七年级上册数学第二章知识点归纳总结
初一数学上册第二章知识点总结

初一数学上册第二章知识点总结【一】:初一数学上册知识点总结人教版初一数学(上册)人教版初一数学所学内容第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+-× ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b 时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ;(2)若a、b、c10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2,非正数是:-a2. 有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① ②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a a≤ 0 Û a是负数或0 Û a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有a-b=a+(-b). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
七年级上册数学第二章知识点

七年级上册数学第二章知识点初一上册数学第二章知识点1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.2、系数单项式中的数字因数叫做这个单项式的系数.3、单项式的次数一个单项式中,所有字母的指数的和叫做这个单项式的次数.4、多项式几个单项式的和叫做多项式.5、多项式的项在多项式中,每个单项式叫做多项式的项.-6是常数项.6、常数项多项式中,不含字母的项叫做常数项.7、多项式的次数多项式里,次数的项的次数,就是这个多项式的次数.8、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.9、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.10、整式单项式和多项式统称整式。
11、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.12、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.例:合并下列各式的同类项:13、去括号法则括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)15、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形数学中h是什么意思“h”在数学中最常用的是在几何图形中表示图形的高,在计算题中也表示时间的单位,一小时为1h。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版

千里之行,始于足下。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版以下是七年级数学上册第二章整式的加减的知识点总结(新人教版):1. 整式的概念:由常数和变量的乘积以及其和差的形式构成的代数式称为整式。
2. 整式的加法:将同类项相加,不同类项保持不变。
3. 同类项:具有相同字母,相同指数的项称为同类项。
4. 倍数和倍式:若正整数a能整除正整数b(即b/a的结果为整数),则a称为b的因数,b称为a的倍数。
a、b都是整数。
5. 同底数幂的加减法:同底数幂相加(或相减)时,保持底数不变,将指数相加(或相减)。
6. 整式的减法:先将被减整式中的各项取相反数,然后按照整式的加法规则进行加法运算。
7. 约束条件:表示一些情况下的特殊要求,一般用等式或不等式表示。
8. 字母运算规则:(1)相同字母的指数相加(或相减)。
(2)不同字母之间的运算,字母之间互不影响。
9. 整式化简:将整式中的同类项合并后,将不同字母之间的项单独放在一起。
第1页/共2页锲而不舍,金石可镂。
10. 内括号化简:使用分配律将多个内括号化简为单个内括号。
11. 外括号化简:使用分配律将外括号前的数分别与里面的每一项进行乘法运算。
12. 同底数幂的运算规则:(1)乘法:底数相同,指数相加。
(2)除法:底数相同,指数相减。
13. 括号内指数的运算规则:括号内的整个表达式的指数乘以括号外数的指数。
14. 幂的指数为负的意义:a的-n次方等于1除以a的n次方。
15. 合并同类项:将整式中相同的同类项相加或相减,得到的结果仍为整式。
16. 合并同底数幂:将整式中的同底数幂相加或相减,得到的结果仍为整式。
这些是七年级数学上册第二章整式的加减的知识点总结,希望对你有帮助!。
新北师大版七年级数学上册第二章相交线与垂直线知识点梳理汇总

新北师大版七年级数学上册第二章相交线与垂直线知识点梳理汇总
本文档旨在对新北师大版七年级数学上册第二章相交线与垂直线的知识点进行梳理和汇总。
一、相交线与垂直线的定义
1. 相交线:两条线段共有的一个或多个点称为相交点,而这两条线段称为相交线。
2. 垂直线:两条互相垂直的线段称为垂直线。
二、相交线与垂直线的性质
1. 垂直线性质:
- 垂直线的两条互相垂直的线段相交于一点。
- 垂直线的两条互相垂直的线段上的任意一点,被另一条垂直线分成两个互为垂直的线段。
- 垂直线的两条互相垂直的线段上的任意一点,与另一条垂直线的两条互相垂直的线段上的任意一点连接起来,构成的两条线段是互相垂直的。
2. 相交线性质:
- 相交线的两条线段互相垂直。
- 相交线的两条互相垂直的线段上的任意一点,与另一条相交线的两条互相垂直的线段上的任意一点连接起来,构成的两条线段是互相垂直的。
- 相交线的两条互相垂直的线段上的任意一点,被另一条相交线分成两个互为垂直的线段。
三、应用
1. 通过相交线与垂直线的性质,可以在几何图形中确定垂直关系,帮助解决几何问题。
本文档总结了新北师大版七年级数学上册第二章相交线与垂直线的定义、性质以及应用。
掌握这些基础知识,有助于理解几何图形的垂直关系,解决相关问题。
七年级上册数学第二章知识点总结

七年级上册数学第二章知识点总结一、有理数1. 有理数的概念-整数和分数统称为有理数。
-有理数可分为正有理数、0、负有理数。
2. 有理数的分类-按定义分类:-有理数分为整数和分数。
-整数包括正整数、0、负整数。
-分数包括正分数、负分数。
-按性质分类:-有理数分为正有理数、0、负有理数。
-正有理数包括正整数和正分数。
-负有理数包括负整数和负分数。
3. 数轴-规定了原点、正方向和单位长度的直线叫做数轴。
-任何一个有理数都可以用数轴上的一个点来表示。
-数轴上两个点表示的数,右边的总比左边的大。
4. 相反数-只有符号不同的两个数叫做互为相反数。
- 0 的相反数是0。
-若a、b 互为相反数,则a+b=0。
5. 绝对值-数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
-一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0。
即:-当a>0 时,|a|=a;-当a=0 时,|a|=0;-当a<0 时,|a|=-a。
二、有理数的加减法1. 有理数的加法法则-同号两数相加,取相同的符号,并把绝对值相加。
-绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
-一个数同0 相加,仍得这个数。
2. 有理数的加法运算律-加法交换律:a+b=b+a。
-加法结合律:(a+b)+c=a+(b+c)。
3. 有理数的减法法则-减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
三、有理数的乘除法1. 有理数的乘法法则-两数相乘,同号得正,异号得负,并把绝对值相乘。
-任何数与0 相乘,都得0。
2. 有理数的乘法运算律-乘法交换律:ab=ba。
-乘法结合律:(ab)c=a(bc)。
-乘法分配律:a(b+c)=ab+ac。
3. 有理数的除法法则-除以一个不等于0 的数,等于乘这个数的倒数。
即a÷b=a×1/b(b≠0)。
-两数相除,同号得正,异号得负,并把绝对值相除。
2022年七年级数学上册 第二章 整式的加减知识点总结 (新版)新人教版

第二章知识点总结
第二章整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
(word版)七年级数学上册第二章知识点总结,文档

第二章整式的加减整式的概念:单项式与多项式统称整式。
〔分母含有字母的代数式不是整式〕一、单项式:都是数或字母的积的式子叫做单项式。
单项式的系数:单项式中的数字因数。
2.单项式的次数:一个单项式中所有字母的指数的和。
注意①圆周率π是常数;②只含有字母因式的单项式的系数是1或-1,“1〞通常省略不写。
例:x2,-a2b等;③单项式次数只与字母指数有关。
例:23πa6的次数为。
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
例:-系数是。
⑥单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。
考点:1 .在代数式:2,3m3,22,m2,2b2,0中,单项式的个数有〔〕n3个个个个2.单项式-2ab4c2的系数与次数分别是〔〕3A.-2,6B.2,7C.2,6D.-2,7333.5ab2的系数是_____________.-1-4.判断以下式子是否是单项式,是的√,不是的打X2abx;a;5ab;x y;;xa61xx12;2;0;7 ;2(a1); 2 ;xy;;x-写出以下单项式的系数和次数-a的系数是______,次数是______;35ab2的系数是______,次数是______;a2bc3的系数是_____,次数是_____;x2y3的系数是_____,次数是_____;x2y的系数是______,次数是______;3xy2z3的系数是_____,次数是_____;53x2y的系数是_____,次数是______;6.如果2x b1是一个关于x的3次单项式,那么b=_______;假设-abm1是一个4次6单项式,那么m=_____;8xmy2是一个6次单项式,求2m10的值。
写出一个三次单项式__________,它的系数是_______;写一个系数为3,含有两个字母a,b的四次单项式_______。
知识点回忆单项式的定义:_________________________________叫做单项式。
数学七年级上册第二章知识点

数学七年级上册第二章知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子叫做代数式。
单独的一个数或者字母也是代数式。
2. 用图形表示的代数式叫做示意图。
3. 列代数式时,要先认真审题,抓住关键词语,弄清数量关系。
4. 书写代数式时,应该注意:(1)乘号应省略不写,或用“·”(点)表示;(2)数字与字母相乘时,数字在前,字母在后,并把绝对值符号写在末尾;(3)相除时分数线起到括号的作用,如“$a$/$b$”写成“$\frac{a}{b}$”(或“$a$/$b$”);(4)带分数的要写成分数的形式。
二、有理数的乘方1. 正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
注意:当$n$为正奇数时,$a^{n}$表示$n$个正数连乘所得的积,当$n$为正偶数时,$a^{n}$表示一个正数和原数的积。
如:$3^{5}$表示$3\times3\times3\times3\times3=243$,读作“三百二十三”;$-3^{5}$表示5个$-3$相乘,读作“负三百二十三”。
2. 由乘方的意义可知,负数的偶次幂是正数,负数的奇次幂是负数。
如:($-2$)$\mspace{2mu}^{4}$=($-2$)$\times$($-2$)$\times$($-2$$\times$($-2$)=$16$;$- 2^{3} = - 2 \times 2 \times 2= - 8$. 注意:($- 2$)$\mspace{2mu}^{4}$与($- 2^{4}$)意义不同,($- 2^{4}$)表示四个$- 2$相乘。
3. 乘方运算可以利用乘法的运算来进行。
4. 正整数指数幂的运算性质可以推广到有理数。
计算负数指数幂时,一定要根据负整数指数幂的意义计算。
5. 计算结果中,小数点移动的位数取决于指数,指数有几位小数点就移动几位。
当多个幂的底数相同时可以用简便形式。
6. 零指数幂的意义:$a^{0} = 1(a \neq 0)$;负整数指数幂的意义:$a^{- p} = \frac{1}{a^{p}}(a \neq 0,p为正整数)$;正整数指数幂的运算性质可以推广到有理数.计算结果中,小数点移动的位数取决于指数,指数有几位小数点就移动几位;当多个幂的底数相同时可以用简便形式;零指数幂的意义:$a^{0} = 1(a \neq 0)$;负整数指数幂的意义:$a^{- p} = \frac{1}{a^{p}}(a \neq 0,p为正整数)$.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学第二章为整式的加减,知识点主要有单项式、多项式和同类项几部分。
单项式
1、定义:对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式。
单独一个数或一个字母也是单项式。
2、系数:单项式中的数字因数叫做这个单项式的系数。
3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
多项式
几个单项式的和叫做多项式。
1、多项式的项:多项式中每一个单项式叫做多项式的项。
2、常数项:多项式中不含字母的项叫常数项。
3、多项式的次数:多项式中次数最高的项的次数,叫做多项式的次数。
同类项
1、定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个
常数项也是同类项。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
3、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数
的和,且字母连同它的指数不变。
4、整式的加减:整式的加减就是合并同类项的过程。
以上为小编整理的七年级上册数学第二章的知识点,希望能够帮到你。