2020人教版高中物理高三一轮复习(课件+练习) (1)

合集下载

人教版2020年高考物理一轮复习全册ppt课件

人教版2020年高考物理一轮复习全册ppt课件
() A.P的加速度小于Q的加速度 B.斜劈A受到地面向左的摩擦力作用 C.斜劈A对地面的压力等于(M+2m)g D.斜劈A对地面的压力等于(M+2m)g+1/2(F1+F2) 图10-3
考点分阶突破
[答案] AC
[解析] 当 P 或 Q 匀速下滑时,由平衡条件,斜面对它们的作用力竖直向上,对 P、 Q 和 A,水平方向不受地面的摩擦力作用,竖直方向地面对斜劈 A 的支持力等于 (M+2m)g;现施加平行于斜劈侧面的恒力 F1、F2,斜面对 P、Q 的支持力和摩擦 力不变,即 P 或 Q 对斜面的作用力竖直向下,斜劈 A 受力不变,选项 B、D 错误, 选项 C 正确;对施加平行于斜劈侧面的恒力 F1、F2 的 P 和 Q,加速度 a1=������������1、 a2=������������2,且 a1<a2,选项 A 正确.
图10-4
考点分阶突破
[答案] (1)0.4 (2)5 2 s [解析] (1)根据 v-t 图像可知,物体 A 的加速度 aA=ΔΔ������������=2 m/s2 以 A 为研究对象,根据牛顿第二定律可得 F-μmAg=mAaA 代入数据得 μ=0.4.
考点分阶突破
(2)由图像知,木板 B 的长度 l=12×5×10 m=25 m
������-������������������ ������
cos
������
=gsin
θ-μgcos
θ<a1,选项
B
正确.
考点分阶突破
变式1 (多选)如图10-2所示,一辆运送沙子的自卸卡车装满沙子.沙粒之 间的动摩擦因数为μ1,沙子与车厢底部材料的动摩擦因数为μ2,车厢的倾 角用θ表示(已知μ2>μ1),下列说法正确的是 ( ) A.要顺利地卸干净全部沙子应满足tan θ>μ2 B.要顺利地卸干净全部沙子应满足sin θ>μ2 C.只卸去部分沙子,车上还留下一部分沙子, 应满足μ2>tan θ>μ1 D.只卸去部分沙子,车上还留有一部分沙子,应满足μ图2>1μ01->2tan θ

2020届高考物理人教版一轮复习动量守恒定律及其应用PPT课件(86张)

2020届高考物理人教版一轮复习动量守恒定律及其应用PPT课件(86张)
B.在下滑过程中,小球和槽之间的相互作用力始终不做功 C.全过程中,小球和槽、弹簧所组成的系统机械能守恒,且 水平方向动量守恒 D.小球被弹簧反弹后,小球和槽的机械能守恒,但小球不能 回到槽高 h 处
解析:D 在运动的全过程中,当小球与弹簧接触后,小球与 槽组成的系统在水平方向所受合外力不为零,系统在水平方向动量 不守恒,故 A 错误;在下滑过程中,两物体都有水平方向的位移, 而相互作用力是垂直于槽面的,故作用力方向和位移方向不垂直, 相互作用力均要做功,故 B 错误;全过程小球和槽、弹簧所组成的 系统只有重力与弹力做功,系统机械能守恒,小球与弹簧接触过程 系统在水平方向所受合外力不为零,系统水平方向动量不守恒,故 C 错误;小球在槽上下滑过程系统水平方向不受力,系统水平方向 动量守恒,球与槽分离时两者动量大小相等,由于 m<M,则小球的
【强化训练】 1.(2018·吉林模拟)如图所示,弹簧的一端固定在竖直墙上,质 量为 M 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接, 一个质量为 m(m<M)的小球从槽高 h 处开始自由下滑,下列说法正 确的是( )
A.在以后的运动全过程中,小球和槽的水平方向动量始终保 持某一确定值不变
代入数据解得 v=2.4 m/s 【答案】 (1)20 N·s,水平向右 (2)2.4 m/s
【反思启迪】 (1)人和滑板 A、B 在相互作用的过程中,系统 竖直方向的合力并不为零,但系统水平方向始终无外力作用,所以 可用分方向的动量守恒定律求解.
(2)系统的动量是否守恒与系统和过程的选取密切相关,因此应 用动量守恒解决问题时,一定要明确哪些物体组成的系统在哪个过 程中动量是守恒的.
【解析】 (1)设球 b 的质量为 m2,细线长为 L,球 b 下落至最 低点、但未与球 a 相碰时的速率为 v,由机械能守恒定律得 m2gL= 12m2v2①

高三一轮复习物理课件单元ppt

高三一轮复习物理课件单元ppt
水流快慢
船的一个分速度
速度方向
水流的方

船在静水中
由船的发动机工作给船的速
发动机运行功
船头的指
速度 v 船
度,这是船的另一分速度
率大小

船相对地的
船体对地的速度,这是船的合
两个分速度的
船体实际
速度 v
速度
大小及方向
运行方向
基础自主梳理
要点研析突破
要点研析突破
速效提升训练
3.对小船渡河的讨论
(1)v 船>v 水
,所以 B 选项正确.
2
2
2
u
u v
1 k
答案:B
基础自主梳理
要点三
要点研析突破
要点研析突破
速效提升训练
绳牵引物体模型的分析
1.模型展示:绳子牵引物体(如船)运动,绳子往往与物体(如:船)运动的
方向不在同一直线上,如图所示.
2.分析处理:物体(如船)运动,实际上参与了两个方向的分运动,即沿绳
向上的分运动(沿绳向上缩短)和垂直绳向下的分运动(垂直绳向下旋转).将
向都沿负 x 轴方向,因而物体沿负 x 轴方向做匀加速运动,A 项错误;在 y 方
向上,物体的初速度为 v0y=6m/s,加速度 ay=3m/s2,方向都沿正 y 轴方向,因而
物体沿正 y 轴方向做匀加速运动,B 项正确;物体的合速度与负 x 轴的夹角

0
3
θ=arctan =arctan ,合加速度与负
要点二
要点研析突破
要点研析突破
速效提升训练
小船渡河问题的分析
1.处理方法:小船渡河时,实际上参与了两个方向的分运动,即水流的运动和

2020高考物理一轮复习6.3定律与能量综合专题课件新人教版

2020高考物理一轮复习6.3定律与能量综合专题课件新人教版

4.(2018·安徽三模)(多选)如图所示,
质量为 m 的长木板 B 放在光滑的水平面
上,质量为14m 的木块 A 放在长木板的左端,一颗质量为116m 的
子弹以速度 v0 射入木块并留在木块中,当木块滑离木板时速度为
18v0,木块在木板上滑行的时间为 t,则下列说法正确的是(
(3)对小车应用动能定理:μm2gx=12m1v2 解得:x=0.096 m (4)要使物块恰好不从车面滑出,须使物块到车面最右端时与 小车有共同的速度,设其为 v′,则:m2v0′=(m1+m2)v′ 由系统能量守恒有:
12m2v0′2=12(m1+m2)v′2+μm2gL 代入数据解得 v0′=5 m/s. 故要使物块不从小车右端滑出,物块滑上小车左端的速度 v0 ′不超过 5 m/s.
答案 B 解析 当小球上升到滑块上端时,小球与滑块水平方向速度 相同,设为 v1,根据水平方向动量守恒有:mv0=(m+M)v1,根 据机械能守恒定律有:12mv02=12(m+M)v12+mgR,根据题意, 有:M=4m,联立两式解得:v0=5 m/s,故 A、C、D 三项错误, B 项正确.
2.(2018·山东模拟)(多选)如图所示,质
是一个四分之一圆弧 线水平.另有一个质量为 m 的小球以初速度 v0 从 E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知 M=4m,g
取 10 m/s2,不计摩擦.则小球的初速度 v0 的大小为( )
A.v0=4 m/s
B.v0=5 m/s
C.v0=6 m/s
D.v0=7 m/s
题型透析
“滑块-弹簧”模型 例 1 如图所示,质量分别为 1 kg、3 kg 的滑块 A、B 位于 光滑水平面上,现使滑块 A 以 4 m/s 的速度向右运动,与左侧连 有轻弹簧的滑块 B 发生碰撞.求二者在发生碰撞的过程中.

2020届高考物理一轮复习说课课件《动量守恒定律》(共16张PPT)

2020届高考物理一轮复习说课课件《动量守恒定律》(共16张PPT)
2020一轮备考 《动量守恒定律》
考情分析 学情分析 复习目标 备考策略
感谢聆听!敬请指导!
一、考情分析------考纲
主题
内容
要求 说明
选力学
碰撞与动 量守恒
动量、动量定理、动量守恒 定律及其应用

只限于 一维

弹性碰撞和非弹性碰撞

3-5
单位
制和 实验 实验七:验证动量守恒定律
……
实验
一、考情分析------考纲
2018
15
Ⅱ卷
用动量定理求冲击力 能量三大观点解题,有可能
24 动量守恒与动能定理综合 成为高考压轴题的重点题型
Ⅰ卷 14 2017
动量守恒、火箭反冲
(3)碰撞模型是近年来高
Ⅱ卷 15
原子核衰变、动量守恒 考命题的重点
Ⅰ卷 35
用动量定理求冲击力
二、学情分析
1. 有努力,有困难 2. 学业繁重,习惯难养 3. 注重刷题,忽视基础,疏于反思
的核心素养。
引导:
(2018·课标全国Ⅱ)高空坠物极易 ①情境的理解,如何模型化; 对行人造成伤害.若一个50 g的鸡 ②过程的理解,分过程与全过程; 蛋从一居民楼的25层坠下,与地面 ③力的概念理解,冲击力、重力、
的碰撞时间约为2 ms,则该鸡蛋对 合力。什么时候重力可忽略;
地面产生的冲击力约为( )
对2019年考试大纲和考试说明的思考
1.考点内容不变
• 2018年和2019年的考试大纲中:
考点、考点级别、考点内容几乎完全相同,均无大的变化。
• 2019年考试说明:现在正处于新旧高考交替的历史转折时期,考点 内容的几乎不变是为了保障新旧高考的平稳过渡。

2020版高三物理一轮复习(课件+练习):第一章 运动的描述匀变速直线运动

2020版高三物理一轮复习(课件+练习):第一章  运动的描述匀变速直线运动

第一章 ⎪⎪⎪运动的描述 匀变速直线运动 [全国卷5年考情分析] 参考系、质点(Ⅰ) 位移、速度和加速度(Ⅱ) 以上2个考点未曾独立命题第1节 描述运动的基本概念一、质点、参考系 1.质点(1)定义:用来代替物体的有质量的点。

(2)条件:物体的大小和形状对研究的问题的影响可以忽略不计。

[注1] (3)实质:质点是一种理想化的模型,实际并不存在。

2.参考系(1)定义:在描述物体的运动时,用来做参考的物体。

(2)参考系的选取[注2]①参考系的选取是任意的,既可以是运动的物体,也可以是静止的物体,但被选为参考系的物体应认为是静止的,通常选地面为参考系。

②对于同一物体,选择不同的参考系时观察运动结果一般不同。

③比较两物体的运动情况时,必须选同一参考系。

二、位移、速度1.位移和路程(1)二者的定义(2)二者的区别和联系2.(1)平均速度:物体发生的位移与发生这段位移所用时间的比值,即v=xt,是矢量,其方向就是对应位移的方向。

(2)瞬时速度:运动物体在某一时刻或经过某一位置的速度,是矢量。

[注3](3)速率:瞬时速度的大小,是标量。

三、加速度[注4]1.物理意义:描述物体速度变化快慢的物理量。

2.定义式:a=ΔvΔt,单位为m/s2。

3.方向:加速度为矢量,方向与速度变化量的方向相同。

【注解释疑】[注1] 不以“大小”论质点①大的物体不一定不能看成质点;②小的物体不一定能看成质点。

[注2] 不能选自身为参考系。

[注3] 在实际问题中,只要时间足够短,平均速度可认为等于瞬时速度,如光电门问题。

[注4] 速度变化快慢、速度变化率、加速度三者含义相同,速度变化快,也就是速度变化率大,加速度大。

[深化理解]1.质点的辨识物体能否看成质点,关键不在物体本身,而是要看研究的问题,同一个物体在不同情况下有时可看成质点,有时则不能。

2.“速度”的理解“速度”一词在不同情境下可能表示瞬时速度、平均速度、速率、平均速率,解决具体问题时需要加以区分。

2020届高考物理一轮复习 新人教版【共24套168页】

2020届高考物理一轮复习 新人教版【共24套168页】

本套资源目录2020届高考物理一轮复习稳中培优计算实验练习五新人教版2020届高考物理一轮复习稳中培优计算实验练习四新人教版2020届高考物理一轮复习稳中培优非选择练习一新人教版2020届高考物理一轮复习稳中培优非选择练习三新人教版2020届高考物理一轮复习稳中培优非选择练习二新人教版2020届高考物理一轮复习稳中培优非选择练习四新人教版2020届高考物理一轮复习计算题夯基练习一新人教版2020届高考物理一轮复习计算题夯基练习三新人教版2020届高考物理一轮复习计算题夯基练习二新人教版2020届高考物理一轮复习计算题夯基练习五新人教版2020届高考物理一轮复习计算题夯基练习四新人教版2020届高考物理一轮复习计算题夯基练习新人教版2020届高考物理一轮复习选择题固基优练一新人教版2020届高考物理一轮复习选择题固基优练三新人教版2020届高考物理一轮复习选择题固基优练二新人教版2020届高考物理一轮复习选择题固基优练六新人教版2020届高考物理一轮复习选择题固基优练四新人教版2020届高考物理一轮复习选择题固基优练新人教版2020届高考物理一轮复习选择题稳优提优优练一新人教版_ 2020届高考物理一轮复习选择题稳优提优优练三新人教版2020届高考物理一轮复习选择题稳优提优优练三新人教版12020届高考物理一轮复习选择题稳优提优优练二新人教版2020届高考物理一轮复习选择题稳优提优优练五新人教版2020届高考物理一轮复习选择题稳优提优优练四新人教版稳中培优计算、实验练习(五)1、合肥开往上海的动车组D3028是由动车和拖车编组而成只有动车提供动力.假定该列动车组由8节车厢组成,第1节和第5节车厢为动车,每节动车的额定功率均为P 0,每节车厢的总质量为m ,动车组运行过程中所受阻力为车重的k 倍.若动车组以额定功率从合肥南站启动,沿水平方向做直线运动,经时间t 0速度达到最大,重力加速度为g.求:(1)当动车组速度达到最大速度一半时的加速度和此时第6节车厢对第7节的拉力;(2)动车组从启动至速度刚达到最大的过程中所通过的路程.【参考答案】(1)kg 4kmg (2)8k 2mg 2P 0t 0-P 2032k 3m 2g 3 解析:(1)设动车组匀速运动的速度为v m ,动车组速度为最大速度一半时动车的牵引力为F ,有2P 0=8kmgv m2P 0=2F v m 2对动车组,由牛顿第二定律2F -8kmg =8maa =2F -8kmg 8m=kg 对第7、8节车厢的整体有:F 67-2kmg =2ma解得:F 67=4kmg(2)由动能定理得:2P 0t 0-8kmgx =12(8m)v 2m -0 x =P 0t 04kmg -P 2032k 3m 2g 3=8k 2mg 2P 0t 0-P 2032k 3m 2g 3 2、如图所示,在xOy 坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m 、带电荷量为q 的粒子在第二象限内的P(-L ,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x 轴上的Q(L,0)点进入第一象限,重力加速度为g ,求:(1)粒子从P 点运动到坐标原点的时间;(2)匀强磁场的磁感应强度的大小和方向.【参考答案】(1) 2L g (2)垂直于纸面向里,2m 2gL qL解析:(1)粒子在第二象限内沿角平分线做直线运动,则电场力和重力的合力方向沿PO 方向,则粒子带正电.mg =qE ,2mg =ma.根据运动学公式可知,2L =12at 2. 联立解得t =2L g. (2)粒子在第二象限中做加速直线运动,根据动能定理可知,mgL +qEL =12mv 2-0. 解得,v =2gL ,方向与x 轴正方向成45°角.电场力与重力等大反向,洛伦兹力提供向心力,Bqv =m v 2R ,粒子在第四象限内做匀速圆周运动,轨迹如图所示:根据左手定则可知,磁场方向垂直于纸面向里.根据几何关系可知,粒子做匀速圆周运动的半径R =22L. 解得,B =2m 2gL qL. 3、(实验)利用图1的装置探究“恒力做功与物体动能变化”的关系.小车的质量为M ,钩码的质量为m ,且不满足m <M.打点计时器的电源是频率为f 的交流电.(1)实验中,把长木板右端垫高,在不挂钩码且________的情况下,轻推一下小车,若小车拖着纸带做匀速运动,表明已经消除了摩擦力和其他阻力的影响.(填选项前的字母)A .计时器不打点B .计时器打点(2)图2是正确操作后得到的一条纸带.纸带上各点是打出的计时点,其中O 点为打出的第一个点.小车发生的位移从纸带上计时点间的距离可以直接测出,利用下列测量值和题中已知条件能简单、准确完成实验的一项是________________________________________________________________________.(填选项前的字母)A .OA 、AD 和EG 的长度B .BD 、CF 和EG 的长度C .OE 、DE 和EF 的长度D .AC 、EG 和BF 的长度(3)若测得图2中OF =x 1,EG =x 2,则实验需要验证的关系式为________.(用已知和测得物理量的符号表示)【参考答案】(1)B (2)C (3)mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222 解析:(1)打点计时器工作时,纸带受到摩擦力作用,平衡摩擦力时,需要通过打点计时器判断是否匀速,B 选项正确.(2)简单、准确地完成实验,需要选取的两点尽可能远,且方便测量,故测量OE 段的长度,计算合力做功,测量DE 和EF 的长度,计算E 点的瞬时速度,C 选项正确.(3)EG =x 2,根据匀变速直线运动的规律可知,中间时刻F 点的瞬时速度v F =EG 2T =fx 22. 系统增加的动能ΔE K =12(M +m)v 2F ,系统减少的重力势能ΔE P =mgx 1.实验验证系统机械能守恒的表达式为mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222. 4、如图,是游乐场的一项娱乐设备.一环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下,落到一定位置时,制动系统启动.到地面时刚好停下.已知座舱开始下落的高度为H =75 m ,当落到离地面h =30 m 的位置时开始制动,座舱均匀减速.在一次娱乐中,某同学把质量m =6 kg 的书包放在自己的腿上.(g 取10 m/s 2),不计座舱与柱子间的摩擦力及空气阻力.(1)当座舱落到离地面h 1=60 m 和h 2=20 m 的位置时,求书包对该同学腿部的压力各是多大;(2)若环形座舱的质量M =4×103 kg ,求制动过程中机器输出的平均功率.【参考答案】(1)零 150 N (2)1.5×106W解析:(1)分析题意可知,座舱在离地面h =30 m 的位置时开始制动,说明座舱离地面60 m 时,座舱做自由落体运动,处于完全失重状态,书包对该同学腿部的压力为零.座舱落到离地面20 m 高时,做匀减速直线运动,根据牛顿第二定律可知,F 2-mg =ma.座舱下落45 m 时开始制动,此时速度为v.v 2=2g(H -h).座舱到地面时刚好停下,v 2=2ah.联立解得,F =150 N.根据牛顿第三定律可知,该同学腿部受到的压力为150 N.(2)制动过程中,座舱所受的制动力为F 0,经历的时间为t ,根据运动学公式可知,t =v a. 根据牛顿第二定律,对座舱有,F 0-Mg =Ma.座舱克服制动力做功W =F 0h.机器输出的平均功率P =W t .联立解得,P =1.5×106W.5、如图所示,矩形区域abcdef 分为两个矩形区域,左侧区域充满匀强电场,方向竖直向上,右侧区域充满匀强磁场,方向垂直纸面向外,be 为其分界线,af =L ,ab =0.75L ,bc =L.一质量为m 、电荷量为e 的电子(重力不计)从a 点沿ab 方向以初速度v 0射入电场,从be 边的中点g 进入磁场.(已知sin37°=0.6,cos37°=0.8)(1)求匀强电场的电场强度E 的大小;(2)若要求电子从cd 边射出,求所加匀强磁场磁感应强度的最大值B m ;(3)调节磁感应强度的大小.求cd 边上有电子射出部分的长度.【参考答案】(1)16mv 209eL (2)3mv 0eL解析:(1)电子在电场中做类平抛运动,根据运动的合成与分解法则可知, 竖直方向上,L 2=12×eE mt 2. 水平方向上,0.75L =v 0t.联立解得,E =16mv 209eL. (2)电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,evB =m v 2r. 运动轨迹刚好与cd 边相切时,半径最小,此时磁感应强度最大,轨迹如图所示:速度方向与水平方向夹角的正切值tanθ=0.5L 0.75L ×2=43,则速度与be 边的夹角为37°. 电子进入磁场时的速度为v =v 0sin37°=53v 0.根据几何关系可知,r 1+r 1cos37°=L.解得最大磁感应强度B m =3mv 0eL.稳中培优计算、实验练习(四)1、骏驰汽车赛车场有一段赛道可简化为这样:平直的赛道中间有一段拱形路面,其最高点P 与水平路面的高度差为1.25 m ,拱形路面前后赛道位于同一水平面上.以54 km/h 的初速进入直道的赛车,以90 kW 的恒定功率运动10 s 到达P 点,并恰好从P 点水平飞出后落到水平赛道上,其飞出的水平距离为10 m .将赛车视为质点,不考虑赛车受到的空气阻力.已知赛车的质量为1.6×103 kg ,取g =10 m/s 2,求:(1)赛车到达P 点时速度的大小.(2)拱形路面顶点P 的曲率半径.(3)从进入直道到P 点的过程中汽车克服阻力做的功.【参考答案】(1)20 m/s (2)40 m (3)7.4×105 J解析:(1)赛车到达P 点后做平抛运动.水平方向上,x =v p t.竖直方向上,h =12gt 2. 联立解得,v p =20 m/s.(2)赛车运动到拱形路面顶点P 时,重力提供向心力.mg =m v P R. 解得曲率半径R =40 m.(3)从进入直道到P 点的过程中,汽车牵引力做功,重力做功,克服阻力做功.根据动能定理可知,Pt -mgh -W f =12mv 2P -0. 解得,W f =7.4×105 J.2、如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场.A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1.平行金属板右侧有一挡板M ,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2.CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,O′C=a ,现有大量质量均为m ,含有各种不同电荷量、不同速度的带电粒子(不计重力),自O 点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B 2中,求:(1)进入匀强磁场B 2的带电粒子的速度;(2)能击中绝缘板CD 的粒子中,所带电荷量的最大值;(3)绝缘板CD 上被带电粒子击中区域的长度.【参考答案】(1)EB 1(2)2+1mEB 1B 2a(3)2a解析:(1)平行金属板间存在相互垂直的匀强电场和匀强磁场,沿直线OO′运动的带电粒子,处于受力平衡状态,qvB 1=qE.解得,v =EB 1.(2)带电粒子进入匀强磁场B 2后做匀速圆周运动,洛伦兹力提供向心力. qvB 2=m v2r.电荷量最大的带电粒子,运动的轨迹半径最小,带正电,轨迹向下偏转,与CD 板相切,如图所示:根据几何关系可知,r 1+2r 1=a. 依题意解得,r 1=a 1+2,q =2+1mEB 1B 2a.(3)带负电的粒子在磁场B 2中向上偏转,击中绝缘板CD 的临界情况是轨迹与CD 相切. 根据几何关系可知,r 2+a =2r 2. 解得,r 2=a2-1.CD 板上被带电粒子击中区域的长度为x =r 2-r 1=2a.3、(实验)一个喷漆桶能够向外喷射不同速度的油漆雾滴,某同学决定测量雾滴的喷射速度,他采用如图1所示的装置,一个直径为d =40 cm 的纸带环,安放在一个可以按照不同转速转动的固定转台上,纸带环上刻有一条狭缝A ,在狭缝A 的正对面画一条标志线,如图1所示.在转台开始转动达到稳定转速时,向侧面同样开有狭缝B 的固定纸盒中喷射油漆雾滴,当狭缝A 转至与狭缝B 正对平行时,雾滴便通过狭缝A 匀速运动打在纸带的内侧面留下痕迹(若此过程转台转过不到一圈).将纸带从转台上取下来,展开平放,并与毫米刻度尺对齐,如图2所示.(1)设喷射到纸带上的油漆雾滴痕迹到标志线的距离为s ,则从图2可知,其中速度最大的雾滴到标志线的距离s =________cm.(2)如果转台转动的周期为T ,则这些雾滴喷射速度的计算表达式为v 0=________________________________________________________________________(用字母表示).(3)如果以纵坐标表示雾滴的速度v 0,横坐标表示雾滴距标志线距离的倒数1s ,画出v 0-1s图线,如图3所示,则可知转台转动的周期为T =________s. 【参考答案】(1)2.10 (2)πd2Ts(3)1.6解析:(1)雾滴运动一直径的长度,速度越大,运行的时间越短,转台转过的弧度越小,打在纸带上的点距离标志线的距离越小.速度最大的雾滴到标志线的距离s =2.10 cm.(2)如果转台转动的周期为T ,则雾滴运动的时间为t =s v =sTπd ,喷枪喷出雾滴的速度v 0=d t =πd 2Ts.(3)由上式变形为,v 0=πd 2Ts =πd 2T ·1s ,v 0-1s 图象中斜率k =πd 2T =0.7π7,解得,T =1.6 s.4、两小木块A 、B ,通过轻质弹簧连接,小木块B 处在固定于地面的光滑斜面底端的挡板上,小木块A 压缩弹簧处于平衡状态.现对木块A 施加一平行于斜面向上的恒力F 作用,小木块A 从静止开始沿斜面向上运动,如图所示.已知m A =m B =2 kg ,F =30 N ,斜面倾角θ=37°,弹簧劲度系数k =4 N/cm.设斜面足够长,整个过程弹簧处于弹性限度内,重力加速度取g=10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)从小木块A开始运动到小木块B刚开始运动的过程中,恒力F对小木块A做的功;(2)当小木块B的加速度a B=1 m/s2时,小木块A的加速度的大小.【参考答案】(1)1.8 J (2)2 m/s2解析:(1)初态时,小木块A压缩弹簧,根据平衡条件可知,kx1=m A gsinθ.末态时,小木块B拉伸弹簧,kx2=m B gsinθ.弹簧的形变量x=x1+x2.恒力F对小木块A做功W=F·x.联立解得,W=1.8 J.(2)当小木块B的加速度a B=1 m/s2时,弹簧的拉力大小为F1,小木块A的加速度的大小a A,根据牛顿第二定律可知,F-F1-m A gsinθ=m A a A.F1-m B gsinθ=m B a B.联立解得,a A=2 m/s2.5、磁流体发电是一种新型发电方式,图甲和图乙是其工作原理示意图.图甲中的A、B 是电阻可忽略的导体电极,两个电极间的间距为d,这两个电极与负载电阻相连.假设等离子体(高温下电离的气体,含有大量的正负带电粒子)垂直于磁场进入两极板间的速度均为v0.整个发电装置处于匀强磁场中,磁感应强度大小为B,方向如图乙所示.(1)开关断开时,请推导该磁流体发电机的电动势E的大小;(2)开关闭合后,如果电阻R的两端被短接,此时回路电流为I,求磁流体发电机的等效内阻r.【参考答案】(1)Bdv 0 (2)Bdv 0I解析:(1)等离子体垂直于磁场射入两板之间,正、负离子受到洛伦兹力作用,正离子偏向A 极板,负离子偏向B 极板,两板之间形成从A 到B 的匀强电场.当粒子受的电场力与洛伦兹力相等时,q Ed =qv 0B ,粒子不再偏转,两极板间形成稳定的电势差即发电机的电动势,E =Bdv 0.(2)如果电阻R 的两端被短接,此时回路电流为I. 根据闭合电路欧姆定律,磁流体发电机的等效内阻 r =E I =Bdv 0I .稳中培优非选择练习(一)1、如图,两条长直相交汇成直角的摩托车水平赛道,宽均为6 m ,圆弧PQ 、MN 与赛道外边缘的两条直线相切,圆弧PQ 经过赛道内边缘两条直线的交点O 2,雨后路面比较湿滑,摩托车与赛道间的动摩擦因数为0.6,设最大静摩擦力等于滑动摩擦力,赛车手(可视为质点)在直道上做直线运动,弯道上做匀速圆周运动,重力加速度g =10 m/s 2,2=1.4,7=2.6.(1)若以最短时间从P 点运动到Q 点,应选A 路线还是B 路线?(不用说明理由) (2)沿着A 路线通过弯道MN 的最大速率不能超过多少?(3)以30 m/s 的速度在直线赛道上沿箭头方向匀速行驶,若要沿B 路线安全行驶,则进入P 点前至少多远开始刹车?【参考答案】(1)B 路线合理 (2)6 m/s (3)64.5 m解析:(1)赛车手沿A 、B 路线运动时,线速度大小相等,故路径短的用时较短,选B 路线合理.(2)赛车手以速度v 1沿着A 路线通过弯道MN 时,最大静摩擦力提供向心力. μmg=m v 21r 1,解得,v 1=6 m/s.(3)赛车手以速度v 2沿着B 路线通过弯道时,最大静摩擦力提供向心力,μmg=m v 22r 2.根据几何关系可知,2(r 2-6)=r 2.赛车手以初速度v 0=30 m/s ,加速度μg,做匀减速直线运动到P 点,位移为x. 根据运动学公式可知,v 20-v 22=2ax. 联立解得,x =64.5 m.2、如图所示,水平面AB 光滑,粗糙半圆轨道BC 竖直放置.圆弧半径为R ,AB 长度为4R.在AB 上方、直径BC 左侧存在水平向右、场强大小为E 的匀强电场.一带电量为+q 、质量为m 的小球自A 点由静止释放,经过B 点后,沿半圆轨道运动到C 点.在C 点,小球对轨道的压力大小为mg ,已知E =mgq,水平面和半圆轨道均绝缘.求:(1)小球运动到B 点时的速度大小; (2)小球运动到C 点时的速度大小;(3)小球从B 点运动到C 点过程中克服阻力做的功. 【参考答案】(1)8gR (2)2gR (3)mgR 解析:(1)小球运动到B 点的过程中,电场力做功. 根据动能定理,qE·4R=12mv 2B -0.其中E =mgq.联立解得,vB =8gR.(2)小球运动到C 点时,根据牛顿第二定律, 2mg =m vC 2R .解得,vC =2gR.(3)小球从B 运动到C 点的过程,根据动能定理, -W f -2mgR =12mvC 2-12mvB 2解得,W f =mgR.3、如图所示,让摆球从图中的C 位置由静止开始摆下,摆到最低点D 处,摆线刚好拉断,小球在粗糙的水平面上由D 点向右做匀减速运动滑向A 点,到达A 孔进入半径R =0.3 m 的竖直放置的光滑圆弧轨道,当摆球进入圆轨道立即关闭A 孔,已知摆线长为L =2.5 m ,θ=60°,小球质量为m =1 kg ,小球可视为质点,D 点与小孔A 的水平距离s =2 m ,g 取10 m/s 2,试求:(1)摆线能承受的最大拉力为多大?(2)要使摆球能进入圆轨道并能通过圆轨道的最高点,求粗糙水平面摩擦因数μ的范围.【参考答案】 (1)20 N (2)μ≤0.25解析:(1)摆球由C 到D 运动过程做圆周运动,摆球的机械能守恒, mgL(1-cosθ)=12mv 2D .摆球在D 点时,由牛顿第二定律可得, F m -mg =m v 2DL联立两式解得,F m =2mg =20 N.(2)小球刚好能通过圆轨道的最高点时,在最高点由牛顿第二定律可得, mg =m v 2R.小球从D 到圆轨道的最高点过程中,由动能定理得, -μmgs-2mgR =12mv 2-12mv 2D .解得,μ=0.25.即要使摆球能进入圆轨道并能通过圆轨道的最高点,μ≤0.25.4、如图所示,空间内有场强大小为E 的匀强电场,竖直平行直线为匀强电场的电场线(方向未知),现有一电荷量为q ,质量为m 的带负电的粒子,从O 点以某一初速度垂直电场方向进入电场,A 、B 为运动轨迹上的两点,不计粒子的重力及空气的阻力.(1)若OA 连线与电场线夹角为60°,OA =L ,求带电粒子从O 点到A 点的运动时间及进电场的初速度;(2)若粒子过B 点时速度方向与水平方向夹角为60°,求带电粒子从O 点到B 点过程中电场力所做的功.【参考答案】(1)mLqEv 0= 3qEL m (2)9qEL8解析:(1)带电粒子做曲线运动,受力指向轨迹的内侧,电场力方向向上,带电粒子带负电,电场强度方向竖直向下.水平方向的位移Lsin60°=v 0t. 竖直方向的位移Lcos60°=12·qE m t 2.联立解得,t =mLqE,v 0= 3qELm. (2)根据运动的合成与分解知识可知,粒子到达B 点的速度v =v 0cos60°=2v 0.带电粒子从O 点到B 点过程中,根据动能定理可知, W =12mv 2-12mv 20. 联立解得电场力做功W =32mv 20=9qEL8.5、为了测量某种材料制成的电阻丝的电阻R x ,提供的器材有: A .电流表G ,内阻Rg =120 Ω,满偏电流Ig =6 mA B .电压表V ,量程为6 V C .螺旋测微器,毫米刻度尺 D .电阻箱R 0(0~99.99 Ω) E .滑动变阻器R(最大阻值为5 Ω)F .电池组E(电动势为6 V ,内阻约为0.05 Ω)G .一个开关S 和导线若干(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,应该换用________挡(选填“×1”或“×100”),进行一系列正确操作后,指针静止时位置如图甲所示;(2)电流表G 与电阻箱并联改装成量程为0.6 A 的电流表,则电阻箱的阻值应调为R 0=________Ω;(结果保留3位有效数字)(3)为了用改装好的电流表测量电阻丝R x 的阻值,请根据提供的器材和实验需要,将图乙中电路图补画完整.(要求在较大范围内测量多组数据)(4)电路闭合后,调节滑动变阻器的滑片到合适位置,电压表V 的示数为U ,电流表G 的示数为I.请用已知量和测量的字母符号,写出计算电阻的表达式R x =________.【参考答案】(1)“×1” (2)1.21 Ω (3)见解析 (4)UR 0R 0+R gI解析:(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,说明被测电阻阻值较小,说明选择的倍率较大,应选择“×1”倍率.(2)将电流表G 与电阻箱并联改装成量程为0.6 A 的电压表,根据电表改装原理可知,电阻箱的阻值应调为R 0=I g R gI -I g≈1.21 Ω.(3)待测电阻阻值为15 Ω,电压表内阻很大,远大于被测电阻的阻值,电流表应采用外接法,滑动变阻器最大阻值为5 Ω,为测多组实验数据,采用分压接法,电路图如图所示:(4)根据欧姆定律, R x =U R I R =U R 0+R g R 0I =UR 0R 0+R gI.稳中培优非选择练习(三)1、为了方便研究物体与地球间的万有引力问题,通常将地球视为质量分布均匀的球体.已知地球质量M =6.0×1024kg ,地球半径R =6 400 km ,其自转周期T =24 h ,引力常量G =6.67×10-11N·m 2/kg 2.在赤道处地面有一质量为m 的物体A ,用W 0表示物体A 在赤道处地面上所受的重力,F 0表示其在赤道处地面上所受的万有引力.请求出F 0-W 0F 0的值(结果保留1位有效数字),并以此为依据说明在处理万有引力和重力的关系时,为什么经常可以忽略地球自转的影响.【参考答案】见解析解析:物体A 在赤道处地面上所受的万有引力 F 0=G Mm R2.物体A 在赤道处,随地球自转,根据牛顿第二定律可知,F 0-W 0=m 4π2T 2R.解得物体A 此时所受重力W 0=G Mm R 2-m 4π2T2R.联立解得,F 0-W 0F 0=m 4π2T 2R G Mm R2,代入数据解得,F 0-W 0F 0=3×10-3.由于地球自转对地球赤道面上静止的物体所受重力与所受地球引力大小差别的影响很小,所以通常情况下可以忽略地球自转造成的地球引力与重力大小的区别.2、如图所示,空间中存在一个矩形区域MNPQ ,PQ 的长度为MQ 长度的两倍,有一个带正电的带电粒子从M 点以某一初速度沿MN 射入,若矩形区域MNPQ 中加上竖直方向且场强大小为E 的匀强电场,则带电粒子将从P 点射出,若在矩形区域MNPQ 中加上垂直于纸面且磁感应强度大小为B 的匀强磁场,则带电粒子仍从P 点射出,不计带电粒子的重力,求:带电粒子的初速度的大小.【参考答案】4E5B解析:带电粒子在电场中做类平抛运动,设MQ 长度为L ,根据运动的合成与分解法则可知,竖直方向上,L =12×qE m t 2.水平方向上,2L =v 0t.带电粒子在磁场中做匀速圆周运动,画出轨迹如图所示:洛伦兹力提供向心力,qvB =m v 20r ,根据几何关系可知,(r -L)2+(2L)2=r 2.联立上述各式可知,v =4E5B.3、【实验】某同学用如图1所示的装置做“探究弹力与弹簧伸长的关系”的实验. (1)实验中,他在弹簧两端各系一细绳套,利用一个绳套将弹簧悬挂在铁架台上,另一端的绳套用来挂钩码.先测出不挂钩码时弹簧的长度,再将钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度L ,再算出弹簧伸长量x ,并将数据填在下面的表格中.实验过程中,弹簧始终在弹性限度内.1 2 3 4 5 6 钩码的重力G/N 0 0.5 1.0 1.5 2.0 2.5 弹簧弹力F/N 0 0.5 1.0 1.5 2.0 2.5 弹簧总长度L/cm 13.00 15.05 17.10 19.00 21.00 23.00 弹簧伸长量x/cm2.054.106.008.0010.00数据点,请把第4次测量的数据对应点用“+”描绘出来,并作出F -x 图象.(2)①根据上述的实验过程,对实验数据进行分析可知,下列说法正确的是________(选填选项前的字母).A.弹簧弹力大小与弹簧的总长度成正比B.弹簧弹力大小与弹簧伸长的长度成正比C.该弹簧的劲度系数约为25 N/mD.该弹簧的劲度系数约为2500 N/m②在匀变速直线运动的速度v随时间t变化关系图象中,图线与坐标轴围成的面积的物理意义表示位移.请类比思考,(1)问的F-x图象中图线与坐标轴围成的面积的物理意义.【参考答案】(1)见解析(2)①BC ②弹力做的功解析:(1)描点连线,如图所示:(2)①分析图象结合表格数据可知,弹簧弹力大小与弹簧伸长量成正比,A选项错误,B 选项正确;根据胡克定律可知,图象中斜率代表弹簧的劲度系数,劲度系数为25 N/m,C选项正确,D选项错误.②力与位移的乘积为功,利用微元法,在很短时间里弹力是恒定不变的,则F-x图象中图线与坐标轴围成的面积的物理意义是弹力做的功.4、某赤道平面内的卫星自西向东飞行绕地球做圆周运动,该卫星离地高度为h(h的高度小于地球同步卫星的高度),赤道上某人通过观测,前后两次出现在人的正上方最小时间间隔为t,已知地球的自转周期为T0,地球的质量为M,引力常量为G,求:地球的半径.【参考答案】3GMt2T24π2t+T02-h解析:卫星绕地球做匀速圆周运动,万有引力提供向心力,GMmR+h2=m⎝⎛⎭⎪⎫2πT2(R+h).分析题意可知,t时间内,卫星多转一圈运动到观察者的正上方.t T -tT0=1.联立解得,R=3GMt2T24π2t+T02-h.5、一同学用电子秤、水壶、细线、墙钉和贴在墙上的白纸等物品,在家中做验证力的平行四边形定则的实验.(1)如图甲,在电子秤的下端悬挂一装满水的水壶,记下水壶静止时电子秤的示数F;(2)如图乙,将三根细线L1、L2、L3的一端打结,另一端分别拴在电子秤的挂钩、墙钉A 和水壶杯带上.水平拉开细线L1,在白纸上记下结点O的位置、________和电子秤的示数F1;(3)如图丙,将另一颗墙钉B钉在与O同一水平位置上,并将L1拴在其上.手握电子秤沿着(2)中L2的方向拉开细线L,使三根细线的方向与(2)中________重合,记录电子秤的示数F2;(4)在白纸上按一定标度作出电子秤拉力F、F1、F2的图示,根据平行四边形定则作出F1、F2的合力F′的图示,若________,则力的平行四边形定则得到验证.【参考答案】(2)三细线的方向(3)结点的位置(4)F′大小与F相等、方向相同解析:(2)研究合力与分力的关系需要记录分力的大小和方向,即在白纸上记下结点O 的位置的同时也要记录三细线的方向以及电子秤的示数F1.(3)应使结点O的位置和三根细线的方向与②中重合,记录电子秤的示数F2.(4)根据平行四边形定则作出合力,若F′大小与F相等、方向相同,则力的平行四边形定则得到验证.。

2020届高考物理(人教版)一轮复习直线运动课件(17张)

2020届高考物理(人教版)一轮复习直线运动课件(17张)
(1)A车追上B车前,两车的最大距离; (2)甲、乙两站之间的距离。 【分析】匀加速追匀速,二车同速时间距最大。
重点知识导图 考题应对策略 关键能力分解 典型问题举例
【解析及答案】(1)当A、B两车同速时间距最大。设A车加速到 v0时的时间为t1,有
at1=v0 A 车运动的位移为 xA1=12 ������������12 B车运动的位移为xB1=v0t1 两车的最大距离为Δx=xB1-xA1 解得 Δx=���2���0������2。
第一讲 直线运动考题应试策略
重点知识导图 考题应对策略 关键能力分解 典型问题举例
重点知识导图 考题应对策略 关键能力分解 典型问题举例
本专题可以分为匀变速直线运动规律和图象两大块,熟练掌握五 个运动学规律(速度规律、位移规律、平均速度规律、速度平方差 规律、逆向思维规律)是求解问题的关键。对于匀减速直线运动, 一定要注意“刹车陷阱”,而解决这一问题关键是要分清是属于“先 减速,终停止”还是“先减速,终返回”。在解图象物理问题时,应注 意:(1)数和形的结合;(2)与实际运动情景相结合;(3)学会识图、辨图、 用图、作图;(4)正确理解图象中的截距、斜率、拐点、交点、面 积等的物理意义。
重点知识导图 考题应对策略 关键能力分解 典型问题举例
一、解决匀变速直线运动的常用方法
1.一般公式法
一般公式法指速度公式、位移公式及推论三式。它们均是矢量
式,使用时要注意方向性。
2.平均速度法
定义式������
=
������������对任何性质的运动都适用,而������
=
������������
2
=
12(v0+v)只适用
于匀变速直线运动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②分子质量:数量级为 10-26 kg. ③测量方法:油膜法. (2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,NA= _6_.0_2_×___1_0_23mol-1.
2.分子热运动:一切物质的分子都在永不停息地做无规则运动. (1)扩散现象:相互接触的不同物质彼此进入对方的现象.温度 _____越__高_____, 扩散越快,可在固体、液体、气体中进行. (2)布朗运动:悬浮在液体(或气体)中的微粒的无规则运动,微粒 ____越__小______, 温度 _____越__高_____,布朗运动越显著.
3.物体的内能 (1)内能:物体中所有分子的 _____动__能_____与 _____势__能_____的总和. (2)决定因素: _____温__度_____、 _____体__积_____和物质的量. 三、温度和温标
1.温度 (1)温度在宏观上表示 ___物__体__的__冷__热__程__度___;在微观上是 ___分__子__平__均__动__能___ 的标志. (2)温度是决定一个系统与另一个系统是否达到热平衡状态的物理量,一切达到 热平衡状态的系统都具有相同的 ______温__度____.
(4)当 r>10r0(10-9 m)时,F 引和 F 斥都已经十分微弱,可以认为分子间没有相互作 用力(F=0).
二、物体的内能
1.分子动能 (1)意义:分子动能是 _分__子__热___运__动__所具有的动能. (2)分子平均动能:所有分子动能的平均值. ____温__度____是分子平均动能的标志. 2.分子势能:由分子间 ___相__互__作__用__和 ___相__对__位__置__决定的能,在宏观上分 子势能与物体的 _____体__积_____有关,在微观上与分子间的 ______距__离____有关.
2018 卷 Ⅰ·T33 卷 Ⅱ·T33 卷 Ⅲ·T33
三年真题 2017 2016
常考角度
卷 Ⅰ·T33 卷 Ⅱ·T33 卷 Ⅲ·T33
卷 Ⅰ·T33 卷 Ⅱ·T33 卷 Ⅲ·T33
(1)布朗运动与分 子热运动 (2)对分子力和分 子势能的理解 (3)气体实验定律 的应用 (4)对气体状态变 化图象的考查 (5)用分子运动论 解释常见的热现 象 (6)对固体和液体 的考查 (7)对热力学定律 的考查 (8)气体实验定律 与热力学定律的 综合
3.分子间的相互作用力 分子间同时存在 _____引__力_____和 ____斥__力______,且都随分子间距离的增大而
_____减__小_____,随分子间距离的减小而增大,但总是斥力变化得较快.
(1)当 r=r0 时,F 引=F 斥,F=0; (2)当 r<r0 时,F 引和 F 斥都随距离的减小而增大,但 F 引<F 斥,F 表现为 ____斥__力______; (3)当 r>r0 时,F 引和 F 斥都随距离的增大而减小,但 F 引>F 斥,F 表现为 ____引__力______;
(1)该“分子大道”需要多少个原子? (2)这些原子的总质量为多少?
解析:(1)N=338.4484×00100-090=1.10×1017(个). (2)总质量为 M=NNAMA=3.6×10-8 kg. 答案:(1)1.10×1017 个 (2)3.6×10-8 kg
考点二 扩散现象、布朗运动与分子热运动——自主练透
2.(多选)钻石是首饰和高强度钻头、刻刀等工具中的主要材料,设钻石的密度 为 ρ(单位为 kg/m3),摩尔质量为 M(单位为 g/mol),阿伏加德罗常数为 NA.已知 1 克 拉=0.2 克,则( )
A.a
克拉钻石所含有的分子数为0.2aNA M
B.a 克拉钻石所含有的分子数为
aNA M
C.每个钻石分子直径的表达式为 3 6MN×Aρ1π0-3(单位为 m) D.每个钻石分子直径的表达式为 N6AMρπ(单位为 m) E.每个钻石分子的质量为NMA
解析:选 C 扩散的快慢与温度有关,温度越高,扩散越快,故 A 错误;布朗 运动为悬浮在液体中固体小颗粒的运动,不是液体分子的热运动,固体小颗粒运动 的无规则性,是液体分子运动的无规则性的间接反映,故 B 错误;在一定的范围内, 分子间斥力与引力同时存在,而分子力是斥力与引力的合力,分子间的引力和斥力 都是随分子间距增大而减小;当分子间距小于平衡位置时,表现为斥力,即引力小 于斥力,而分子间距大于平衡位置时,表现为引力,即斥力小于引力,但总是同时 存在的,故 C 正确,D 错误.
解析:选 ACE a 克拉钻石物质的量(摩尔数)为 n=0M.2a,所含分子数为 N=nNA
=0.2aNA,选项 M
A
正确;钻石的摩尔体积
V=M×ρ10-3(单位为
m3/mol),每个钻石分
子体积为 V0=NVA=M×NA1ρ0-3,设钻石分子直径为 d,则 V0=43πd23,联立解得 d=
|记要点|
扩散现象、布朗运动与分子热运动的比较
扩散现象
布朗运动
分子热运动
活动主体 分子
固体微小颗粒
分子
分子的运动,发 微小颗粒的运动,是比分子大得 分子的运动,分子无
生在固体、液体、多的分子团的运动,较大的颗粒 论大小都做热运动, 区别
气体等任何两种 不做布朗运动,但它本身的分子 热运动不能通过光学
A.PM2.5 的尺寸与空气中氧分子的尺寸的数量级相当 B.PM2.5 在空气中的运动属于分子热运动 C.PM2.5 的运动轨迹是由大量空气分子对 PM2.5 无规则碰撞的不平衡和气流 运动决定的 D.倡导低碳生活,减少煤和石油等燃料的使用,能有效减小 PM2.5 在空气中 的浓度 E.PM2.5 必然有内能
4.分子模型
(1)球体模型中的直径:d=
3
6V0; π
(2)立方体模型中的边长:d=3 V0.
5.常识性的数据:室温取 27 ℃,标准状况下的大气压 p0=76 cmHg、温度 T= 273 K、摩尔体积 V=22.4 L.
|练高分|
1.(多选)(2016 年上海卷)某气体的摩尔质量为 M,分子质量为 m.若 1 摩尔该气
3.(多选)(2018 届衡水模拟)关于布朗运动,下列说法正确的是( ) A.布朗运动是液体分子的无规则运动 B.液体温度越高,布朗运动越剧烈 C.布朗运动是由于液体各部分温度不同而引起的 D.悬浮在液体中的固体小颗粒做布朗运动具有的能是机械能 E.布朗运动是微观粒子的运动,其运动规律遵循牛顿第二定律
板块 考点突破 二
记要点、练高分、考点 通关
考点一 微观量的估算——自主练透
|记要点| 1.微观量 分子体积 V0、分子直径 d、分子质量 m0. 2.宏观量 物体的体积 V、摩尔体积 Vmol、物体的质量 m、摩尔质量 M、物质的密度 ρ.
3.阿伏加德罗常数是联系微观量和宏观量的桥梁 (1)一个分子的质量:m0=NMA; (2)一个分子的体积:V0=VNmAol=ρMNA,对于气体,分子间的距离比较大,V0 表示 气体分子占据的空间; (3)物质含有的分子数:n=MmNA=VVmolNA.
2.两种温标
单位
规定
关系
在标准大气压下,冰的熔点是
摄氏温标(t) ℃ ____0__℃______,水的沸点是
____1_0_0_℃_____
(1)T=(t+273)K
(2)ΔT=Δt
-273.15 ℃即为 0 K,又叫绝对零度,
热力学温标(T) K
是低温的极限
判一判|——易混易错 (1)布朗运动是液体分子的无规则运动.( × ) (2)温度越高,布朗运动越剧烈.( √ ) (3)分子间的引力和斥力都随分子间距的增大而增大.( ×) (4)-33 ℃=240 K.( √ ) (5)分子动能指的是由于分子定向移动具有的能.( ×) (6)当分子力表现为引力时,分子势能随分子间距离的增大而增大.( √ ) (7)内能相同的物体,它们的分子平均动能一定相同.( ×)
第十三章 热 学(选修3-3)
考纲要求
分子动理论的基本观点和实验依据 Ⅰ 阿伏加德罗常数 Ⅰ 气体分子运动速率的统计分布 Ⅰ 温度、内能 Ⅰ 固体的微观结构、晶体和非晶体 Ⅰ 液晶的微观结构 Ⅰ 液体的表面张力现象 Ⅰ 气体实验定律 Ⅱ 理想气体 Ⅰ 饱和汽、未饱和汽、饱和汽压 Ⅰ 相对湿度 Ⅰ 热力学第一定律 Ⅰ 能量守恒定律 Ⅰ 热力学第二定律 Ⅰ 实验十三:用油膜法估测分子的大 小 (说明:要求会正确使用温度计)
物质之间
及周围的分子仍在做热运动 显微镜直接观察到
观察
裸眼可见
光学显微镜
电子显微镜或扫描隧道 显微镜
共同点 都是永不停息的无规则运动,都随温度的升高而变得更加激烈
布朗运动是由于微小颗粒受到周围分子做热运动的撞击力不平衡而引起 联系
的,它是分子做无规则运动的反映
|练高分| 1.(2018 年北京卷)关于分子动理论,下列说法正确的是( ) A.气体扩散的快慢与温度无关 B.布朗运动是液体分子的无规则运动 C.分子间同时存在着引力和斥力 D.分子间的引力总是随分子间距增大而增大
记一记|——规律结论 1.阿伏加德罗常数 NA=6.02×1023 mol-1,是联系宏观量和微观量的桥梁. 2.扩散现象和布朗运动都说明分子是永不停息地做无规则运动,且都随温度升 高而变得更加剧烈. 3.两分子间距为 r0 时分子力为零,分子势能最低,但不一定为零. 4.温度是分子平均动能的标志,温度相同时,各种物体分子的平均动能均相同.
解析:选 BDE 布朗运动是悬浮微粒的无规则运动,A 错误;布朗运动的剧烈 程度与温度有关,液体温度越高,布朗运动越剧烈,B 正确;布朗运动是由于来自各 个方向的液体分子对固体小颗粒撞击作用的不平衡引起的,C 错误;悬浮在液体中的 固体小颗粒做布朗运动具有的能是机械能,D 正确;布朗运动是悬浮的固体小颗粒不 停地做无规则的宏观的机械运动,故其运动规律遵循牛顿第二定律,E 正确.
相关文档
最新文档