2022学年江苏省徐州市部分中考数学最后冲刺浓缩精华卷(含答案解析)

合集下载

2022-2023学年江苏省徐州市市区九年级(上)期中数学试题及答案解析

2022-2023学年江苏省徐州市市区九年级(上)期中数学试题及答案解析

2022-2023学年江苏省徐州市市区九年级(上)期中数学试卷1. 方程x2=4x的解是( )A. x1=x2=4B. x1=0,x2=−4C. x1=0,x2=4D. x1=2,x2=−22. 用配方法解一元二次方程x2−4x+3=0时,配方正确的是( )A. (x+2)2=1B. (x+2)2=7C. (x−2)2=7D. (x−2)2=13. ⊙O的半径为4cm,若点P到圆心O的距离为3cm,则点P与⊙O的位置关系是( )A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 不能确定4. 如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为( )A. 27°B. 108°C. 116°D. 128°5. 关于x的一元二次方程x2−2x+k=0有两个不相等的实数根,则k的值可以是( )A. 3B. 2C. 1D. −16. 若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )A. y=(x+2)2+3B. y=(x−2)2+3C. y=(x+2)2−3D. y=(x−2)2−37. 若圆锥的底面半径为4cm,侧面展开图的面积为6πcm2,则圆锥的母线长为( )A. 32cm B. 23cm C. 32πcm D. 23πcm8. 如图是王叔叔晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线的一部分.下列说法正确的是( )A. 线段CD的函数表达式为s=30t+400(25≤t≤50)B. 25min~50min,王叔叔步行的路程为2000mC. 曲线段AB的函数表达式为s=−3(t−20)2+1200(5≤t≤20)D. 5min~20min,王叔叔步行的速度由慢到快9. 当m=______时,关于x的方程2x m−2=5是一元二次方程.10. 若关于x的方程x2−kx−12=0的一个根为3,则k 的值为.11. 抛物线y=(x+2)2+3的顶点坐标是______ .12. 已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为______cm2.13. 如果抛物线y=2x2+4x+m的顶点在x轴上,则m=______.14. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,则根据题意可列方程为______.15. 如图,把直角三角板的直角顶点C放在圆周上,两直角边与圆弧分别交于点A,B,量得CB=8cm,CA=6cm,则该圆的半径是______cm.16. 如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC 的度数等于______.17. 如图,⊙O 为Rt △ABC 的内切圆,切点分别为D ,E ,F ,且∠C =90°,AB =13,BC =12则BF =______.18. 如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90°的弧组成的,其中DA ⏜1的圆心为点A ,半径为AD ;A 1B 1⏜的圆心为点B ,半径为BA 1;B 1C 1⏜的圆心为点C ,半径为CB 1;C 1D 1⏜的圆心为D ,半径为DC 1…,DA ⏜1、A 1B 1⏜、B 1C 1⏜、C 1D 1⏜⋯的圆心依次按点A 、B 、C 、D 循环,若正方形ABCD 的边长为1,则A 2022B 2022⏜ 的长是______.19. 解方程(1)(x +1)2−5=0;(2)−x 2+x =−6.20. 如图,抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,点D 为抛物线的顶点,点A 、B 、C 的坐标分别为(−1,0),(3,0),(0,3).(1)直线BC 的表达式为______;(2)求抛物线所对应的函数表达式;(3)①顶点D 的坐标为______;②当−2≤x ≤2时,y 的取值范围是______.21. 如图,在正方形网格中,每一个小正方形的边长都为1,点O、A都在格点上,以O为圆心,OA为半径作圆,只用无刻度的直尺完成以下画图.(1)在图①中画⊙O的一个内接正四边形ABCD,S正四边形ABCD=______;(2)在图②中画⊙O的一个内接正六边形ABCDEF,S正六边形ABCDEF=______.22. 如图,某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,已知栅栏总长度为18m,设矩形垂直于墙的一边,即AB的长为xm.(1)若矩形养殖场的面积为36m2,求此时的x的值;(2)当x为多少时,矩形养殖场的面积最大?最大值是多少?23. 如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24. 抛物线与x轴交于A、B两点,其中点B的坐标为(−3,0),与y轴交于点C(0,−3),点D为抛物线的顶点,且点D的横坐标为−1.(1)求此抛物线的函数表达式;(2)求△BCD的面积;(3)若点P是x轴下方抛物线上任意一点,已知⊙P的半径为2,当⊙P与坐标轴相切时,圆心P 的坐标是______.25. 如图1,在⊙O中,弦AD平分圆周角∠BAC,我们将圆中以A为公共点的三条弦BA,CA,DA构成的图形称为圆中“爪形A”,弦BA,CA,DA称为“爪形A”的爪.(1)如图2,四边形ABCD内接于⊙O,AB=BC;①证明:圆中存在“爪形D”;②若AD⊥DC,求证:AD+CD=√2BD.(2)如图3,四边形ABCD内接于圆,其中AB=BC,连接BD.若“爪形D”的爪之间满足AD+ CD=BD,则∠ADC=______°.答案和解析1.【答案】C【解析】解:x2=4x,x2−4x=0,x(x−4)=0,x=0或x−4=0,所以x1=0,x2=4.故选:C.先移项得到x2−4x=0,再利用因式分解法把方程转化为x=0或x−4=0,然后解一次方程即可.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.2.【答案】D【解析】解:x2−4x+3=0,x2−4x=−3,x2−4x+4=−3+4,(x−2)2=1,故选:D.利用解一元二次方程−配方法,进行计算即可解答.本题考查了解一元二次方程−配方法,熟练掌握解一元二次方程−配方法是解题的关键.3.【答案】A【解析】解:∵⊙O的半径为4cm,点P到圆心O的距离为3cm,∴d<r,∴点P与⊙O的位置关系是:P在⊙O内.故选:A.要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.4.【答案】B【解析】解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.直接由圆周角定理求解即可.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.5.【答案】D【解析】解:根据题意得Δ=(−2)2−4k>0,解得k<1.故选:D.先利用判别式的意义得到(−2)2−4k>0,再解不等式确定k的范围,然后利用k的范围对各选项进行判断.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.6.【答案】B【解析】解:将抛物线y=x2向右平移2个单位可得y=(x−2)2,再向上平移3个单位可得y=(x−2)2+3,故选:B.根据二次函数图象的平移规律解答即可.本题考查了二次函数的几何变换,熟悉二次函数的平移规律是解题的关键.7.【答案】A【解析】解:根据圆锥侧面积公式:S=πrl,圆锥的底面半径为4cm,侧面展开图的面积为6πcm2,故6π=π×4×l,解得:l =32(cm). 故选:A .根据圆锥侧面积公式S =πrl 代入数据求出圆锥的母线长即可.此题主要考查了圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.8.【答案】C【解析】解:A 、设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{25k +b =120050k +b =2000, 解得:{k =32b =400, ∴线段CD 的函数解析式为S =32t +400(25≤t ≤50),故A 错误,不符合题意;B 、25min ~50min ,王叔叔步行的路程为2000−1200=800(m),故B 错误,不符合题意;C 、当t =20时,由图象可得s =1200m ,即抛物线顶点为(20,1200),将(5,525)代入s =a(t −20)2+1200(5≤t ≤20)得:525=a(5−20)2+1200,解得a =−3,∴曲线段AB 的函数解析式为s =−3(t −20)2+1200(5≤t ≤20),故C 正确,符合题意;D 、在OA 段的速度为5255=105m/min ,在A 到B 点的平均速度为1200−52520−5=67515=45m/min , 故D 错误,不符合题意.故选:C .根据函数图象中的信息,利用数形结合及求相关线段的解析式解答即可.本题考查了二次函数的应用,一次函数的应用,正确的识别图象、数形结合是解题的关键.9.【答案】4【解析】解:依题意得:m −2=2,解得m =4.根据一元二次方程的定义求得m的值,再进一步代入解方程即可.此题主要是注意一元二次方程的条件:未知数的最高次数是二次,且系数不得为0.10.【答案】−1【解析】【分析】本题考查了一元二次方程的解和解一元一次方程,能理解方程的解的定义是解此题的关键.把x=3代入方程得出9−3k−12=0,求出方程的解即可.【解答】解:把x=3代入方程x2−kx−12=0得:9−3k−12=0,解得:k=−1,故答案为:−1.11.【答案】(−2,3)【解析】解:∵y=(x+2)2+3为抛物线的顶点式,根据顶点式的坐标特点可知,∴抛物线的顶点坐标为(−2,3).故答案为:(−2,3).已知抛物线解析式为顶点式,可直接写出顶点坐标.本题考查将解析式化为顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k),对称轴是x=ℎ.12.【答案】3π【解析】解:扇形的面积=120π×32=3πcm2.360故答案是:3π.根据扇形的面积公式即可求解.本题主要考查了扇形的面积公式,正确理解公式是解题关键.13.【答案】2【解析】解:∵抛物线y=2x2+4x+m的顶点在x轴上,∴b2−4ac=0,即16−8m=0,解得m=2,抛物线的顶点在x轴上时,抛物线与x轴的交点只有一个,因此根的判别式Δ=0,可据此求出m的值.本题考查了二次函数图象与y轴交点个数与根的判别式的关系,要明确:Δ>0时,图象与x轴有两个交点;Δ=0,图象与x轴有一个交点;Δ<0,图象与x轴无交点.14.【答案】200(1+x)2=242【解析】解:依题意得200(1+x)2=242.故答案为:200(1+x)2=242.利用第三天揽件数量=第一天揽件数量×(1+设该快递店揽件日平均增长率)2,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.【答案】5【解析】解:连接AB,如图.∵∠ACB=90°,∴AB为圆的直径,∵CB=8cm,CA=6cm,∴AB=√CB2+CA2=√82+62=10(cm),∴半径=5cm.故答案为:5.分析题意,连接AB,易得AB为圆的直径且∠ACB=90°,结合勾股定理求得AB,进而求得圆的半径.本题考查了勾股定理和圆周角定理,熟练掌握圆周角定理是关键.16.【答案】55°【解析】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°−∠DCB=70°,∵DC⏜=CB⏜,∠DAB=35°,∴∠CAB=12∵AB是直径,∴∠ACB=90°,∴∠ABC=∠ACB−∠CAB=55°,故答案为:55°.连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠CAB、∠ACB,计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.17.【答案】10【解析】解:在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC=√AB2+BC2=5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,设BF=BD=x,则AD=AE=13−x,CF=CE=12−x,∵AE+EC=5,∴13−x+12−x=5,∴x=10,∴BF=10.故答案为;10.如图,设BF=BD=x,利用切线长定理,构建方程解决问题即可.本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】4043π【解析】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径多1,AD=AA1=1,BA1=BB1=2,……,AD n−1=AA n =4(n −1)+1,BA n =BB n =4(n −1)+2,故A 2022B 2022的半径为BA 2022=BB 2022=4(2022−1)+2=8086,弧A 2022B 2022的长=90180×8086π=4043π.故答案为:4043π.曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n−1=AA n =4(n −1)+1,BA n =BB n =4(n −1)+2,再计算弧长.此题主要考查了弧长的计算,弧长的计算公式:l =nπr 180,找到每段弧的半径变化规律是解题关键. 19.【答案】解:(1)(x +1)2−5=0,(x +1)2=5,开方得:x +1=±√5,解得:x 1=−1+√5,x 2=−1−√5;(2)−x 2+x =−6,x 2−x −6=0,(x +2)(x −3)=0,x +2=0或x −3=0,解得:x 1=−2,x 2=3.【解析】(1)移项后开方,即可得出两个一元一次方程,再求出方程的解即可;(2)先把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.20.【答案】y =−x +3 (1,4) −5≤y ≤4【解析】解:(1)设直线BC 解析式为y =kx +b ,将(3,0),(0,3)代入y =kx +b 得{0=3k +b 3=b, 解得{k =−1b =3,∴y=−x+3,故答案为:y=−x+3.(2)设抛物线解析式为y=a(x+1)(x−3),将(0,3)代入y=a(x+1)(x−3)得3=−3a,解得a=−1,∴y=−(x+1)(x−3)=−x2+2x+3.(3)①∵y=−x2+2x+3=−(x−1)2+4,∴点D坐标为(1,4),故答案为:(1,4).②∵y=−(x−1)2+4,∴抛物线开口向下,顶点坐标为(1,4),将x=−2代入y=−(x−1)2+4得y=−9+4=−5,∴当−2≤x≤2时,−5≤y≤4,故答案为:−5≤y≤4.(1)通过待定系数法求解.(2)设抛物线解析式为交点式,将点C坐标代入解析式求解.(3)①将二次函数解析式化为顶点式求解.②由二次函数顶点式可得抛物线开口方向及顶点坐标,进而求解.本题考查二次函数的性质,解题关键是掌握二次函数与方程及不等式的关系.21.【答案】3224√3【解析】解:(1)如图①中,四边形ABCD即为所求.×8×8=32;正方形ABCD的面积=12故答案为:32;(2)如图②中,六边形ABCDEF 即为所求.正六边形ABCDEF 的面积=6×√34×42=24√3. 故答案为:24√3.(1)画出两条互相垂直的直径AC ,BD 即可;(2)作出线段OA ,OD 的垂直平分线交⊙O 于点B ,F ,E ,C ,可得结论.本题考查作图−应用与设计作图,正多边形与圆等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.22.【答案】解:(1)由题意得:x(18−2x)=36,整理得:x 2−9x +18=0,解得x 1=3,x 2=6,∵18−2x ≤10,∴x ≥4,∴x =6;(2)设矩形养殖场的面积为y 平方米,由题意得:y =x(18−2x)=−2x 2+18x =−2(x −92)+812, ∵−2<0,4≤x <18,∴当x =92时,y 最大,最大值为812,答:当x 为4.5米时,矩形养殖场的面积最大,最大值是812平方米.【解析】(1)根据矩形的面积=36列出方程,解方程去符合条件的x的取值即可;(2)根据矩形的面积公式列出函数解析式,并根据函数的性质和x的取值范围求最值.本题考查一元二次方程和二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.23.【答案】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠EBF=∠EDB,∵∠C=90°,∴∠CAB+∠B=90°,∴∠ODA+∠CBA=90°,则∠ODA+∠EDB=90°,∴∠ODE=180°−90°=90°,∵OD为圆的半径,∴直线DE与⊙O相切;(2)连接OE,∵OA=2,AC=6,则OD=2,OC=4,设DE=x,则EB=ED=x,CE=8−x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8−x)2=22+x2,解得x =194, ∴DE =194. 【解析】本题考查线段垂直平分线的概念及其性质,切线的判定,以及勾股定理.(1)直线DE 与圆O 相切,连接OD ,由OD =OA ,利用等边对等角得到∠A =∠ODA ,再利用线段垂直平分线的性质得到∠B =∠EDB ,等量代换得到∠ODE 为直角,即可得证;(2)连接OE ,设DE =x ,则EB =ED =x ,CE =8−x ,在直角三角形OCE 和直角三角形ODE 中,利用勾股定理列出关于x 的方程,解方程得到x 的值,即可确定出DE 的长.24.【答案】(−2,−3)或(−1+√2,−2)或(−1−√2,−2)【解析】解:(1)由题意得:{x =−b2a =−19a −3b +c =0c =−3,解得{a =1b =2c =−3,故抛物线的表达式为y =x 2+2x −3;(2)当x =−1时,y =x 2+2x −3=−4,即点D(−1,−4),过点D 作DH ⊥y 轴于点H ,则DH =1,CH =−3−(−4)=1,OC =OB =3,OH =4,则△BCD 的面积=S 梯形DHOB −S △CHD −S △BOC =12(DH +OB)⋅OH −12×OB ⋅OC −12×DH ⋅CH =12×(1+3)×4−12×3×3−12×1×1=3;(3)当⊙P 与y 轴相切时,则点P 的横坐标为x ,则|x|=2,当x=−2时,y=−3,∴P(−2,−3);当x=2时,y=5,∴P(2,5)(舍去);当⊙P与x轴相切时,则点P的横坐标为y,则y|=−2,即y=x2+2x−3=−2,解得:x=−1±√2,即点P的坐标为(−1+√2,−2)或(−1−√2,−2);综上所述,圆心P的坐标为:(−2,−3)或(−1+√2,−2)或(−1−√2,−2),故答案为:(−2,−3)或(−1+√2,−2)或(−1−√2,−2).(1)用待定系数法即可求解;(2)由△BCD的面积=S梯形DHOB−S△CHD−S△BOC,即可求解;(3)分⊙P与y轴相切、⊙P与x轴相切两种情况,确定点P的一个坐标即可求解.本题考查了二次函数的综合应用,涉及到待定系数法求函数表达式、三角形的面积计算方法以及圆的基本知识,有一定的综合性,难度适中.25.【答案】120【解析】(1)①证明:∵AB=BC,∴AB⏜=BC⏜,∴∠ADB=∠CDB,∴DB平分圆周角∠ADC,∴圆中存在“爪形D”;②证明:延长DC至点E,使得CE=AD,连接BE,∵∠A+∠DCB=180°,∠ECB+∠DCB=180°,∴∠A=∠ECB,∵CE=AD,AB=BC,∴△BAD≌△BCE(SAS),∴∠E=∠ADB,BE=BD,∵∠ADC=90°,∠ADB=∠CDB,∴∠E=∠ADB=45°,∴△BDE是等腰直角三角形,∴BE2+BD2=DE2,即2BD2=DE2,∴DE=√2BD,∴CE+CD=AD+CD=√2BD;(2)解:延长DC至点E,使得CE=AD,连接BE,∵∠A+∠DCB=180°,∠ECB+∠DCB=180°,∴∠A=∠ECB,∵CE=AD,AB=BC,∴△BAD≌△BCE(SAS),∴∠E=∠ADB,BD=BE,∵AD+CD=BD,∴CE+CD=DE=BD,∴BD=DE=BE,∴△BDE是等边三角形,∴∠E=∠ADB=∠EDB=60°,∴∠ADC=∠ADB+∠BDE=120°.故答案为:120.(1)①由圆周角的性质直接证明即可;②延长DC至点E,使得CE=AD,连接BE,证明△BAD≌△BCE(SAS),由全等三角形的性质得出∠E=∠ADB,BE=BD,证出△BDE是等腰直角三角形,由勾股定理及等腰直角三角形的性质可得出结论;(2)延长DC至点E,使得CE=AD,连接BE,证明△BAD≌△BCE(SAS),由全等三角形的性质得出∠E=∠ADB,BD=BE,再证明△BDE是等边三角形,即可求解.本题是圆的综合题,考查了圆周角定理,圆内接四边形的性质,全等三角形的判定及性质,等腰直角三角形的判定与性质,等边三角形的判定与性质,正确地作出辅助线是解题的关键.。

2022年江苏省徐州市中考数学考前必刷试卷含答案解析

2022年江苏省徐州市中考数学考前必刷试卷含答案解析

2022年江苏省徐州市中考数学考前必刷试卷一、选择题(每题3分,共24分)1.(本题3分)-12022的相反数是( ) A .-2022 B .2022 C .±2022 D .120222.(本题3分)2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是( ) A . B . C . D .3.(本题3分)下列运算,正确的是( )A .22a a a ⋅=B .235a a a +=C .632a a a ÷=D .326()a a =4.(本题3分)投掷一枚质地均匀的正方体骰子一次,掷得“1”的概率是( )A .13B .16C .14D .12 5.(本题3分)某校为了解学生的出行方式,通过调查制作了如图所示的条形统计图,由图可知,下列说法错误的是( )A .步行的人数最少B .骑自行车的人数为90C .步行与骑自行车的总人数比坐公共汽车的人数要多D .坐公共汽车的人数占总人数的50%6.(本题3分)1的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 7.(本题3分)二次函数()2511y x =-+的图象向下平移3个单位,再向左平移2个单位,所得到的函数关系式是( )A .()2512y x =+-B .()2512y x =-- C .()2512y x =++ D .()2512y x =-+8.(本题3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,8AFO S =△,2CDO S =△,则ABCDEF S 正六边形的值是( )A .20B .30C .40D .随点O 位置而变化二、填空题(每题3分,共30分) 9.(本题3分)拒绝“餐桌浪费”,刻不容缓.如果每个人一天少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为______.10.(本题3分)9116的平方根是________________ 11.(本题3分)因式分解: 224x y -=_________.12.(本题3分)有意义,则x 的取值范围是______. 13.(本题3分)若1x 、2x 是方程2350x x +=的两根,则12x x ⋅=________.14.(本题3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,若⊙ADC =57°,则⊙BAC =__________°.15.(本题3分)如图,现有一个圆心角为120︒,半径为10cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm .16.(本题3分)如图,DE 是ABC 的中位线,2ADE S =△,则ABC S =______.17.(本题3分)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫ ⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.18.(本题3分)如图,用大小相等的小正方形按一定规律拼成一组图形,则第n 个图形中小正方形的个数y 与n 的关系式为 ___________.三、解答题(共86分)19.(本题10分)(1)计算|﹣2|21()2-; (2)化简21211a a a a --+⎛⎫÷+ ⎪⎝⎭. 20.(本题10分)(1)解方程:x (x -2)=8;(2)解不等式213x x -< 21.(本题8分)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证:(1)AD ⊙BC(2)四边形BCDE 为菱形.22.(本题8分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若⊙CMN的面积与⊙CDN的面积比为3:1,求的值.23.(本题8分)某校学生到离校15km处植树,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,求汽车的速度.24.(本题7分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是_________;(2)小沈从中随机抽取一张卡片,再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“A,共享出行”和“D,共享知识”的概率.25.(本题7分)某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据(如图所示),根据这组数据绘制成的不完整统计图.(1)本次调查中,一共调查了多少名学生?(2)把折线统计图补充完整;(3)求出扇形统计图中,教师部分对应的圆心角的度数.(4)在该中学所有学生中随机抽取一位同学,这位同学将来选择从事教师或者医生职业的概率是多少? 26.(本题8分)如图,直线122y x =-+与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点()1,0A -.(1)求B ,C 两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.27.(本题10分)如图,C 处是一钻井平台,位于某港口A 的北偏东60°方向上,与港口A 相距一艘摩托艇从A 出发,自西向东航行至B 处时,改变航向以每小时60海里的速度沿BC 方向行进,此时,C 位于B 的北偏西45°方向,则从B 到达C 需要多少小时?28.(本题10分)已知,如图1,Rt⊙ABC 中,AB =AC ,⊙BAC =90°,D 为⊙ABC 外一点,且⊙ADC =90°,E 为BC 中点,AF ⊙BC ,连接EF 交AD 于点G ,且EF ⊙ED 交AC 于点H ,AF =1.(1)若13AHCH,求EF的长;(2)在(1)的条件下,求CD的值;(3)如图2,连接BD,BG,若BD=AC,求证:BG⊙AD.2022年江苏省徐州市中考数学考前必刷试卷一、单选题(共24分)1.(本题3分)-12022的相反数是()A.-2022B.2022C.±2022D.1 2022【答案】D【解析】【分析】根据只有符号不相同的两个数互为相反数,即可求解.【详解】解:-12022的相反数是12022.故选:D【点睛】本题主要考查了相反数的定义,熟练掌握只有符号不相同的两个数互为相反数是解题的关键.2.(本题3分)2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A.B.C.D.【答案】C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;B 、 不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;C 、能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,符合题意;D 、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;故选:C .【点睛】此题主要考查了轴对称图形,熟知轴对称图形的定义是解题的关键.3.(本题3分)下列运算,正确的是( )A .22a a a ⋅=B .235a a a +=C .632a a a ÷=D .326()a a = 【答案】D【解析】【分析】直接利用同底数幂的乘法,同底数幂的除法,幂的乘方以及合并同类项即可求解.【详解】解:A .23a a a ⋅=,故选项A 不正确;B .2a 与3a 不是同类项,不能合并在一起,故选项B 不正确;C .633a a a ÷=,故选项C 不正确;D .326()a a =,正确,故选:D【点睛】本题考查了同底数幂的运算及合并同类项,熟练掌握运算法则是解题的关键.4.(本题3分)投掷一枚质地均匀的正方体骰子一次,掷得“1”的概率是( )A .13B .16C .14D .12 【答案】B【分析】用掷到点数是1的结果数除以所有可能的结果数即可.【详解】解:投掷一枚质地均匀的正方体骰子共有6种等可能结果,其中向上一面的点数是1的只有1种结果,所以向上一面的点数是1的概率为16,故选:B.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.5.(本题3分)某校为了解学生的出行方式,通过调查制作了如图所示的条形统计图,由图可知,下列说法错误的是()A.步行的人数最少B.骑自行车的人数为90C.步行与骑自行车的总人数比坐公共汽车的人数要多D.坐公共汽车的人数占总人数的50%【答案】C【解析】【分析】从条形统计图即可知:步行的人数、骑自行车的人数、坐公共汽车的人数.即可进行判断.【详解】A.从条形统计图可知:步行的人数最少为60人,所以该选项正确,不符合题意.B.从条形统计图可知:骑自行车的人数最为90人,所以该选项正确,不符合题意.C.步行和骑自行车的人数和为60+90=150人,坐公共汽车的人数也为150人,所以该选项错误,符合题意.D.从条形统计图可知总人数为60+90+150=300,所以坐公共汽车的人数占总人数的15050%300=,所以该选项正确,不符合题意.故选:C.【点睛】本题考查条形统计图.能够读懂统计图,从统计图中获取必要的信息是解答本题的关键.6.(本题3分)1的值在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间【答案】B【解析】【分析】【详解】解:∵9<13<16,31141∴-<<-,即213<,1在2和3之间.故选:B .【点睛】本题考查无理数的估算,无理数的估算方法:夹逼的方法(被开方数的不足近似值和过剩近似值);的值是解题关键.7.(本题3分)二次函数()2511y x =-+的图象向下平移3个单位,再向左平移2个单位,所得到的函数关系式是( )A .()2512y x =+-B .()2512y x =-- C .()2512y x =++D .()2512y x =-+ 【答案】A【解析】【分析】根据二次函数图象平移的规律作答即可.【详解】二次函数()2511y x =-+的图象向下平移3个单位,再向左平移2个单位∴得到的函数关系式是()()2221351251y x x =-+=++-- 故选:A .【点睛】本题考查二次函数图象平移的规律,即上加下减,左加右减,熟练掌握平移规律是解题的关键. 8.(本题3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,8AFO S =△,2CDO S =△,则ABCDEF S 正六边形的值是( )A .20B .30C .40D .随点O 位置而变化【答案】B【解析】【分析】 连接AC 、AD 、CF ,AD 与CF 交于点M ,可知M 是正六边形ABCDEF 的中心,根据矩形的性质求出5AFM S =△,再求出正六边形面积即可.【详解】解:连接AC 、AD 、CF ,AD 与CF 交于点M ,可知M 是正六边形ABCDEF 的中心, ∵多边形ABCDEF 是正六边形,∴AB =BC ,∠B =∠BAF = 120°,∴∠BAC =30°,∴∠F AC =90°,同理,∠DCA =∠FDC =∠DF A =90°,∴四边形ACDF 是矩形,1+=102AFO CDO AFDC S S S =△△矩形,154AFM AFDC S S ==△矩形, =6=30AFM ABCDEF S S △正六边形,故选:B .【点睛】本题考查了正六边形的性质,解题关键是连接对角线,根据正六边形的面积公式求解.二、填空题(共30分)9.(本题3分)拒绝“餐桌浪费”,刻不容缓.如果每个人一天少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为______.【答案】73.2410⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:3240万=32400000,用科学记数法表示为73.2410⨯.故答案为:73.2410⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(本题3分)9116的平方根是________________ 【答案】 54± 2 【解析】【分析】根据平方根和算术平方根的定义即可得到结论.【详解】解:因为±54的平方是9116, 所以9116的平方根是±54,,且2的平方是4,2.故答案为:±54;2. 【点睛】本题考查了平方根和算术平方根的定义,熟记定义是解题的关键.11.(本题3分)因式分解: 224x y -=_________.【答案】()()22x y x y +-【解析】【分析】根据平方差公式分解因式即可.【详解】解:224x y -=()()22x y x y +-故答案为:()()22x y x y +-【点睛】本题考查了平方差公式分解因式,掌握公式法分解因式是解题的关键.12.(本题3分)有意义,则x 的取值范围是______. 【答案】x ≤3且x ≠0【解析】【分析】由二次根式及分式有意义的条件,即可得到答案.【详解】300x x -≥⎧⎨≠⎩,解得3x ≤且0x ≠. 【点睛】本题考查二次根式和分式有意义的条件,熟练掌握相关知识是解题的关键.13.(本题3分)若1x 、2x 是方程2350x x +=的两根,则12x x ⋅=________.【答案】0【解析】【分析】 根据一元二次方程的根与系数关系可知:两根之积等于c a,即可求出结果. 【详解】解:∵1x ,2x 是方程2350x x +=的两个根, ∴12003x x ==, 故答案为:0.【点睛】本题考查了根与系数的关系,牢记两根之积等于c a是解题的关键.14.(本题3分)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=57°,则∠BAC=__________°.【答案】33【解析】【分析】根据圆周角定理得到∠ACB=90︒,∠B=∠ADC=57︒,然后利用互余计算∠BAC的度数.【详解】解:∵AB是⊙O的直径,∴∠ACB=90︒,∵∠ABC=∠ADC=57︒,∴∠BAC=90︒-∠B=33︒.故答案为33.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.15.(本题3分)如图,现有一个圆心角为120︒,半径为10cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm.【答案】10 3【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】圆锥的底面周长是:12010=180π⨯203π.设圆锥底面圆的半径是r,则203π=2rπ.解得:r =103. 故答案为103. 【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.(本题3分)如图,DE 是ABC 的中位线,2ADE S =△,则ABC S =______.【答案】8【解析】【分析】由DE 是ABC 的中位线,可得∥DE BC ,继而得ADEABC ∆∆,再利用相似三角形的面积比等于相似比的平方即可求解.【详解】 解:DE 是ABC 的中位线,1,2DE BC DE BC ∴=∥, ADE ABC ∴, 211()24ADE ABC SS∴==, 2ADES =, 8ABC S ∴=△,故答案为:8.【点睛】本题考查三角形的中位线及相似三角形的判定和性质,熟练掌握知识点是解题的关键.17.(本题3分)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫ ⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32 【解析】【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】解:根据题意, ∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”, ∴0x ≠,0y ≠,∴点B 不可能在坐标轴上;∵点A 在函数()20=>y x x的图像上, 设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同, 即22x x =,解得:2x =, 经检验,2x =是原分式方程的解;∴点B 为1(,1)2, ∴OBC 的面积为:133122S =⨯⨯=; ②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x=,解得:13x =, 经检验,13x =是原分式方程的解; ∴点B 为1(3,)6, ∴OBC 的面积为:1113264S =⨯⨯=; 故答案为:14或32. 【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.18.(本题3分)如图,用大小相等的小正方形按一定规律拼成一组图形,则第n 个图形中小正方形的个数y 与n 的关系式为 ___________.【答案】y =n 2+2n【解析】【分析】观察图形可知,第1个图形中小正方形的个数是221-,第2个图形中小正方形的个数是231-,第3个图形中小正方形的个数是241-,据此可得第n 个图形中小正方形的个数是222(1)12112n n n n n +-=++-=+,据此即可解答问题.【详解】解:第1个图形中小正方形的个数是221-,第2个图形中小正方形的个数是231-,第3个图形中小正方形的个数是241-,∴第n 个图形中小正方形的个数是222(1)12112n n n n n +-=++-=+,故答案为:22y n n =+.【点睛】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答题(共86分)19.(本题10分)(1)计算|﹣2|21()2-; (2)化简21211a a a a --+⎛⎫÷+ ⎪⎝⎭. 【答案】(1)4-;(2)1a a - 【解析】【分析】 (1)分别计算绝对值,立方根,负整数指数幂的运算,再合并即可;(2)先计算括号内的分式的加法运算,再把除法转化为乘法运算,约分后可得结果.【详解】解:(1)|﹣2|21()2- 2244 (2)21211a a a a --+⎛⎫÷+ ⎪⎝⎭ 22121a a a a a 2211a a a a1a a =- 【点睛】本题考查的是绝对值的含义,立方根的含义,负整数指数幂的含义,分式的混合运算,掌握“实数的混合运算与分式的混合运算”是解本题的关键.20.(本题10分)(1)解方程:x (x -2)=8;(2)解不等式213x x -< 【答案】(1)x 1=4,x 2=-2;(2)1x >-【解析】【分析】(1)将原方程变形,利用因式分解法求解即可;(2)按照解一元一次不等式的基本步骤(去分母、移项、合并同类项、系数化1)求解即可.【详解】解:(1)(2)8x x -=,去括号,移项,得2280x x --=,因式分解,得(4)(2)0x x -+=,20x ∴+=,或40x -=,12x ∴=-,24x =;(2)213x x -< 去分母,得213x x -<,移项,得231x x -<,合并同类项,得1x -<,解得1x >-.【点睛】本题考查解一元二次方程和一元一次不等式,解一元一次不等式时要注意不等式两边同时除以一个负数时,不等式要变号.21.(本题8分)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证:(1)AD ∥BC(2)四边形BCDE 为菱形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接BD ,根据圆周角定理可得∠ADB =∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE =BC ,证明四边形BCDE 为平行四边形,再根据BC CD =得到BC =CD ,从而证明菱形.【详解】解:(1)连接BD ,∵AB BC CD ==,∴∠ADB =∠CBD ,∴AD ∥BC ;(2)连接CD,∵AD∥BC,∴∠EDF=∠CBF,∵BC CD,∴BC=CD,∴BF=DF,又∠DFE=∠BFC,∴△DEF≌△BCF(ASA),∴DE=BC,∴四边形BCDE是平行四边形,又BC=CD,∴四边形BCDE是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF.22.(本题8分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.【答案】(1)证明见解析;(2)【解析】【分析】(1)由折叠的性质可得:∠ANM=∠CNM ,由四边形ABCD 是矩形,可得∠ANM=∠CMN ,则可证得∠CMN=∠CNM ,继而可得CM=CN .(2)首先过点N 作NH ⊥BC 于点H ,由△CMN 的面积与△CDN 的面积比为3:1,易得MC=3ND=3HC ,然后设DN=x ,由勾股定理,可求得MN 的长,继而求得答案.【详解】解:(1)证明:由折叠的性质可得:∠ANM=∠CNM ,∵四边形ABCD 是矩形,∴AD ∥BC .∴∠ANM=∠CMN .∴∠CMN=∠CNM .∴CM=CN .(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形.∴HC=DN ,NH=DC .∵△CMN 的面积与△CDN 的面积比为3:1, ∴12312CMN CDN MC NH SMC S ND DN NH ===. ∴MC=3ND=3HC .∴MH=2HC .设DN=x ,则HC=x ,MH=2x ,∴CM=3x=CN .在Rt △CDN 中,DC=,∴HN=.在Rt △MNH 中,MN=,∴MN DF == 23.(本题8分)某校学生到离校15km 处植树,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,求汽车的速度.【答案】汽车的速度为45km/h【解析】【分析】设自行车的速度为km/h x ,则汽车的速度为3km/h x ,根据题意,全体学生同时到达,列分式方程解方程求解即可【详解】解:设自行车的速度为km/h x ,则汽车的速度为3km/h x ,根据题意,得151540360x x -= 解得:15x =经检验,15x =是原方程的解∴汽车的速度为45km/h答:汽车的速度为45km/h【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.24.(本题7分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是_________;(2)小沈从中随机抽取一张卡片,再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“A ,共享出行”和“D ,共享知识”的概率.【答案】(1)14; (2)见解析.【解析】【分析】(1)根据概率公式直接得出答案;(2)根据题意,先画树状图,得出所有等可能的结果数,两张卡片恰好是“共享出行”和“共享知识”的结果数为2,根据概率公式求解可得.(1) 解:有“共享出行、共享服务、共享物品、共享知识”共4张卡片,∴小沈从中随机抽取一张卡片是“共享服务”的概率是14; (2)解:画树状图如图:共有12种等可能的结果数,其中两张卡片恰好是“共享出行”和“共享知识”的结果数为2,∴抽到的两张卡片恰好是“共享出行”和“共享知识”的概率21 126 ==.【点睛】本题主要考查了概率公式以及画树状图或列表的方法求事件的概率.25.(本题7分)某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据(如图所示),根据这组数据绘制成的不完整统计图.(1)本次调查中,一共调查了多少名学生?(2)把折线统计图补充完整;(3)求出扇形统计图中,教师部分对应的圆心角的度数.(4)在该中学所有学生中随机抽取一位同学,这位同学将来选择从事教师或者医生职业的概率是多少?【答案】(1)200(2)见解析(3)72°(4)0.35【解析】【分析】(1)根据军人或公务员的人数以及其百分比求出总人数即可;(2)求出医生和教师的人数,补全折线统计图即可;(3)根据圆心角=360°×百分比求解;(4)求出调查中选择从事教师和医生职业的频率,然后用频率估计概率即可.(1)解:被调查的学生人数为:2010%200÷=(人);(2)解:医生的人数为:200×15%=30(人),教师的人数为:200−30−40−20−70=40(人),补全折线统计图如图;(3)解:教师部分对应的圆心角的度数为:4036072200⨯︒=︒. (4) 解:由题意得这位同学将来选择从事教师或者医生职业的概率是40300.35200+= 【点睛】本题考查折线统计图和扇形统计图的知识,用频率估计概率,解题的关键是读懂图象信息,灵活运用所学知识解决问题.26.(本题8分)如图,直线122y x =-+与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点()1,0A -.(1)求B ,C 两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)()4,0B ,()0,2C (2)213222y x x =-++ (3)存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形 【解析】【分析】(1)令直线122y x =-+的x =0,y =0,求出对应的y 和x 的值,得到点C 、B 的坐标; (2)用待定系数法设二次函数解析式,代入点A 、B 、C 的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P 的坐标.(1) 解:对直线122y x =-+,当0x =时,2y =,0y =时,4x =, ()4,0B ∴,()0,2C .(2)解:设二次函数为()()()0y a x m x n a =--≠,二次函数图象经过()4,0B ,()1,0A -,()()41y a x x ∴=-+,把点()0,2C 代入()()41y a x x =-+得:()()04012a -+=, 解得:12a =-, ()()2113412222y x x x x ∴=--+=-++. (3) 解:二次函数图象经过()4,0B ,()1,0A -,∴对称轴为41322x -==, 3,02D ⎛⎫∴ ⎪⎝⎭, ()0,2C ,52CD ∴==,①如图1,当CD PD =时,52PD =, 135,22P ⎛⎫∴ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭, ②如图2,当3CD CP =时,过点C 作3CH DP ⊥于点H ,3CD CP =,3CH DP ⊥,3DH P H ∴=,()0,2C ,2DH ∴=,32P H ∴=,34P D ∴=,33,42P ⎛⎫∴ ⎪⎝⎭, 综上所述:存在135,22P ⎛⎫ ⎪⎝⎭,235,22P ⎛⎫- ⎪⎝⎭,33,42P ⎛⎫ ⎪⎝⎭,使PCD 是以CD 为腰的等腰三角形. 【点睛】本题考查了一次函数与坐标轴的交点、二次函数的解析式、等腰三角形的性质、勾股定理,解题的关键是用一般式或者两点式结合待定系数法求解,求点P 的坐标的时候要学会用“两圆一中垂”找到P 点,注意这里只要用“两圆”即可.27.(本题10分)如图,C 处是一钻井平台,位于某港口A 的北偏东60°方向上,与港口A 相距一艘摩托艇从A 出发,自西向东航行至B 处时,改变航向以每小时60海里的速度沿BC 方向行进,此时,C 位于B 的北偏西45°方向,则从B 到达C 需要多少小时?【答案】1小时【解析】【分析】过C 作CD ⊥AB 于D ,在点A 的正北方向上取点M ,在点B 的正北方向上取点N ,在直角三角形ACD 中,求出CD 的长,在直角三角形BCD 中,利用锐角三角函数定义求出BC 的长,进而求出所求时间即可.【详解】解:过C 作CD ⊥AB 于D ,在点A 的正北方向上取点M ,在点B 的正北方向上取点N ,由题意得:∠MAB =∠NBA =90°,∠MAC =60°,∠NBC =45°,AC 海里,∴∠CDA =∠CDB =90°,在Rt △ACD 中,∠CAD =∠MAB -∠MAC =90°-60°=30°,∴CD =12AC ,在Rt △BCD 中,∠CDB =90°,∠CBD =∠NBD -∠NBC =90°-45°=45°,sin 45CD BC =︒,∴BC =60(海里),∴60÷60=1(小时),∴从B 处到达C 岛处需要1小时.【点睛】此题考查了解直角三角形的应用-方向角,熟练掌握锐角三角函数定义是解本题的关键.28.(本题10分)已知,如图1,Rt △ABC 中,AB =AC ,∠BAC =90°,D 为△ABC 外一点,且∠ADC =90°,E 为BC 中点,AF ∥BC ,连接EF 交AD 于点G ,且EF ⊥ED 交AC 于点H ,AF =1.(1)若13AH CH =,求EF 的长; (2)在(1)的条件下,求CD 的值;(3)如图2,连接BD ,BG ,若BD =AC ,求证:BG ⊥AD .【答案】(3)见解析【解析】【分析】(1)连接AE ,根据AF ∥BC ,得出△AHF ∽△CHE ,根据相似三角形的性质,得出CE =3,根据勾股定理得出结果即可;(2)先根据题目中的条件,由ASA 得出△AEG ≌△CED ,根据全等三角形的性质,得出EG =ED ,根据等腰三角形的性质,得出∠EDG =∠EGD =45°进而得出∠EDG =∠ACE ,根据三角形相似的判定得出,△AEF ∽△DAC ,根据相似三角形的性质得出结果即可;(3)根据等腰直角三角形的性质得出AB BC =BE AC =AE ,证明△BED ∽△BDC ,根据相似三角形的性质得出2DE BE CD BD ==BG ⊥AD . (1) 如图1,连接AE ,∵AF ∥BC ,∴△AHF ∽△CHE , ∴AF AH EC CH=,∴AF=1,AHCH=13,∴1EC=13,∴CE=3,在Rt△ABC中,AB=AC,点E是BC的中点,∴AE=12BC=CE=3,AE⊥BC,∵AF∥BC,∴AE⊥AF,∴∠EAF=90°,根据勾股定理得,EF=(2)由(1)知,EF CE=3,∴BC=2CE=6,∴AC=∵∠EAG=45°-∠CAD,∠ECD=90°-45°-∠CAD=45°-∠CAD,∴∠EAG=∠ECD,∵∠AEG=∠CED,AE=CE,∴△AEG≌△CED(ASA),∴EG=ED,∴∠EDG=45°=∠ACE,∴∠CED=∠CAD,∵∠AEG=∠CED,∴∠FEA=∠CAD,又∵∠ADC=∠EAF,∴△AEF∽△DAC,∴AF CD EF AC=,=∴CD.(3)如图2,在Rt△ABC中,AB=AC,∴AB BC =BE AC = 连接AE ,∵2BE BE BD BA ==,2BD AB BC BC ==, ∴BE BD BD BC=, ∵∠EBD =∠DBC ,∴△BED ∽△BDC ,∴DE BE CD BD ==∴CD DE =GD ,∵CD =AG ,∴AG =GD ,∵BD =AB ,∴BG ⊥AD .【点睛】本题主要考查了全等三角形的判定和性质,相似三角形得判定和性质,勾股定理的应用,等腰三角形的性质,作出正确的辅助线是解题的关键.。

苏教版中考数学最后冲刺浓缩精华卷(5)含答案解析

苏教版中考数学最后冲刺浓缩精华卷(5)含答案解析

一、填空题(本大题共12个小题,每小题2分,共24分) 1.-2的绝对值是_________.【答案】【解析】∵, ∴, 故答案是。

2.一个数与-0.5的积是1,则这个数是_________. 【答案】-2 【解析】试题分析:根据乘法可得:这个数=1÷(—0.5)=—2.3.计算:23-2x )y (=__________; 【答案】638x y -【解析】根据积的乘方的运算法则可得原式=638x y -.4.若式子12x -在实数范围内有意义,则x 的取值范围是____________. 【答案】x ≥1【解析】解:由题意得:10x -≥ ,即1x ≥5.如图,将一个直角三角板和一把直尺叠放在一起,如果∠α=43°,那么∠β是_________【答案】47°【解析】试题解析:根据平行线的性质由a∥b 得到∠1=∠2,再利用对顶角相等得∠3=∠β,∠2=∠α=43°,然后利用互余可计算出∠β=47°. 6.对于非零的实数a 、b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x =_________. 【答案】567.若()22673x x x n -+=-+,则n =________. 【答案】-2【解析】由()2226769232x x x x x -+=-+-=-- 可得n =-2.8.学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“试卷默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是_______________ ;【答案】310【解析】()63==2010P 诗句作者 9.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是______________.【答案】23∵AB=BC,∴△ABC 是等腰三角形, ∴AD=CD;∵此多边形为正六边形,∴∠ABC=18046︒⨯=120°, ∴∠ABD=1202︒=60°,323 ∴a=3.故选A.10.如图,在平面直角坐标系中,菱形ABCD的三个顶点A,B,D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则点D的坐标为__.【答案】(4,3)11.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=过正方形AOBC对角线的交点,半径为(422-)的圆内切于△ABC,则k的值为______。

2022届江苏省徐州市沛县中考数学最后冲刺浓缩精华卷(含答案解析)

2022届江苏省徐州市沛县中考数学最后冲刺浓缩精华卷(含答案解析)

2022届江苏省徐州市沛县中考数学最后冲刺浓缩精华卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在测试卷卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个2.-5的倒数是A.15B.5 C.-15D.-53.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-4.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.675.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1076.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16πD.8 7.把6800000,用科学记数法表示为()A.6.8×105B.6.8×106C.6.8×107D.6.8×108 8.下列说法不正确的是()A.某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件9.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图310.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.11.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.32C.3D.23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是______________.14.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.15.若23ab=,则a bb+=_____.16.已知a+b=1,那么a2-b2+2b=________.17.将一个含45°角的三角板ABC,如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点'B恰好落在轴上,若点C的坐标为(1,0),则点'B的坐标为____________.18.计算:38-﹣|﹣2|+(13)﹣1=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,分别以线段AB两端点A,B为圆心,以大于12AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.20.(6分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.21.(6分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.22.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.23.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A ,B 两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 25.(10分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y 与时间之间的函数关系式. (2)求乙组加工零件总量a 的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?26.(12分)如图,点A 是直线AM 与⊙O 的交点,点B 在⊙O 上,BD ⊥AM ,垂足为D ,BD 与⊙O 交于点C ,OC 平分∠AOB ,∠B =60°.求证:AM 是⊙O 的切线;若⊙O 的半径为4,求图中阴影部分的面积(结果保留π和根号).27.(12分)如图,在ABCD 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【答案解析】测试卷解析:①∵二次函数的图象的开口向下, ∴a <0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c >0,∵二次函数图象的对称轴是直线x =1,12ba,∴-= ∴2a +b =0,b >0 ∴abc <0,故正确;②∵抛物线与x 轴有两个交点, 240b ac ∴->, 24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x =1, ∴抛物线上x =0时的点与当x =2时的点对称, 即当x =2时,y >0 ∴4a +2b +c >0, 故错误;④∵二次函数图象的对称轴是直线x =1,12ba,∴-=∴2a +b =0, 故正确.综上所述,正确的结论有3个. 故选B.2、C【答案解析】若两个数的乘积是1,我们就称这两个数互为倒数.【题目详解】解:5的倒数是15 -.故选C.3、C【答案解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【答案点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.4、B【答案解析】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF故选B.【答案点睛】本题考查相似三角形的判定及性质.5、D【答案解析】测试卷解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数6、A【答案解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【题目详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【答案点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.7、B【答案解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n 是负数.详解:把6800000用科学记数法表示为6.8×1.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、A【答案解析】测试卷分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.测试卷解析:A、某种彩票中奖的概率是11000,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.9、C【答案解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【题目详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【答案点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.10、B【答案解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.11、C【答案解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.12、C【答案解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =22∆⋅C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a <8,且a≠1【答案解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【答案点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.14、90°.【答案解析】根据三角形内角和得到∠A +∠B +∠C =180°,而∠C =30°,则可计算出∠A +∠B +=150°,由于∠A ﹣∠B =30°,把两式相加消去∠B 即可求得∠A 的度数.【题目详解】解:∵∠A +∠B +∠C =180°,∠C =30°,∴∠A +∠B +=150°,∵∠A ﹣∠B =30°,∴2∠A =180°,∴∠A =90°.故答案为:90°.【答案点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.15、53【答案解析】2,3a b = a b b +∴=2511b 33a +=+=. 16、1【答案解析】解:∵a+b=1,∴原式=()()()2122 1.a b a b b a b b a b b a b +-+=⨯-+=-+=+=故答案为1.【答案点睛】本题考查的是平方差公式的灵活运用.17、()1+【答案解析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,从而求出B′的坐标.【题目详解】解:∵∠ACB=45°,∠BCB′=75°,∴∠ACB′=120°,∴∠ACO=60°,∴∠OAC=30°,∴AC=2OC ,∵点C 的坐标为(1,0),∴OC=1,∴AC=2OC=2,∵△ABC 是等腰直角三角形,AB BC ∴==B C A B '''∴==1OB '∴=∴B′点的坐标为(1+【答案点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.18、﹣1【答案解析】根据立方根、绝对值及负整数指数幂等知识点解答即可.【题目详解】原式= -2 -2+3= -1【答案点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)四边形ACBD 是菱形;理由见解析;(2)证明见解析.【答案解析】(1)根据题意得出AC BC BD AD ===,即可得出结论;(2)先证明四边形BEDM 是平行四边形,再由菱形的性质得出90BMD ∠=︒,证明四边形ACBD 是矩形,得出对角线相等ME BD =,即可得出结论.【题目详解】(1)解:四边形ACBD 是菱形;理由如下:根据题意得:AC=BC=BD=AD ,∴四边形ACBD 是菱形(四条边相等的四边形是菱形);(2)证明:∵DE ∥AB ,BE ∥CD ,∴四边形BEDM 是平行四边形,∵四边形ACBD 是菱形,∴AB ⊥CD ,∴∠BMD=90°,∴四边形ACBD 是矩形,∴ME=BD ,∵AD=BD ,∴ME=AD .【答案点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.20、(1)49;(2)59.【答案解析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【题目详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【答案点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.21、(1)300,10;(2)有800人;(3)16.【答案解析】测试卷分析:测试卷解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.22、2.7米.【答案解析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【题目详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【答案点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.23、(1)35元/盒;(2)20%.【答案解析】测试卷分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.测试卷解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.24、(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【答案解析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解; (3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.【题目详解】(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩ 答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.依题意,得200a +170(30-a )≤5400,解得a ≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【答案点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.25、 (1)见解析(2)300(3)2小时【答案解析】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x ≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x ≤6时.603003002x +=⨯.解得5x =.因为5-3=2,所以,再经过2小时恰好装满第2箱.26、 (1)见解析;(2)83π【答案解析】(1)根据题意,可得△BOC 的等边三角形,进而可得∠BCO =∠BOC ,根据角平分线的性质,可证得BD ∥OA ,根据∠BDM =90°,进而得到∠OAM =90°,即可得证;(2)连接AC ,利用△AOC 是等边三角形,求得∠OAC =60°,可得∠CAD =30°,在直角三角形中,求出CD 、AD 的长,则S 阴影=S 梯形OADC ﹣S 扇形OAC 即可得解.【题目详解】(1)证明:∵∠B =60°,OB =OC ,∴△BOC 是等边三角形,∴∠1=∠3=60°,∵OC 平分∠AOB ,∴∠1=∠2,∴∠2=∠3,∴OA ∥BD ,∵∠BDM =90°,∴∠OAM =90°,又OA 为⊙O 的半径,∴AM 是⊙O 的切线(2)解:连接AC ,∵∠3=60°,OA =OC ,∴△AOC 是等边三角形,∴∠OAC =60°,∴∠CAD =30°,∵OC =AC =4,∴CD =2,∴AD =23 , ∴S 阴影=S 梯形OADC ﹣S 扇形OAC =12×(4+2)×23﹣26048=63-3603ππ. 【答案点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.27、(1)见解析;(2)1BE =时,22CE CF -的值最大,15sin 4∠=B 【答案解析】(1)延长BA 、CF 交于点G ,利用可证△AFG ≌△DFC 得出CF GF =,AG DC =,根据CE AB ⊥,可证出12EF GC GF ==,得出AEF G ∠=∠,利用2AB =,4BC =,点F 是AD 的中点,得出2AG =,11222AF AD BC ===,则有AG AF =,可得出AFG AEF ∠=∠,得出2EFC AEF G AEF ∠=∠+∠=∠,即可得出结论;(2)设BE=x ,则2AE x =-,4EG x =-,由勾股定理得出222216CE BC BE x =-=-,222328CG EG CE x =+=-,得出282CF x =-,求出222(1)9CE CF x -=--+,由二次函数的性质得出当x=1,即BE=1时,CE 2-CF 2有最大值,21615CE x =-=,由三角函数定义即可得出结果.【题目详解】解:(1)证明:如图,延长CF 交BA 的延长线于点G ,∵F 为AD 的中点,∴AF FD =.在ABCD 中,AB CD ∥,∴G DCF ∠=∠.在AFG 和DFC △中,,,,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFG DFC AAS △≌△,∴CF GF =,AG DC =,∵CE AB ⊥.∴12EF GC GF ==, ∴AEF G ∠=∠,∵2AB =,4BC =,点F 是AD 的中点,∴2AG =,11222AF AD BC ===. ∴AG AF =.∴AFG G ∠=∠.∴AFG AEF ∠=∠.在EFG 中,2EFC AEF G AEF ∠=∠+∠=∠,又∵CFD AFG ∠=∠,∴CFD AEF ∠=∠.∴23EFD EFC CFD AEF AEF AEF ∠=∠+∠=∠+∠=∠(2)设BE x =,则2AE x =-,∵2AG CD AB ===,∴224EG AE AG x x =+=-+=-,在Rt CEG △中,222216CE BC BE x =-=-,在Rt CEG △中,22222(4)16328CG EG CE x x x =+=-+-=-,∵CF GF =, ∴222111(328)82244CF CG CG x x ⎛⎫===-=- ⎪⎝⎭, ∴22222168228(1)9CE CF x x x x x -=--+=-++=--+,∴当1x =,即1BE =时,22CE CF -的值最大,∴CE ==在Rt BEC 中,sin 4CE B BC ∠== 【答案点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.。

2022年中考数学冲刺密卷一含答案解析

2022年中考数学冲刺密卷一含答案解析

2022一诊(指标到校)考试数学冲刺密卷一一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.比﹣2小的数是()A.2B.0C.﹣22D.﹣(﹣1)【解答】解:﹣22=﹣4,﹣(﹣1)=1,∵﹣4<﹣2<0<1<2,∴比﹣2小的数是﹣22.故选:C.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.计算(﹣2ab2)3,结果正确的是()A.﹣2a3b6B.﹣6a3b6C.﹣8a3b5D.﹣8a3b6【解答】解:(﹣2ab2)3=﹣8a3b6.故选:D.4.如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为()A.9B.12C.18D.24【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点A 是OA'的中点,∴△ABC∽△A′B′C′,且相似比为1:2,∵△ABC的面积为6,∴△A′B′C′的面积为24,故选:D.5.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:×=,∵4<<5,即×的值在4和5之间.故选:B.6.下列命题是真命题的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直且相等的四边形是菱形D.有一组对边平行且相等的四边形是菱形【解答】解:A、对角线相等的平行四边形是矩形,故错误,不符合题意;B、有一组邻边相等的平行四边形是菱形,正确,符合题意;C、对角线互相垂直平分的四边是四菱形,故错误,不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故错误,不符合题意;故选:B.7.如图,AB是圆O的直径,C、D在圆上,连接AD、CD、AC、BC.若∠CAB=35°,则∠ADC的度数为()A.35°B.45°C.55°D.65°【解答】解:∵AB是圆O的直径,∴∠ACB=90°,∵∠CAB=35°,∴∠B=90°﹣∠CAB=55°,∴∠ADC=∠B=55°,故选:C.8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行八十步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”把这道题翻译成现代文,意思就是:走路快的人走了80步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?设走路快的人走x步就能追上走路慢的人,则下面所列方程正确的是()A.B.C.D.【解答】解:设走路快的人走x步就能追上走路慢的人,根据题意,得=,故选:B.9.春节前,某加工厂接到面粉加工任务,要求5天内加工完220吨面粉.加工厂安排甲、乙两组共同完成加工任务.乙组加工中途停工一段时间维修设备,然后提高加工效率继续加工,直到与甲队同时完成加工任务为止.设甲、乙两组各自加工面粉数量y(吨)与甲组加工时间x(天)之间的关系如图所示,结合图象,下列结论错误的是()A.乙组中途休息了1天B.甲组每天加工面粉20吨C.加工3天后完成总任务的一半D.3.5天后甲乙两组加工面粉数量相等【解答】解:由图象可得:2﹣1=1,即乙组加工中途停工1天,故选项A是正确的,甲组每天加工面粉数量为:=20(吨),故选项B是正确的,甲组加工3天的面粉数量为20×3=60(吨),乙组第一天加工15吨,第三天加工面粉数量为:=35(吨),∴加工3天后面粉数量为:60+15+35=110(吨),完成总任务的一半,故C选项正确,3.5天后甲组加工面粉数量为20×3.5=70(吨),乙组加工面粉数量为15+35×1.5=67.5(吨),D选项错误,故选:D.10.如图所示,正方形ABCD中,AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.B.4C.D.【解答】解:如图,作DL⊥AE于点H,交AB于点L,∵BF⊥AE,∴DL∥BF,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD,∠ABE=∠C=90°,∴BL∥DF,∴四边形BFDL是平行四边形,∵∠AGB=90°,∠BAE=90°﹣∠ABG=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵E为BC中点,∴BE=CF=BC=CD,∴DF=CF=CD,∴BL=DF=CD=AB,∴AL=BL=AB,∴==1,∴AH=GH,∵DA=AB=4,∴DG=DA=4,故选:B.11.若关于x的不等式组无解,且关于y的分式方程有正整数解,则所有符合条件的整数a之和为()A.﹣5B.﹣8C.﹣6D.﹣4【解答】解:解不等式组得∵不等式组无解,∴a≤﹣1,解分式方程得y=(a≠1),∵分式方程有正整数解,a是整数,∴a=0,﹣1,﹣5,∴所有符合条件的整数a的值之和是﹣5+(﹣2)+(﹣1)+0=﹣8.故选:C.12.若定义一种新的取整符号[ㅤ],即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.6]=﹣2,则下列结论正确的是①[﹣3.1]+[2]=﹣2;②[x]+[﹣x]=0;③方程x﹣[x]=的解有无数多个;④若[x﹣1]=3,则x的取值范围是4≤x<5;⑤当﹣1≤x<1时,则[x+1]+[﹣x+1]的值为0、1或2.A.①②③B.①②④C.①③⑤D.①③④【解答】解:对于①,[﹣3.1]+[2]=﹣4+2=2,正确;对于②,由[﹣0.5]+[0.5]=﹣1+0=﹣1,不正确;对于③,当x=0.5,1.5,2.5,...时,方程均成立,正确;对于④,由[x﹣1]=3,得3≤x﹣1<4,即4≤x<5,正确;对于⑤,当x=﹣1或0时,[x+1]+[﹣x+1]=2;当﹣1<x<0时,[x+1]+[﹣x+1]=0+1=1;当0<x<1时,[x+1]+[﹣x+1]=1+0=1.故[x+1]+[﹣x+1]的值为1或2,⑤不正确.故选:D.二.填空题:(本大题4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上。

2022届江苏省苏州市市辖区中考考前最后一卷数学试卷含解析

2022届江苏省苏州市市辖区中考考前最后一卷数学试卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .2.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )A .B .C .D .3.在下列四个标志中,既是中心对称又是轴对称图形的是( )A .B .C .D .4.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个5.下列运算正确的是( ) A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()6.已知二次函数2y ax bx c =++的x 与y 的不符对应值如下表:x3- 2-1- 01 2 3 y1111-1-15且方程20ax bx c ++=的两根分别为1x ,2x 12()x x <,下面说法错误的是( ). A .2x =-,5y = B .212x << C .当12x x x <<时,0y >D .当12x =时,y 有最小值 7.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( ) A .103块B .104块C .105块D .106块8.若反比例函数k y x =的图像经过点1(,2)2A -,则一次函数y kx k =-+与k y x=在同一平面直角坐标系中的大致图像是( )A .B .C .D .9.不等式的最小整数解是( ) A .-3B .-2C .-1D .210.如图,在△ABC 中,CD ⊥AB 于点D ,E ,F 分别为AC ,BC 的中点,AB=10,BC=8,DE=4.5,则△DEF 的周长是( )A .9.5B .13.5C .14.5D .17二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是___________(写出一个即可).12.如图,已知正方形ABCD 中,∠MAN=45°,连接BD 与AM ,AN 分别交于E ,F 点,则下列结论正确的有_____. ①MN=BM+DN②△CMN 的周长等于正方形ABCD 的边长的两倍; ③EF 1=BE 1+DF 1;④点A 到MN 的距离等于正方形的边长 ⑤△AEN 、△AFM 都为等腰直角三角形. ⑥S △AMN =1S △AEF⑦S 正方形ABCD :S △AMN =1AB :MN ⑧设AB=a ,MN=b ,则ba≥12﹣1.13.已知反比例函数ky x=的图像经过点(-2017,2018),当0x >时,函数值y 随自变量x 的值增大而_________.(填“增大”或“减小”)14.已知方程2390x x m -+=的一个根为1,则m 的值为__________.15.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.16.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC 的顶点C 的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (15,22)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)B 点坐标为 ,并求抛物线的解析式; (2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,直接写出此时点P 的坐标.18.(8分)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .19.(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?20.(8分)如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE求证:四边形AOBE 是菱形若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积21.(8分)关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,且x 12+x 22﹣x 1x 2=8,求m 的值. 22.(10分)如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =kx相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.23.(12分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.24.某班为确定参加学校投篮比赛的任选,在A 、B 两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图. (1)根据图中所给信息填写下表:投中个数统计 平均数 中位数 众数 A 8 B77(2)如果这个班只能在A 、B 之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.2、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.3、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解析】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH ≌△HDF (ASA ), ∴BH=HF ,HE=DF ,故③正确;由上述①、②、③可得CD=BE 、DF=EH=CE ,CF=CD-DF , ∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确; ∵AB=AH ,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH ,∴即AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个. 故选C . 【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质 5、D 【解析】根据幂的乘方:底数不变,指数相乘.合并同类项即可解答. 【详解】解:A 、B 两项不是同类项,所以不能合并,故A 、B 错误,C 、D 考查幂的乘方运算,底数不变,指数相乘.326x x () ,故D 正确; 【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键. 6、C 【解析】分别结合图表中数据得出二次函数对称轴以及图像与x 轴交点范围和自变量x 与y 的对应情况,进而得出答案. 【详解】A 、利用图表中x =0,1时对应y 的值相等,x =﹣1,2时对应y 的值相等,∴x =﹣2,5时对应y 的值相等,∴x =﹣2,y =5,故此选项正确;B 、方程ax 2+bc +c =0的两根分别是x 1、x 2(x1<x2),且x =1时y =﹣1;x =2时,y =1,∴1<x 2<2,故此选项正确;C 、由题意可得出二次函数图像向上,∴当x 1<x <x 2时,y <0,故此选项错误;D 、∵利用图表中x =0,1时对应y 的值相等,∴当x =12时,y 有最小值,故此选项正确,不合题意.所以选C. 【点睛】此题主要考查了抛物线与x 轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用8、D【解析】甶待定系数法可求出函数的解析式为:1yx=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;9、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵,∴,∴,∴不等式的最小整数解是x=-2.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.10、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=12AC=4.1,DF=12BC=4,EF=12AB=1,∴△DEF的周长=12(AB+BC+AC)=12×(10+8+9)=13.1.故选B.【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.二、填空题(本大题共6个小题,每小题3分,共18分)11、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.12、①②③④⑤⑥⑦.【解析】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.【详解】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.则∠DAH=∠BAM,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN 和△HAN 中,AM AH MAN HAN AN AN ⎧⎪∠∠⎨⎪⎩===,∴△MAN ≌△HAN ,∴MN=NH=BM+DN ,①正确;∵(当且仅当BM=DN 时,取等号)∴BM=DN 时,MN 最小,∴BM=12b , ∵DH=BM=12b , ∴DH=DN ,∵AD ⊥HN ,∴∠DAH=12∠HAN=11.5°, 在DA 上取一点G ,使DG=DH=12b , ∴∠DGH=45°,2b , ∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD ,∴, ∴AB=AD=AG+DG=2b+12b=a ,∴2b a==,∴2b a≥,当点M 和点B 重合时,点N 和点C 重合,此时,MN 最大=AB , 即:1b a=, ∴222-≤b a ≤1,⑧错误; ∵MN=NH=BM+DN∴△CMN 的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD ,∴△CMN 的周长等于正方形ABCD 的边长的两倍,②结论正确;∵△MAN ≌△HAN ,∴点A 到MN 的距离等于正方形ABCD 的边长AD ,④结论正确;如图1,将△ADF 绕点A 顺时针性质90°得到△ABH ,连接HE .∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE ,∴∠EAH=∠EAF=45°,∵EA=EA ,AH=AD ,∴△EAH ≌△EAF ,∴EF=HE ,∵∠ABH=∠ADF=45°=∠ABD ,∴∠HBE=90°,在Rt △BHE 中,HE 1=BH 1+BE 1,∵BH=DF ,EF=HE ,∵EF 1=BE 1+DF 1,③结论正确;∵四边形ABCD 是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN ,∴A 、E 、N 、D 四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴,,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=12AN•MP=12AM•AN•si n45°,S△AEF=12AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN=212ABMN AB⨯=1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.13、增大【解析】根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.【详解】∵反比例函数kyx=的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.14、1【解析】欲求m ,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m 值.【详解】设方程的另一根为x 1,又∵x=1, ∴1113{•1=3x m x =, 解得m=1.故答案为1. 【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x 2-9x+m=0中求出m 的值.15、1.【解析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.【详解】设多边形的边数为n .因为正多边形内角和为,正多边形外角和为根据题意得:解得:n =8.∴这个正多边形的每个外角 则这个正多边形的每个内角是故答案为:1.【点睛】 考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.16、(﹣20163+1)【解析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×2,横坐标为2,∴C(2+1),第2018次变换后的三角形在x轴上方,点C+1,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016)故答案为:(﹣2016)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.三、解答题(共8题,共72分)17、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.B.(2)作图见解析;(3)1.18、(1)作图见解析;(2,1)【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B (2,1);(2)如图:△A'B'C'即为所求;(3)S △A'B'C '=12×4×8=1. 点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.19、()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()-+⨯--+-⨯≥,6040a600.74050a8848502460≥,解得a20答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.20、(1)见解析;(2)S四边形ADOE =【解析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四边形AOBE为平行四边形.∵OA=OB,∴四边形AOBE为菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=∴S ΔADC =122⨯⨯=∴S 四边形ADOE =【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.21、 (1)12m;(2)m=﹣23. 【解析】(1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m >0,求出不等式的解集即可; (2)根据根与系数的关系得出x 1+x 2=﹣2,x 1•x 2=2m ,把x 1+xx 12+x 22﹣x 1x 2=8变形为(x 1+x 2)2﹣3x 1x 2=8,代入求出即可.【详解】(1)∵关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根,∴△=22﹣4×1×2m=4﹣8m >0,解得:12m 即m 的取值范围是12m(2)∵x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,∴x 1+x 2=﹣2,x 1•x 2=2m ,∵x 12+x 22﹣x 1x 2=8,∴(x 1+x 2)2﹣3x 1x 2=8,∴(﹣2)2﹣3×2m=8,解得:23m =-.【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.22、(1)b=3,k=10;(2)S △AOB =212. 【解析】 (1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+ 353222⨯⨯=+ 10.5=. 23、(1)14;(2)112. 【解析】 试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14; (2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112. 24、(1)7,9,7;(2)应该选派B ;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【详解】(1)A 成绩的平均数为16(9+10+4+3+9+7)=7;众数为9; B 成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)2A S =16[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;2B S =16 [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= 13; 从方差看,B 的方差小,所以B 的成绩更稳定,从投篮稳定性考虑应该选派B .【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.。

【中考预测卷】2023年中考考前最后一卷-数学(全国通用)(含答案)

【中考预测卷】2023年中考考前最后一卷-数学(全国通用)(含答案)

2023年中考考前最后一卷数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)........A .10x −≤<或1x ≥ C .1x ≤−或1x ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题3分,共18分,直接填写答案.)甲、乙两组数据的方差分别为22,s s 甲乙,则2s 甲______________2s 乙(填“>”,“<”或“=”).14.点()()1122,,,A x y B x y 在一次函数(2)1y a x =−+的图像上,当12x x >时,12y y <,则a的取值范围是____________.15.如图,ABC∆中,D为BC的中点,E是AD上一点,连接BE并延长交AC于F,BE AC=,且9BF=,6CF=,那么AF的长度为__.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数,等等.有如下四个结论:①(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;②当a=-2,b=1时,代数式a3+3a2b+3ab2+b3的值是-1;③当代数式a4+4a3b+6a2b2+4ab3+b4的值是0时,一定是a=-1,b=1;④(a+b)n的展开式中的各项系数之和为2n.上述结论中,正确的有______(写出序号即可).三、解答题(本大题共个8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)解不等式组211 3.x xx≥−⎧⎨+≤⎩,①②请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________请结合上述信息,解答下列问题:(1)共有名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.20.(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高α(1)求证:A ACF ∠=∠; (2)若8AC =,4cos 5ACF ∠=,求BF 及DE 22.(10分)某商店购进了一种消毒用品,进价为每件的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中数).当每件消毒用品售价为9元时,每天的销售量为11元时,每天的销售量为95件.于点G,交直线CD于点F.(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰直角三角形CFH,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHF,M是BH中点,连BC=,求GM的最小值.接GM,3AB=,22023年中考考前最后一卷数学·参考答案第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)二、填空题(本大题共6小题,每小题3分,共18分)17.(6分)【详解】(1)解:移项得:21x x −≥− 解得:1x ≥−…………….. 1 分 故答案为:1x ≥−; (2)移项得:31x ≤−, 解得:2x ≤,…………….. 2 分 故答案为:2x ≤;(3)把不等式①和②的解集在数轴上表示出来:……………..4 分(4)所以原不等式组的解集为:12x −≤≤,……………..6 分 故答案为:12x −≤≤. 18. (6分) (4)(3)解:把“礼仪”“陶艺”“园艺”“厨艺”及“编程画树状图如下:共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有∴小刚和小强两人恰好选到同一门课程的概率为51255=. (6)20.(10分)【详解】(1)解:过点D作DE BC⊥,交BC的延长线于点E,在Rt ADF 中,3DF x =Rt ABC △中,【详解】(1)解:∵Rt ABC △中,90ACB ∠=︒, ∴∠A +∠B =∠ACF +∠BCF =90°, ∵BE CD =, ∴∠B =∠BCF ,∴∠A =∠ACF ; ……………..2 分 (2)∵∠B =∠BCF ,∠A =∠ACF22.(10分)【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得: 91051195k b k b +=⎧⎨+=⎩,解得:5150k b =−⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =−+;……………..2 分(2)解:(-5x +150)(x -8)=425,整理得:2383450x x −+=,解得:1213,25x x ==,……………..4 分∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;……………..6 分(3)解:根据题意得:()()()851508w y x x x =−=−+−251901200x x =−+−()2519605x =−−+……………..8 分∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.……………..10 分答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元. 23.(11分) 2212x x +=()43k ∴−∵x 1+x 2=4【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;……………..2 分②成立,…………….. 3分理由是:当点E在线段BC的延长线上时,同理可得:△ABE≌△BCF(AAS),∴BE=CF,AE=BF,……………..4 分。

2022届江苏省徐州市市区部分重点中学中考数学模拟预测题含解析

2022届江苏省徐州市市区部分重点中学中考数学模拟预测题含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5,则∠B 的度数是( )A .30°B .45°C .50°D .60°2.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .1839π-C .9932π-D .1833π-3.不论x 、y 为何值,用配方法可说明代数式x 2+4y 2+6x ﹣4y+11的值( )A .总不小于1B .总不小于11C .可为任何实数D .可能为负数4.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )A .B .C .D .5.如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为12,则PD +PE +PF =( )A .12B .8C .4D .36.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣AB D .AC =AD ﹣AB7.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A .1B .2C .3D .48.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .29.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<10.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×108二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式39a a -=________,221218x x -+=__________.12.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.13.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.14.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.15.如图,在平面直角坐标系中,已知C (1,2),△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 的面积是△ABC 面积的5倍,则点F 的坐标为_____.16.分解因式:22x y -=_______________. 三、解答题(共8题,共72分)17.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A 市投资“改水工程”的年平均增长率;从2008年到2010年,A 市三年共投资“改水工程”多少万元?18.(8分)如图①,在Rt △ABC 中,∠ABC =90o ,AB 是⊙O 的直径,⊙O 交AC 于点D ,过点D 的直线交BC 于点E ,交AB 的延长线于点P ,∠A =∠PDB .(1)求证:PD 是⊙O 的切线;(2)若AB =4,DA =DP ,试求弧BD 的长;(3)如图②,点M 是弧AB 的中点,连结DM ,交AB 于点N .若tan A =,求的值.19.(8分)如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, 2 ≈1.41, 3 ≈1.73)20.(8分)已知:如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线 AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点 C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标.21.(8分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.22.(10分)已知抛物线y=x 2+bx+c 经过点A(0,6),点B (1,3),直线l 1:y=kx(k≠0),直线l 2:y=-x-2,直线l 1经过抛物线y=x 2+bx+c 的顶点P ,且l 1与l 2相交于点C ,直线l 2与x 轴、y 轴分别交于点D 、E.若把抛物线上下平移,使抛物线的顶点在直线l 2上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线l 1上(此时抛物线的顶点记为N ).(1)求抛物y=x 2+bx+c 线的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线l 2的位置关系,并说明理由.(3)设点F 、H 在直线l 1上(点H 在点F 的下方),当△MHF 与△OAB 相似时,求点F 、H 的坐标(直接写出结果).23.(12分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)24.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中求出∠D.则sinD=∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.2、B【解析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=6×3?23,∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×2120(33)3?360π⨯3-9π.故选B.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.3、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又∵(x+3)2≥0,(2y-1)2≥0,∴x2+4y2+6x-4y+11≥1,故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.4、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5、C【解析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.6、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.7、B【解析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE ,在△ACD 和△CBE 中,ACD CBE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质. 8、D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集9、D【解析】先求出点M 到x 轴、y 轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M 的坐标是(4,3),∴点M 到x 轴的距离是3,到y 轴的距离是4,∵点M (4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,∴r 的取值范围是3<r <4,故选:D .【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键. 10、B【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B 正确二、填空题(本大题共6个小题,每小题3分,共18分)11、(3)(3)a a a +- 22(3)x -【解析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=- 答案点评:利用提公因式、平方差公式、完全平方公式分解因式12、6.【解析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE ∥AD ,∴△BOE∽△AOD,∴22BOEAODS OBS OA=,∵OA=AC ,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13 OBOA=,∴23 ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.13、1【解析】利用树状图展示所有1种等可能的结果数.【详解】解:画树状图为:共有1种等可能的结果数.故答案为1.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14、32°【解析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.15、)【解析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC∴点F的坐标为(),故答案为:).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).三、解答题(共8题,共72分)17、(1) 40%;(2) 2616.【解析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.18、(1)见解析;(2);(3).【解析】(1)连结OD ;由AB 是⊙O 的直径,得到∠ADB =90°,根据等腰三角形的性质得到∠ADO =∠A ,∠BDO =∠ABD ;得到∠PDO =90°,且D 在圆上,于是得到结论;(2)设∠A =x ,则∠A =∠P =x ,∠DBA =2x ,在△ABD 中,根据∠A +∠ABD =90o 列方程求出x 的值,进而可得到∠DOB =60o ,然后根据弧长公式计算即可;(3)连结OM ,过D 作DF ⊥AB 于点F ,然后证明△OMN ∽△FDN ,根据相似三角形的性质求解即可.【详解】(1)连结OD ,∵AB 是⊙O 的直径,∴∠ADB =90o ,∠A +∠ABD =90o ,又∵OA =OB =OD ,∴∠BDO =∠ABD ,又∵∠A =∠PDB ,∴∠PDB +∠BDO =90o ,即∠PDO =90o ,且D 在圆上,∴PD 是⊙O 的切线.(2)设∠A =x ,∵DA =DP ,∴∠A =∠P =x ,∴∠DBA =∠P +∠BDP =x +x =2x ,在△ABD 中,∠A +∠ABD =90o ,x =2x =90o ,即x =30o ,∴∠DOB =60o ,∴弧BD 长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2O M,即OM=,在Rt△BDF中,DF=,由△OMN∽△FDN得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o 是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.19、30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×3×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2 ∴AB=AE+BE≈23.1+7.2=30.3米.20、(1)抛物线的解析式为243y x x =-+;(2)12; (1)满足条件的点有F 1(52,0),F 2(52-,0),F 150),F 4(5-0).【解析】 分析:(1)根据对称轴方程求得b =﹣4a ,将点A 的坐标代入函数解析式求得9a +1b +1=0,联立方程组,求得系数的值即可;(2)抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴12262122BCD BCDE S S BD CN ==⨯⨯⋅=⨯=平行四边形. (1)联结CE .分类讨论:(i )当CE 为矩形的一边时,过点C 作CF 1⊥CE ,交x 轴于点F 1,设点F 1(a ,0).在Rt △OCF 1中,利用勾股定理求得a 的值;(ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点F 1、F 4,利用圆的性质解答.详解:(1)∵顶点C 在直线x =2上,∴22b x a=-=,∴b =﹣4a . 将A (1,0)代入y =ax 2+bx +1,得:9a +1b +1=0,解得:a =1,b =﹣4,∴抛物线的解析式为y =x 2﹣4x +1.(2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵y =x 2﹣4x +1═(x ﹣2)2﹣1,∴C (2,﹣1).∵CM =MA =1,∴∠MAC =45°,∴∠ODA =45°,∴OD =OA =1.∵抛物线y =x 2﹣4x +1与y 轴交于点B ,∴B (0,1),∴BD =2.∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积,∴12262122BCD BCDE S SBD CN ==⨯⨯⋅=⨯=平行四边形. (1)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点,即 5OE OC ==(i )当CE 为矩形的一边时,过点C 作CF 1⊥CE ,交x 轴于点F 1,设点F 1(a ,0).在Rt △OCF 1中,22211OF OC CF =+,即 a 2=(a ﹣2)2+5,解得: 52a =,∴点1502F (,). 同理,得点2502F -(,); (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点F 1、F 4,可得:345OF OF OC ===,得点350F (,)、450F -(,). 综上所述:满足条件的点有12355005022F F F -(,),(,),(,)),450F -(,).点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.21、()1见解析;()124. 【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】 ()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果,∴点()M x,y 在函数y x 1=+的图象上的概率为31124=.【点睛】本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22、(1)246y x x =-+;(2)以点N 为圆心,半径长为4的圆与直线2l 相离;理由见解析;(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --.【解析】(1)分别把A ,B 点坐标带入函数解析式可求得b ,c 即可得到二次函数解析式(2)先求出顶点P 的坐标,得到直线1l 解析式,再分别求得MN 的坐标,再求出NC 比较其与4的大小可得圆与直线2l 的位置关系.(3)由题得出tan ∠BAO=13,分情况讨论求得F,H 坐标. 【详解】 (1)把点()0,6A 、()1,3B 代入2y x bx c =++得631c b c =⎧⎨=++⎩, 解得,46b c =-⎧⎨=⎩, ∴抛物线的解析式为246y x x =-+.(2)由246y x x =-+得()222y x =-+,∴顶点P 的坐标为()2,2P , 把()2,2P 代入1l 得22k =解得1k =,∴直线1l 解析式为y x =,设点()2,M m ,代入2l 得4m =-,∴得()24M -,, 设点(),4N n -,代入1l 得4n =-,∴得()44N --,, 由于直线2l 与x 轴、y 轴分别交于点D 、E∴易得()2,0D -、()0.2E -,∴OC ==CE ==∴OC CE =,∵点C 在直线y x =上,∴45COE ∠=,∴45OEC ∠=,180454590OCE ∠=--=即2NC l ⊥,∵()()221414324NC =-++-+=>, ∴以点N 为圆心,半径长为4的圆与直线2l 相离.(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --. C(-1,-1),A(0,6),B(1,3)可得tan ∠BAO=13, 情况1:tan ∠CF 1M=1CM CF = 13, ∴ CF 1=92, M F 1=65,∴H 1F 1=52,∴ F 1(8,8),H 1(3,3);情况2:F 2(-5,-5), H 2(-10,-10)(与情况1关于L 2对称);情况3:F 3(8,8), H 3(-10,-10)(此时F 3与F 1重合,H 3与H 2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.23、406海里【解析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB .【详解】解:如图,过点P 作PC AB ⊥,垂足为点C .∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 80403PC AP APC =⋅∠≡=. 在Rt PCB ∆中,cos PC BPC PB∠=,∴cos PC PB BPC ===∠.∴此时轮船所在的B 处与灯塔P 的距离是海里.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线. 24、10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022学年江苏省徐州市部分中考数学最后冲刺浓缩精华卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.242.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图33.方程()21k1x1kx+=04---有两个实数根,则k的取值范围是().A.k≥1B.k≤1C.k>1 D.k<14.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.5.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)6.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A .0.5×10﹣9米B .5×10﹣8米C .5×10﹣9米D .5×10﹣10米7.一元二次方程x 2+x ﹣2=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根8.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论: ①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 1=1(AD 1+AB 1)﹣CD 1.其中正确的是( )A .①②③④B .②④C .①②③D .①③④9.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =310.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x 2﹣2x+kb+1=0 的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是 0二、填空题(共7小题,每小题3分,满分21分)11.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 . 12.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m 、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.14.不等式-2x+3>0的解集是___________________15.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .16.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.17.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.三、解答题(共7小题,满分69分)18.(10分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y 轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.19.(5分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O 分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB =513,求DG的长,20.(8分)某花卉基地种植了郁金香和玫瑰两种花卉共30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香 2.4 3玫瑰 2 2.5(1)设种植郁金香x 亩,两种花卉总收益为y 万元,求y 关于x 的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?21.(10分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC 关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.22.(10分)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD ,∠BFC=∠BAD=2∠DFC . 求证:(1)CD ⊥DF ; (2)BC=2CD .23.(12分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1米,3 1.732≈).24.(14分)如图,已知二次函数2231284y x mx m m =-++-的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C ,顶点为D .(1)当2m =-时,求四边形ADBC 的面积S ;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点P ,使2PBA BCO ∠=∠,求点P 的坐标; (3)如图2,将(1)中抛物线沿直线3184y x =-73E 为线段OA 上一动点,EF x⊥轴交新抛物线于点F ,延长FE 至G ,且OE AE FE GE =,若EAG ∆的外角平分线交点Q 在新抛物线上,求Q 点坐标.2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、A 【答案解析】解:∵四边形ABCD 为矩形, ∴AD=BC=10,AB=CD=8,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处, ∴AF=AD=10,EF=DE , 在Rt △ABF 中, ∵22AF AB -,∴CF=BC-BF=10-6=4,∴△CEF 的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1. 故选A . 2、C【答案解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D 为BC 中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD 是角平分线. 【题目详解】图1中,根据作图痕迹可知AD 是角平分线;图2中,根据作图痕迹可知作的是BC 的垂直平分线,则D 为BC 边的中点,因此AD 不是角平分线; 图3:由作图方法可知AM=AE ,AN=AF ,∠BAC 为公共角,∴△AMN ≌△AEF , ∴∠3=∠4,∵AM=AE ,AN=AF ,∴MF=EN ,又∵∠MDF=∠EDN ,∴△FDM ≌△NDE , ∴DM=DE ,又∵AD 是公共边,∴△ADM ≌△ADE , ∴∠1=∠2,即AD 平分∠BAC , 故选C.【答案点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键. 3、D 【答案解析】当k=1时,原方程不成立,故k≠1, 当k≠1时,方程()21k 1x 1kx+=04--为一元二次方程. ∵此方程有两个实数根,∴221b 4ac 1k 4k 11k k 122k 04-=--⨯-⨯=---=-≥()()(),解得:k≤1. 综上k 的取值范围是k <1.故选D . 4、C 【答案解析】测试卷分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A 、既不是轴对称图形,也不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选C .考点:中心对称图形;轴对称图形. 5、B 【答案解析】测试卷分析:由平移规律可得将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B . 考点:点的平移. 6、D 【答案解析】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米. 故选D .点睛:在负指数科学计数法10n a -⨯ 中,其中110a ≤< ,n 等于第一个非0数字前所有0的个数(包括下数点前面的0). 7、A 【答案解析】∵∆=12-4×1×(-2)=9>0, ∴方程有两个不相等的实数根. 故选A.点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根的判别式△=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 8、A 【答案解析】分析:只要证明△DAB ≌△EAC ,利用全等三角形的性质即可一一判断; 详解:∵∠DAE=∠BAC=90°, ∴∠DAB=∠EAC ∵AD=AE ,AB=AC , ∴△DAB ≌△EAC ,∴BD=CE ,∠ABD=∠ECA ,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.9、A【答案解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【题目详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【答案点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.10、A【答案解析】判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【题目详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【答案点睛】根的判别式二、填空题(共7小题,每小题3分,满分21分)11、1【答案解析】测试卷分析:根据题意可得圆心角的度数为:180π,则S=221802360360n rπππ⨯==1.考点:扇形的面积计算. 12、②③④ 【答案解析】分析:根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得到-2m=n 故②正确;把A (-2,m )、B (1,n )代入y=k 1x+b 得到y=-mx-m ,求得P (-1,0),Q (0,-m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确. 详解:由图象知,k 1<0,k 2<0, ∴k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得-2m=n , ∴m+12n=0,故②正确; 把A (-2,m )、B (1,n )代入y=k 1x+b 得112m k bn k b -+⎧⎨+⎩==, ∴1323n m k n m b -⎧⎪⎪⎨+⎪⎪⎩==,∵-2m=n , ∴y=-mx-m ,∵已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点, ∴P (-1,0),Q (0,-m ), ∴OP=1,OQ=m , ∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ;故③正确; 由图象知不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.13、1.【答案解析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【答案点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.14、x<3 2【答案解析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【题目详解】移项,得:-2x>-3,系数化为1,得:x<32,故答案为x<32.【答案点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15、65°【答案解析】解:由题意分析之,得出弧BD对应的圆周角是∠DAB,所以,DOB=40°,由此则有:∠OCD=65°考点:本题考查了圆周角和圆心角的关系点评:此类测试卷属于难度一般的测试卷,考生在解答此类测试卷时一定要对圆心角、弧、弦等的基本性质要熟练把握16、62或210.【答案解析】测试卷分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=62;②点P在AD上时,如图:先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得2239+10,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:EF EQPB AB=,69310=,∴10.综上所述:EF长为2或10.考点:翻折变换(折叠问题).17、1 2【答案解析】根据同弧或等弧所对的圆周角相等来求解.【题目详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【答案点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.三、解答题(共7小题,满分69分)18、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(52,74).【答案解析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK 于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.【题目详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴30 9330 a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK 于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P(52,74).【答案点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.19、(1)证明见解析;【答案解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【题目详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B , ∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD , ∴501013513AG AF DG OD ===,即DG=1323AD ,∴AD=503013·181313AB AF=⨯=,则DG=133033013 231323⨯=.【答案点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.20、(1)y = 0.1x + 15,(2)郁金香25 亩,玫瑰 5 亩【答案解析】(1)根据题意和表格中的数据可得到y关于x的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【题目详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15即y关于x的函数关系式为y=0.1x+15(2)由题意得2.4x+2(30-x)≤70解得x≤25,∵y=0.1x+15∴当x=25时,y最大=17.530-x=5,∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.【答案点睛】此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.21、(1)详见解析;(2)详见解析.【答案解析】测试卷分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;测试卷解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换22、(1)详见解析;(2)详见解析.【答案解析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得∠CDF=90°,则CD⊥DF;(2)应先找到BC的一半,证明BC的一半和CD相等即可.【题目详解】证明:(1)∵AB=AD,∴弧AB=弧AD,∠ADB=∠ABD.∵∠ACB=∠ADB,∠ACD=∠ABD,∴∠ACB=∠ADB=∠ABD=∠ACD.∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,∴CD⊥DF.(2)过F作FG⊥BC于点G,∵∠ACB=∠ADB,又∵∠BFC=∠BAD,∴∠FBC=∠ABD=∠ADB=∠ACB.∴FB=FC.∴FG平分BC,G为BC中点,12GFC BAD DFC ∠=∠=∠,∵在△FGC 和△DFC 中,,GFC DFC FC FCACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FGC ≌△DFC (ASA ), ∴12CD GC BC ==. ∴BC=2CD .【答案点睛】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.23、11.9米【答案解析】先根据锐角三角函数的定义求出AC 的长,再根据AB=AC+DE 即可得出结论 【题目详解】∵BD=CE=6m ,∠AEC=60°,∴33,∴AB=AC+DE=10.4+1.5=11.9m .答:旗杆AB 的高度是11.9米.24、(1)4;(2)15(4P -,33)16;(3)3(1,)4Q -. 【答案解析】(1)过点D 作DE ⊥x 轴于点E ,求出二次函数的顶点D 的坐标,然后求出A 、B 、C 的坐标,然后根据ABC ABDS S S ∆∆=+即可得出结论;(2)设点2(,43)P t t t ++是第二象限抛物线对称轴左侧上一点,将BOC ∆沿y 轴翻折得到COE ∆,点(1,0)E ,连接CE ,过点B 作BF CE ⊥于F ,过点P 作PG x ⊥轴于G ,证出PBG BCF ∆∆∽,列表比例式,并找出关于t 的方程即可得出结论;(3)判断点D 在直线3184y x =-上,根据勾股定理求出DH ,即可求出平移后的二次函数解析式,设点(m,0)E ,(,0)T n ,过点Q 作QM EG ⊥于M ,QS AG ⊥于S ,QT x ⊥轴于T ,根据勾股定理求出AG ,联立方程即可求出m 、n ,从而求出结论.【题目详解】解:(1)过点D 作DE ⊥x 轴于点E当2m =-时,得到2243(2)1y x x x =++=+-, ∴顶点(2,1)D --,∴DE=1由2430x x ++=,得13x =-,21x =-;令0x =,得3y =;(3,0)A ∴-,(1,0)B -,(0,3)C ,2AB ∴=,OC=311422ABC ABD S S S AB OC AB DE ∆∆∴=+=⨯+⨯=. (2)如图1,设点2(,43)P t t t ++是第二象限抛物线对称轴左侧上一点,将BOC ∆沿y 轴翻折得到COE ∆,点(1,0)E ,连接CE ,过点B 作BF CE ⊥于F ,过点P 作PG x ⊥轴于G ,由翻折得:BCO ECO ∠=∠,2BCF BCO ∴∠=∠;2PBA BCO ∠=∠,PBA BCF ∴∠=∠,PG x ⊥轴,BF CE ⊥,90PGB BFC ∴∠=∠=︒,PBG BCF ∴∆∆∽, ∴PG BF BG CF=由勾股定理得:BC EC ==CO BE BF CE ⨯=⨯∴OC BE BF CE ⨯===∴CF =, ∴34PG BF BG CF ==, 43PG BG ∴=243PG t t =++,1BG t =--,24(43)3(1)t t t ∴++=--,解得:11t =-(不符合题意,舍去),2154t =-; 15(4P ∴-,33)16. (3)原抛物线2(2)1y x =+-的顶点(2,1)D --在直线3184y x =-上, 直线3184y x =-交y 轴于点1(0,)4H -, 如图2,过点D 作DN y ⊥轴于N ,DH =; ∴由题意,平移后的新抛物线顶点为1(0,)4H -,解析式为214y x =-, 设点(m,0)E ,(,0)T n ,则OE m =-,12AE m =+,214EF m =-, 过点Q 作QM EG ⊥于M ,QS AG ⊥于S ,QT x ⊥轴于T ,OE AE FE GE =,221m GE m ∴=-, ∴222221241()()22124m m AG AE EG m m m+=+=++=--GQ 、AQ 分别平分AGM ∠,GAT ∠,QM QS QT ∴==,点Q 在抛物线上,21(,)4Q n n ∴-, 根据题意得:2221441112242421m n n m m n n m m ⎧-=-⎪⎪⎨+⎪++=--⎪--⎩解得:141m n ⎧=-⎪⎨⎪=-⎩3(1,)4Q ∴- 【答案点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.。

相关文档
最新文档