 系列提供了丰富的选择,从而给客户提供了极大的设计便利性和丰富
的可用片上设计资源。

参考ADI 应用工程师程涛的文章《ADI DSP 处理器在电力二次设备领域的应用》,可以获取更多的信息。

以下将重点介绍ADC 相关的部分。

ADC 是数据采集系统中的一个重要环节。

在传统的设计中,系统选用的ADC 分辨率一般为14 位,比如业界流行的4 通道AD7865,输入端可以接受真双极性输入信号,并且提供80dB 的SNR。

随着业界对16 位分辨率和多通道ADC 的需求越来越强烈,ADI 公司开发了6 通道16bit 的AD7656 以满足设计的需求。

AD7656 具有86.5dB 的。

利用AD7616的V型采样实现准同步数据采集

利用AD7616的V型采样实现准同步数据采集

利用AD7616的V型采样实现准同步数据采集DOI:10.3969/j.issn.1005-5517.2017.9.0181 AD7616 简介AD7616是ADI公司推出的一款16位16通道数据采集系统(DAS,同一封装内集成了两个16位逐次逼近寄存器型(SAR 模数转换器(ADC,支持对16个通道进行双路同步采样。

AD7616 的模拟输入端为真双极性输入,每个通道的量程可独立设置,有±10 V、±5V 或±2.5 V 供选择,同时输入端具有± 20V 的箝位(CLAMP保护,而且片内集成有抗混叠模拟滤波器。

AD7616采用+5 V单电源供电,拥有IMsps的采样速率并达到90dB的信噪比(SNR,输入阻抗与采样速率无关,恒定为1M Q,因此无需外部的驱动电路及双极性电源。

AD7616通过HW_RNGSEL[10]管脚进行选择,工作在硬件模式或软件模式。

硬件模式下,AD7616由引脚进行配置。

软件模式下,AD7616支持并口或串口对内部的寄存器及灵活的序列器(Flexible Seque ncer )进行配置,以获得更多的功能。

AD7616 的内部框图如图 1 所示。

2 多通道准同步采样电力系统保护与测控的应用中,需要实时监测电网中多相的电压和电流信号。

为了满足各种标准的精度要求,传统的设计中通常都是对多路信号进行同步采样,因此一般选用多通道同步采样型的ADC例如AD7865 AD7656-1, AD7606等都是典型的应用选择。

在某些需要低成本但精度要求不高的应用中,工程师尝试采用一种“ MUX模拟开关+单通道ADC的设计方案,如图2所示,利用模拟开关切换输入通道,用单通道ADC循环对输入信号进行采样。

由于多通道信号的非同步采样,采样点的间隔时间会导致通道间采样的延迟,并由此带来一定的相位误差或相位失配,误差的大小与多个因素相关,取决于输入信号的频率、幅值、采样时刻信号的相位等。

基于AD7606数模转换芯片的高精度电参数采集系统设计

基于AD7606数模转换芯片的高精度电参数采集系统设计

基于AD7606数模转换芯片的高精度电参数采集系统设计蒋海鹏;蒋海洪;黄伟宁;刘坷嘉
【期刊名称】《企业科技与发展》
【年(卷),期】2024()1
【摘要】鉴于电力系统保护测控设备对多路电流和电压的测量精度有较高的要求,设计一种基于AD7606数模转换芯片的高精度电参数采集系统,并详细介绍系统的硬件和软件设计及其实现过程。

对该系统进行测试与分析,测试结果表明,该系统具有采样同步性好、抗干扰能力强、采样精度高等特点,适用于多通道、高精度采集场景及继电保护场景,能很好地满足电力系统监测的需求。

【总页数】5页(P98-101)
【作者】蒋海鹏;蒋海洪;黄伟宁;刘坷嘉
【作者单位】广西上善若水发展有限公司;常州达达智能科技有限公司
【正文语种】中文
【中图分类】TD67
【相关文献】
1.基于AD7606的高精度数据采集系统的实现
2.基于AD7606的SVG数据同步采集系统设计
3.基于BQ76pl455高精度电压采集芯片的储能电池管理系统设计
4.基于AD7606的树莓派多通道数据采集系统设计
5.基于IEEE1588时间同步的分布式桥梁健康监测系统基于BQ76pl455高精度电压采集芯片的储能电池管理系统设计
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统中多通道同步采样ADC(AD7606)与浮点
DSP(ADSP-21479)通信的设计与实现
内容
1.简介31.1 AD7606 简介31.2 ADSP-21479 简介4
2.AD7606 和ADSP- 21479 配置与连接5
3.时序分析6
4.测试结果和结论74.1 测试结果74.2 结论10
5.DSP 参考代码10
6.参考文献12
1.简介1.1 AD7606 简介AD7606 是16 位,8 通道同步采样模数数据采集系统。

AD7606 完全满足电力系统的要求,具有灵活的数字滤波器、
2.5V 基准电
压源、基准电压缓冲以及高速串行和并行接口。

它采用5V 单电源供电,可以
处理±10V 和±5V 真双极性输入信号、同时所有通道均能以高
达200kSPS 的吞吐率采样。

图1 AD7606 的内部原理框图。

图2 AD7606 的管脚图。

AVcc 模拟电源,4.75V~5.25V Vdrive 逻辑部分电源Vdd 模拟输入部
分正电压Vss 模拟输入部分负电压DGND 数字地AGND 模拟地
1.2 ADSP-21479 简介ADSP-21479 是SIMD (单指令多数据)SHARC 家族中的一员,它基于65nm 的最新工艺,具有低成本,低功耗的的特点,是一
颗集成有大容量片上SRAM 和ROM 的32/40 位浮点DSP。

ADSP-21479 是性
能出色,266MHZ/1596MFLOP:
266 MHz/1596FLOPS SIMD SHARC 内核,支持32-bit 浮点、40-bit 浮点以及16/32-bit 定点数据类型支持多达5 Mb 片内SRAM 支持16 位宽SDR、SDRAM 存储器接口数字应用接口DAI,支持多达8 个的高速同步串
口(SPORT)及SPI 串口 2 个精确时钟发生器20 线数字I/O 端口 3 个定时器、UART、I2C 兼容接口ROM/JTAG 安全模式供应196 引脚CSP_BGA 封装与100 引脚LQFP 封装产品,适合于工业客户的要求供应商业级、工业级温度与。

相关文档
最新文档