27 求空间的角
求空间角的两种途径

探索探索与与研研究究求空间角主要包括求异面直线所成的角,求直线与平面所成的角,求二面角等.这类问题侧重于考查同学们的逻辑推理、空间想象以及计算能力.求空间角问题的命题形式较多,其解法也各不相同.本文主要谈一谈求空间角的两种途径:利用向量法和平移法.一、构造向量向量法是根据已知条件建立空间直角坐标系,通过向量运算解题的方法.该方法的适用范围很广,一般只要能建立空间直角坐标系,就能用向量法求解.在建立空间坐标系后,需分别求得各个点的坐标,灵活运用空间向量的夹角公式、数量积公式等进行求解.运用此方法,能够大大降低解题的难度,简化解题的过程.例1.如图1所示,在四棱锥P -ABCD 中,PA =PB =AD =CD =12BC =2,AD ∥BC ,AD ⊥CD ,E 是PA 的中点,平面PAB ⊥平面ABCD ,求直线CE 与平面PBC所成角的正弦值.图1解:如图1,以点A 为坐标原点、AB 所在的直线为x 轴、AC 所在的直线为y 轴、过点A 并且垂直于平面ABCD的直线为z 轴,建立空间直角坐标系,可得B (22,0,0),C (0,22,0),P (2,0,2),E(0),则 CB =(22,-22,0),CP =(2,-22,2), CE=(,-22),设平面PBC 的法向量为n=(x,y,z ),由于ìíîn ⋅CB =0,n ⋅ CP =0,所以ìíîïï22x -22y =0,2x -22y +2z =0,令x =1,则平面PBC 的一个法向量为n=(1,1,1),所以cos<n, CE>=n ⋅CE ||n|| CE =所以直线CE 与平面PBC 通过建立合适的空间直角坐标系,能够将空间角问题转化为直线CE 的方向向量与平面PBC 的法向量的夹角问题,根据向量的数量积公式求得直线CE 与平面PBC 所成角的正弦值,即可解题.二、利用平移法运用平移法求空间角,需先选取合适的线段或直线进行平移,使其与某个平面、某条直线相交,从而得到空间角的平面角;然后根据平面角构造出三角形、平行四边形等,利用三角形、平行四边形的性质,正余弦定理、勾股定理求得平面角的大小,即可求得空间角的大小.例2.如图2所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,求异面直线OE 和FD 1所成角的余弦值.解:取D 1C 1的中点M ,连接MO ,FO .因为点O 是底面ABCD 的中心,所以O 为BD 的中点,从而可知FO 为△DAB 的中位线.所以FO ∥AB ∥D 1M ,且FO =D 1M =12AB ,则四边形D 1FOM 为平行四边形,所以MO 平行且等于D 1F ,故∠MOE (或其补角)即为异面直线D 1F 和OE 所成的角.在△MOE 中,OM =D 1F =22+1=5,ME =2,OE =EC 2+OC 2=3,由余弦定理可得cos∠MOE =OM 2+OE 2-ME 22⋅OM ⋅OE=5+3-22×5×3要求异面直线OE 和FD 1所成角的余弦值,就需根据异面直线所成角的定义以及平行四边形的性质,将D 1F 平移到MO ,找到异面直线OE 和FD 1所成角的平面角∠MOE,再在△MOE 中,根据余弦定理和勾股定理求解.上述两种方法都是求解空间角问题常用的方法.虽然运用向量法解题的运算量较大,但思路简单;虽然运用平移法解题的过程较为复杂,但比较容易想到.(作者单位:江苏省盐城市射阳县高级中学)图251Copyright ©博看网. All Rights Reserved.。
空间角定理

空间角定理空间角定理是指在三维空间中,两个直线之间的夹角可以通过它们在平面上的投影以及它们在空间中的夹角来求得。
这个定理是空间几何中非常重要的定理之一,可以用在很多不同的数学和物理问题中。
首先,我们来看一下这个定理的几何图像。
假设有两个非平行的直线AB和CD,它们在空间中的夹角为α。
我们将这两个直线在一个平面上的投影分别表示为A'B'和C'D',它们在平面上的夹角为β。
那么空间角定理告诉我们,这两个夹角之间有一个关系式:cos(α) = cos(β)cos(γ) +sin(β)sin(γ)cos(δ)其中,γ表示A'B'和C'D'的夹角,δ表示这两条直线所在的两个平面的夹角。
这个公式可以用于计算任意两条直线之间的夹角,只需要知道它们在平面上的投影和它们在空间中的夹角即可。
空间角定理的推导可以通过向量的方法进行,它的基本思想是将直线的方向向量表示为一个向量,然后通过向量的点积和叉积来计算夹角。
这个方法虽然比较抽象,但是它的推导过程非常严密,也是空间向量运算的基础之一。
除了可以用于计算直线夹角之外,空间角定理还可以用于解决其他几何问题。
例如,我们可以利用它来计算球体的表面积和体积。
对于一个球体,我们可以将它切割成很多小块,然后计算每一小块的表面积和体积,并将它们加起来得到最终的结果。
在这个过程中,我们需要用到空间角定理来计算每一小块的表面积和体积。
空间角定理在物理学中也有广泛的应用。
例如,在电场和磁场的相互作用中,我们可以用它来计算两个电荷或者两个磁极之间的力和力矩。
在开发物理学理论和设计物理实验时,空间角定理也常常被用到。
总之,空间角定理是空间几何中非常重要的一个定理,它可以用于计算直线之间的夹角,解决球体表面积和体积的问题,以及在物理学中的应用等等。
对于那些热爱数学和物理的人来说,学习空间角定理是非常值得的。
空间角的求法

(3)法一:设 EF 中点为 G,以 O 为坐标原点,OA、OG、 AD 方向分别为 x 轴、y 轴、z 轴方向建立空间直角坐标系(如图), 设 AD=t(t>0),则点 D 的坐标为(1,0,t).
在 Rt△AFH 中 ,∵AH=12,AF=1,∴FH= 23. ∴点 F 的坐标为12, 23,0, 点 E 的坐标为-12, 23,0,∴ DF =-12, 23,-t.
.解:(1)证明:连接 BD 交 AC 于点 O,则 OB∶OD=AB∶ DC=1∶2,即 OD=2OB. 又 PE=2EB, ∴OODB=BPEE, 连接 OE,则 OE∥PD.又 OE⊂平面 EAC, PD⊄平面 EAC, ∴PD∥平面 EAC.
(2)设 CD 的中点为 F,连接 AF,则 AB=CF,∴四边形 ABCF 是 正方形, 如图,分别以 AF,AB,AP 所在直线为 x 轴、y 轴、z 轴建立空间 直角坐标系,则点 A(0,0,0),B(0,1,0),C(1,1,0),P(0,0,1), 设点 E(x,y,z),则 PE =(x,y,z-1), EB=(-x,1-y,-z).
DE =-32, 23,-t.
设平面 DEF 的法向量为 n1=(x,y,z),
则 n1·DF =0,n1·DE =0.
即-12x+ 23y-tz=0, -32x+ 23y-tz=0.
令 z= 3,
解得 x=0,y=2t,
∴n1=(0,2t, 3)
取平面 BEF 的一个法向量为 n2=(0,0,1),依题意 n1 与 n2
设
n=(x1,y1,z1)是平面
A1CD
的法向量,则 n·CA1
=0.
即x21x+1+y12=z1=0,0. 可取 n=(1,-1,-1).
空间角的求法

学立体几何是中学数学的主要内容之一,而空间角的求解则是立体几何中对空间思维和运算能力要求较高的内容,也是每年高考的必考内容.立体几何中的空间角主要包括异面直线所成的角、直线与平面所成的角、二面角三大类.本文就这三类空间角的具体求法进行简单分析,供同学们复习时参考.一、异面直线所成的角的求法1.平移法例1如图1所示,ABC—A1B1C1是直三棱柱,∠BCA=π2,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是(A)30"10(B)12(C)30"15(D)15"10解析:构建平行线将异面直线所成的角转化成平面角.∵D1,F1分别是A1B1和A1C1的中点,∴D1F1∥B1C1,D1F1=12B1C1.取BC的中点M,连接BD1,MF1.∵D1F1平行且等于12B1C1,BM平行且等于12B1C1,∴BM平行且等于D1F1,∴BMF1D1是平行四边形,MF1∥BD1.连接MA,显然∠MF1A是异面直线BD1和AF1所成的角.设BC=CA=CC1=1,则AM2=1+14=54,MF12=BD12=1+2%2&’2=32,AF12=1+14=54,∴cos∠MF1A=江山中学王陆军空间角的法求图1A1F1C1D1B1BAMC54+32-542×32!×54!=30!10.∴答案选A.2.补形法例2同例1.解析:如图2所示,将三棱柱ABC—A1B1C1补成四棱柱ABEC—A1B1E1C1.取B1E1的中点M,连接BM,D1M,D1B,显然MB∥AF1,∴∠MBD1是异面直线BD1和AF1所成的角.解△MBD1即可解决本题.3.向量法例3同例1.解析:同例1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,如图3所示.则点A(1,0,0),B(0,1,0),D112,12,%&1,F112,0,%&1,∴BD1=12,-12,%&1,AF1=-12,0,%&1,∴cos〈BD1,AF1〉=-14+0+15!2×6!2=30!10.4.三垂线定理法例4正三棱锥V—ABC中,D,E,F分别是VC,VA,AC的中点,P为VB上的一点,如图4所示,则直线DE与PF所成角的大小是(A)π6(B)π3(C)π2(D)π解析:当用平移法和补形法求解异面直线所成的角有困难时,可以考虑用三垂线定理法.如果一条异面直线在另一条异面直线所在平面的射影与该异面直线垂直,则问题就可迎刃而解.对于正三棱锥V—ABC,显然PF在底面的射影总在BF上,由于BF⊥AC,因此PF⊥AC.又∵DE∥AC,∴PF⊥DE.故答案选C.图2图4A1EMAF1D1E1BB1ACC1EBFDVPC学图3AF1C1B1D1A1CzxyB!’&#&"&&&!&#*()"二、直线与平面所成的角的求法1.定义法例5在正三棱柱ABC—A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AC1所成的角为α,则α等于(A)π3(B)π4(C)arcsin10!4(D)arcsin6!4解析:如图5所示,分别取AC,A1C1的中点N,M,连接MN,BN.在MN上取一点E,使NE=1.∵ABC—A1B1C1为正三棱柱,∴BN⊥平面AC1.连接AE,ED.∵ED∥BN,∴ED⊥平面AC1,∴EA为AD在平面AC1上的射影,∴∠DAE为DA与平面AC1所成的角,即为α.在Rt△ADE中,sinα=6!4,∴α=arcsin6!4,∴答案选D.2.特殊公式法例6正三棱锥P—ABC的棱长都相等,M是AB中点,如图6所示.则PA与CM所成的角是(A)arccos3!6(B)arccos3!4(C)arccos3!3(D)30°解析:设正三棱锥的棱长为a,过点A作AD∥CM,∴PA与CM所成的角即为PA与AD所成的角∠DAP,且有∠DAM=90°.再取BC中点E,连接AE,PE.显然∠PAE是AP与底面ABC所成的角.在△PAE中,cos∠PAE=AP2+AE2-PE22AP·AE=3!3,∠DAE=∠DAC+∠CAE=30°+30°=60°.由cos∠DAP=cos∠PAE·cos∠DAE,得cos∠DAP=3!3×cos60°=3!3×12=3!6,故∠DAP=arccos3!6.答案选A.3.向量法例7如图7所示,在棱长为1的图5图6AMDC1A1B1BMACDPEBCNE&#""!!$!!!!&#$(’"学#%’正方体ABCD—A1B1C1D1中,P是侧棱上的一点,CP=m.(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为32!;(2)在线段A1C1上是否存在一定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并加以证明.解析:(1)以D为原点,建立如图8所示的空间直角坐标系,连接D1P,D1A,AP,AC,DB.则点A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1).∴BD=(-1,-1,0),BB1=(0,0,1),AP=(-1,1,m),AC=(-1,1,0).又∵AC·BD=0,AC·BB1=0,∴AC为平面BDD1B1的一个法向量.再设AP与平面BDD1B1所成的角为θ,则sinθ=cosπ2-"θ由题意得22!·2+m2!=tanθ1+(tanθ)2!=32!1+(32!)2!,解得m=13.∴当m=13时,直线AP与平面BDD1B1所成的角的正切值为32!.(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,则Q(x,1-x,1),D1Q=(x,1-x,0).依题意,若对任意的m要使D1Q在平面APD1上的射影垂直于AP,则由三垂线定理可知其等价于D1Q⊥AP,∴AP·D1Q=0,∴-x+(1-x)=0,∴x=12,即存在定点Q,且当其为A1C1的中点时,满足题设要求.三、二面角的求法1.定义法例8如图9所示,正三棱柱ABC—A1B1C1的底面边长为3,侧棱AA1=33!2,D是CB延长线上的一点,且BD=BC,求二面角B1-AD-BA1BCPAC1D1B1DyA1BCDAC1D1B1学图7z图8!!"#$!#!$!"!!!"#%!#!$!"!$,*ZP的大小.解析:在棱AD上任取一点E,使得DE=1.作EF⊥AD,EH⊥AD,分别交DB1,DB于点F,H,则∠FEH为二面角B1-AD-B的平面角,连接FH.由题设条件可知∠ADB=30°,∠DAC=90°,∴EH=3#3.∵DB1=AB1=AB2+BB12#=37#2,AD=33#,∴EF=DE·tan∠ADB1=23#3,DH=EH2+ED2#=23#3,DF=DE2+EF2#=21#3,cos∠BDB1=BDB1D=27#7.∴HF=DH2+DF2-2DH·DF·cos∠BDB1#=1,cos∠HEF=EF2+EH2-HF22EF·EH=12.故二面角B1-AD-B的大小为60°.2.三垂线法例9三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,如图10所示.(1)求证AB⊥BC;(2)如果AB=BC=23#,求侧面PBC与侧面PAC所成二面角的大小.解析:(1)取AC的中点D,连接PD,BD.∵PA=PC,∴PD⊥AC.又已知平面PAC⊥平面ABC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,故可得AC为△ABC外接圆的直径,∴AB⊥BC.(2)∵AB=BC=23#,D为AC中点,∴BD⊥AC.又∵平面PAC⊥平面ABC,∴BD⊥平面PAC,D为垂足.作BE⊥PC于E,连接DE.∵DE为BE在平面PAC内的射影,∴DE⊥PC,∴∠BED为所求二面角的平面角.在Rt△ABC中,AB=BC=23#,∴BD=6#.在Rt△PDC中,PC=3,DC=6#,PD=3#,∴DE=PD·DCPC=3#×6#3=2#.∴在Rt△BDE9A1BCFAC1B1HEPABCDE学图10图)!"&($!("&"%#D)!&("#中,tan∠BED=6"2"=3",∴∠BED=60°,即侧面PBC与侧面PAC所成的二面角为60°.3.垂面法在已知的二面角α-l-β中,作棱l的垂面γ,设γ∩α=OA,γ∩β=OB,则∠AOB为二面角α-l-β的平面角.例10如图11所示,已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF.(1)证明:MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求二面角E-AB-D的平面角的正弦值.解析:(1)∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD,∴AB⊥平面PAD,故可得AB⊥AE.∵AM∥CD∥EF,且AM=EF,AM⊥AE,∴四边形AEFM为矩形,∴AM⊥MF.又∵AE⊥EF,AE⊥PD,∴AE⊥平面PEF.而AE∥MF,∴MF⊥平面PEF,∴MF⊥PC,∴MF是AB与PC的公垂线.(2)由(1)可知平面PAD垂直于二面角E-AB-D的棱AB,且平面ME∩平面PAD=AE,平面AC∩平面PAD=AD,则∠EAD为二面角E-AB-D的平面角.设AB=a,则AP=3a.由Rt△AED∽Rt△PAD,可得∠EAD=∠APD.∴sin∠EAD=sin∠APD=ADPD=aa2+(3a)2"=10"10.4.公式法例11如图12所示,在正方体AC1中,E是BC中点,求二面角D1-B1E-C1的大小.解析:D1在平面B1ECC1的射影为C1,则△D1B1E在平面B1BCC1上的射影为△B1EC1.若设正方体棱长为2,则可得B1E=5",D1B1=22",D1E=3,S△BCE=2,S△DBE=3,∴cosθ=S△BCES△DBE=图12学BC11PEDAFM-’图))%"$(./-’$’)-)(()$)"图13C1CBFB1AA1D1EDyxz"23,∴θ=arccos23.5.向量法例12如图13所示,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E,F分别是线段AB,BC上的点,且EB=FB=1.求二面角C-DE-C1的正切值.解析:以A为原点,AB,AD和AA1分别为x轴,y轴和z轴的正方向建立空间直角坐标系,则有点D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).于是可得DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2).若设向量n=(x,y,z)与平面C1DE垂直,则可得:n⊥n⊥$%3x-3y=0x+3y+2z=$0%x=y=-12z.∴n=-z2,-z2,&’z=z2(-1,-1,2),其中z>0.若取n0=(-1,-1,2),则n0是与平面C1DE垂直的向量.∵向量AA1与平面CDE垂直,∴n0与AA1所成的角θ就是二面角C-DE-C1.∵cosθ=n0·|n|·||=-1×0-1×0+2×21+1+4(×0+0+4(=6(3,∴tanθ=2(2,∴二面角C-DE-C1的正切值为2(2.DEEC1AA1AA1!!!"#"!$$!%!&%学’()"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!"放下松一散步一位胖太太在街上散步,有个陌生的小男孩紧紧地跟着她。
空间角的求法

空间角的求法一、异面直线所成角的求法平移法常见三种平移方式:直接平移;中位线平移(尤其是图中显现了中点):补形平移法。
“补形法”是立体几何中一种常见的方式,通过补形,可将问题转化为易于研究的几何体来处置,利用"补形法”找两异面直线所成的角也是经常使用的方式之一。
(1)直接平移法4、伍例1如图,PA丄矩形ABCD,已知PA=AB=8,BCJ0,求AD与PC所成角的正切值。
(尊)(2)中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面宜线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA=SB=SC,且Z ASB= Z BSC= Z CSA= y , M、N别离是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
(巧)(3)补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABCD -中,E是CC】的中点,求直线AC与EDi所成角的余弦值。
(竺)A ______ G ____二、线而角的兰种求法1 •直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
一般是解由斜线段,垂线段, 斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它能够起到联系各线段的作用。
例1四面体ABCS 中,SA, SB, SC 两两垂直,ZSBA=45°, ZSBC=60°, M 为AB 的中点,求:(1) BC 与 平面SAB 所成的角;(60。
) (2) SC 与平面ABC 所成的角。
(冷-)(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线。
作面的垂线常依照面面垂直的性质定理,其 思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
)2•利用公式sinO = *:其中&是斜线与平面所成的角,力是垂线段的长,/是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
高中数学空间的角的计算

面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A
空间角的几何求法
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
空间角及其求法
空间角及其求法张玉洪异面直线所成角直线与平面所成二面角图示定义在空间任取一点o,分别作a,b的平行线,从而形成的的锐(角)叫作异面直线所成角。
斜线与它在平面内的射影所成的锐角。
从一条直线引出的两个半平面所组成的图形叫做二面角。
表示异面直线a、b所成角线a与平面所成角范围备注平移、妙选顶点找射影、二足相连用什么度量?一.用定义求空间角的步骤1.作出所求的空间角<定位>2.证明所作的角符合定义<定性>3.构造三角形并求出所要求角<定量>简言之,空间角的求解步骤为:“一作”、“二证”、“三算”二典例分析例1已知正方体ABCD-A1B1C1D1,M、N分别是棱A1B1和BB1的中点,求直线AM 和CN所成角。
解析:途径一过D1作D1E//AM,作D1F//CN,连接EF,显然为异面直线AM与CN所成角。
通过解△D1EF即可。
途径二过D作D1E//AM,再过N作NG//D1E,显然为异面直线AM与CN所成角。
通过解△NGC即可。
方法提炼1求两条异面直线所成的角关键在于妙选点、作平线。
常选中点或线端点,利用中位线的性质或平行四边形的性质等作出符合要求的平行线。
例2.如图棱长是1的正方体,p、Q分别是棱AB、CC1上的内分点,满足.(1)求证:A1p⊥平面AQD;(2)求直线pQ与平面AQD所成角的正弦值.解析:过Q作QR平行AD,交BB1与R,连接AR,易知面ADQR即为面AQD由(1)知A1p ⊥面AQD,设A1p交AR与S,连接SQ即可。
由以上的作法可知即为所求角,只需解三角形SpQ即可。
方法提炼2.求直线和平面所成角要领“找射影,二足相连”。
由于平面的一条斜线在这个平面的射影只有一条,所以关键在于寻该斜线在面上的射影。
例3. 在四棱锥p-ABCD中,已知ABCD为矩形,pA ⊥平面ABCD,设pA=AB=a,BC=2a,求二面角B-pC-D的大小。
解析1.定义法过D作DE ⊥pC于E,过E作EF ⊥pC于F,连接FD,由二面角的平面角的定义可知是所求二面角B-pC-D的平面角。
空间角的求法
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
空间的角求法
空间角求法湖南祁东育贤中学 周友良 421600衡阳县一中 刘亚明空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●锦囊妙计空间角的计算步骤:一作、二证、三算1.异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②补形法.2.直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影.3.二面角方法:①定义法;②三垂线定理及其逆定理;③垂面法. 注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算[例1]在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点.(1)求证:四边形B ′EDF 是菱形;(2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角; (4)求面B ′EDF 与面ABCD 所成的角. 命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.错解分析:对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面.技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.(1)证明:如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG ABA ′B ′知,B ′EGA ′是平行四边形.∴B ′E ∥A ′G ,又A ′FD G ,∴A ′GDF 为平行四边形.∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面 故四边形B ′EDF 是菱形.(2)解:如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角. 在△A ′CP 中,易得A ′C =3a ,CP =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515故A ′C 与DE 所成角为arccos1515. (3)解:∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上.如下图所示.又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a 则cos ADB ′=33 故AD 与平面B ′EDF 所成的角是arccos33. (4)解:如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心.作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心,再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE , 故∠OMH 为二面角B ′—DE ′—A 的平面角.在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DE OE OD a 在Rt △OHM 中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为arcsin 630.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点27 求空间的角
空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.
●案例探究
[例1]在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点.
(1)求证:四边形B ′EDF 是菱形;
(2)求直线A ′C 与DE 所成的角;
(3)求直线AD 与平面B ′EDF 所成的角;
(4)求面B ′EDF 与面ABCD 所成的角.
知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.
错解分析:对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面.
技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.
(1)证明:如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=
25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB A ′B ′知,B ′EGA ′是平行四边形.
∴B ′E ∥A ′G ,又A ′F D G ,∴A ′GDF 为平行四边形.
∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面
故四边形B ′EDF 是菱形.
(2)解:如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,
则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角.
在△A ′CP 中,易得A ′C =3a ,CP =DE =
25a ,A ′P =213a 由余弦定理得cos A ′CP =15
15 故A ′C 与DE 所成角为arccos
15
15. (3)解:∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上.如下图所示.
又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线,
故直线AD 与平面B ′EDF 所成的角为∠ADB ′
在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a
则cos ADB ′=3
3 故AD 与平面B ′EDF 所成的角是arccos
3
3. (4)解:如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心.
作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心,
再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE ,
故∠OMH 为二面角B ′—DE ′—A 的平面角.
在Rt △DOE 中,OE =
22a ,OD =23a ,斜边DE =2
5a , 则由面积关系得OM =10
30=⋅DE OE OD a 在Rt △OHM 中,sin OMH =6
30=OM OH 故面B ′EDF 与面ABCD 所成的角为arcsin 6
30. [例2]如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°.
求:(1)AC 1的长;
(2)直线BD 1与AC 所成的角的余弦值.
错解分析:注意<AA ,1>=<1AA ,>=120°而不是60°,<,>=90°. 技巧与方法:数量积公式及向量、模公式的巧用、变形用. 2211222111112122111111221222111112
22221112221111111212222||||||))((||)
)((,2||,)2(.
22||,22||,0,2
1120cos ,21120cos 90,,120,,||||,|:|222||||||)
)(()
)((||)1(:b a AA AA AB AD AA AA AA BD BD ab AB AD AA AA AA BD AA BD a ab b a AC ab b a AC ab a b AA ab a b AA AA AA a b AA AA AA AA AA AA AA AA AC AC AC +=⋅-⋅-⋅+++=-+-+=⋅=-=⋅--+⋅+⋅+⋅=-++=⋅∴-+=+=+==-+=∴-+=∴=⋅-=︒⋅=⋅-=︒⋅=⋅∴︒
>=<︒>=>=<<===⋅+⋅+⋅+++=++++=++=⋅=依题意得由已知得解 2212||b a BD +=∴
2211124||||,cos b
a b
AC BD BD +-=>=< ∴BD 1与AC 所成角的余弦值为2224b a b
+.
●锦囊妙计
空间角的计算步骤:一作、二证、三算
1.异面直线所成的角 范围:0°<θ≤90°
方法:①平移法;②补形法.
2.直线与平面所成的角 范围:0°≤θ≤90°
方法:关键是作垂线,找射影.
3.二面角
方法:①定义法;②三垂线定理及其逆定理;③垂面法.
注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算。