结构非线性分析汇总
桥梁结构的非线性分析方法

桥梁结构的非线性分析方法桥梁是连接两个地域的重要交通设施,承受着巨大的荷载和变形。
为了确保桥梁的稳定性和可靠性,在设计和建造过程中需要进行结构分析。
传统的线性分析方法已经无法满足对桥梁结构的准确评估,因此,非线性分析方法逐渐被引入和广泛应用。
本文将介绍几种常用的桥梁结构非线性分析方法。
一、准线性分析方法准线性分析方法即在原有线性分析的基础上考虑桥梁结构的非线性效应。
例如,在分析桥梁受力时,考虑构件材料的非线性特性,如应力-应变关系曲线的非线性。
准线性分析方法可以通过有限元分析软件进行模拟,得到更真实的结构响应。
此外,准线性分析方法还可以考虑温度、湿度等环境因素的非线性效应,提高分析的准确性。
二、非弹性分析方法非弹性分析方法是对桥梁结构进行全面的非线性分析。
这种方法考虑了更多的非线性效应,如材料的塑性变形、结构的屈曲行为、接缝的摩擦阻尼等。
非弹性分析方法可以更准确地预测桥梁结构在各种荷载作用下的变形和破坏行为。
然而,由于计算复杂度高,非弹性分析方法通常用于重要的桥梁工程和特殊结构的设计。
三、时程分析方法时程分析方法是一种考虑桥梁与动力荷载相互作用的非线性分析方法。
在桥梁设计和评估过程中,需要考虑地震、风荷载等动力荷载的影响。
时程分析方法可以模拟动力荷载的传递过程,并分析结构的响应。
通过这种方法,可以研究桥梁在不同地震强度下的动力性能,预测其破坏的可能性。
四、损伤识别方法损伤识别方法是一种通过监测和分析桥梁结构的响应,判断其是否存在损伤或破坏的非线性分析方法。
这种方法可以通过搜集结构的振动信号、形变数据等,利用信号处理和模式识别技术,判断桥梁的结构状态。
损伤识别方法可以帮助工程师及时发现桥梁的隐患,进行维修和加固,确保其安全性和可靠性。
综上所述,桥梁结构的非线性分析方法为桥梁设计和评估提供了更准确的工具。
无论是准线性分析方法、非弹性分析方法还是时程分析方法,都可以帮助工程师更好地了解桥梁结构的行为和性能。
工程结构非线性分析

ξi = xi + ui
第2章
16
4
¾Lagrange 描述-Green应变张量
x3
Q(xi + dxi )
ds0
P(xi ) O
Q '(ξi + dξi )
ds
P' (ξi )
x2
x1
第2章
17
ds02 = dxidxi
ds2 = dξidξi ∵ξi = xi + ui ∴ dξi = dxi + dui = dxi + ui, jdx j
∂u1 ∂ξ2
+
∂u2 ∂ξ1
∂u2 ∂ξ2
+
∂u3 ∂ξ1
∂u3 ) ∂ξ2
第2章
25
2.杆元的几何运动方程
y (v)
j’
l
u
i’ θ
i l0
v
j
x (u)
o
第2章
27
• Almansi应变张量与工程应变的关系
以e11和e12为例进行说明:
相应的工程正应变和工程剪应变分别为ε1和γ
,
12
可以推得:
即约定:若某一项的同一个下标出现2次且仅出现2次时, 就表示将该下标轮换取1,2,3时所得各项之和,这种约定成为求和约定。 同一项中重复一次的标号成为求和标号或哑标; 同一项中不重复出现的标号称为自由标号,它表示一般项, 可取其为1,2,3中的任一值。
第2章
11
4. 根据势能驻值原理求单元刚度矩阵[k]
第2章
4
1
z全拉格朗日列式法( T.L列式法- Total Lagrangian Formulation)。选取to=0时刻 未变形物体的构形Ao作为参照构形进行分 析。
“钢筋混凝土结构非线性分析中”文件汇总

“钢筋混凝土结构非线性分析中”文件汇总目录一、ANSYS在预应力钢筋混凝土结构非线性分析中的应用二、ANSYS,ADINA在钢筋混凝土结构非线性分析中的应用与算例分析三、面向对象开放程序OpenSees在钢筋混凝土结构非线性分析中的应用与初步开发四、钢筋混凝土结构非线性分析中的本构关系ANSYS在预应力钢筋混凝土结构非线性分析中的应用随着科技的不断发展,计算机辅助工程(CAE)软件在建筑领域的应用越来越广泛。
其中,ANSYS作为一种强大的CAE软件,在预应力钢筋混凝土结构非线性分析中发挥了重要作用。
本文将介绍ANSYS在预应力钢筋混凝土结构非线性分析中的应用。
预应力钢筋混凝土结构是一种采用先进预应力技术建造的混凝土结构,具有较高的承载能力和良好的抗震性能。
非线性分析是预应力钢筋混凝土结构分析的重要手段,可以揭示结构的复杂行为和破坏机制。
ANSYS作为一种通用的有限元分析软件,为预应力钢筋混凝土结构的非线性分析提供了强大的支持。
ANSYS在预应力钢筋混凝土结构非线性分析中的应用主要体现在以下几个方面:建模与网格划分:ANSYS提供了强大的建模功能和网格划分工具,可以方便地建立预应力钢筋混凝土结构的计算模型,并对其进行了精细的网格划分,以获得准确的计算结果。
材料本构关系:ANSYS支持多种材料本构关系,包括弹性、塑性、断裂等。
在预应力钢筋混凝土结构的非线性分析中,可以根据材料的实际性能参数设置相应的本构关系,以模拟结构的真实行为。
预应力效应分析:ANSYS的预应力模块可以方便地施加预应力,模拟预应力钢筋混凝土结构的预应力效应。
同时,还可以进行预应力优化设计,以获得最佳的预应力筋布置和应力水平。
非线性求解器:ANSYS提供了非线性求解器,可以解决预应力钢筋混凝土结构的非线性问题。
在求解过程中,ANSYS可以根据结构的变形和内力分布情况自动调整求解策略,以获得稳定的计算结果。
后处理与可视化:ANSYS的后处理功能强大,可以将计算结果以图形、图表等形式进行可视化处理,方便结构工程师进行结果分析和优化设计。
桥梁结构的非线性分析方法

桥梁结构的非线性分析方法在现代工程领域中,桥梁作为重要的交通基础设施,其结构的安全性和可靠性至关重要。
为了准确评估桥梁在各种复杂荷载作用下的性能,非线性分析方法逐渐成为桥梁结构分析的重要手段。
桥梁结构的非线性行为主要源于材料的非线性、几何非线性以及边界条件的非线性等方面。
材料非线性通常包括混凝土的开裂、钢筋的屈服等;几何非线性则可能由于大变形、大位移或初始应力的影响;边界条件的非线性例如支座的滑移、基础的沉降等。
在进行桥梁结构的非线性分析时,有限元方法是一种广泛应用的技术。
通过将桥梁结构离散为有限个单元,并对每个单元建立相应的力学方程,然后组合成整体的方程组进行求解。
有限元软件如 ANSYS、ABAQUS 等为桥梁结构的非线性分析提供了强大的工具。
在材料非线性分析中,混凝土和钢筋的本构关系模型是关键。
对于混凝土,常见的本构模型有弥散裂缝模型、损伤塑性模型等。
这些模型能够模拟混凝土在受拉和受压时的开裂、破碎等行为。
钢筋的本构模型通常采用理想弹塑性模型或考虑强化阶段的模型。
几何非线性分析需要考虑结构的大变形和大位移。
在有限元分析中,可以通过更新拉格朗日法或完全拉格朗日法来处理几何非线性问题。
例如,在斜拉桥的分析中,由于索的大变形和结构的整体位移,几何非线性的影响不可忽略。
边界条件的非线性分析在桥梁结构中也十分重要。
例如,橡胶支座的非线性特性需要通过实验获取其力学参数,并在分析中进行准确模拟。
基础与土体的相互作用也可能表现出非线性,需要采用合适的模型来描述。
除了有限元方法,还有一些其他的非线性分析方法也在桥梁工程中得到应用。
例如,能量法通过计算结构在变形过程中的能量变化来评估其稳定性;增量法将荷载逐步施加,通过分析每个荷载步的结构响应来追踪非线性行为。
在实际工程中,桥梁结构的非线性分析通常是一个复杂且耗时的过程。
需要对结构的力学特性有深入的理解,合理选择分析方法和模型,准确输入材料参数和边界条件。
同时,还需要对分析结果进行仔细的评估和验证。
建筑结构的非线性分析

建筑结构的非线性分析建筑结构的非线性分析是对建筑结构进行分析时所面临的一种难题。
一方面,建筑结构本身复杂多变,在外力作用下会呈现出非线性响应;另一方面,建筑结构的分析不仅需要考虑结构的受力状态,还要考虑材料、几何、荷载等因素的影响。
因此,建筑结构的非线性分析是一项非常重要的任务,它可以帮助工程师更准确地预测结构的响应,并为结构的优化设计提供有力的支持。
建筑结构的非线性响应建筑结构的非线性响应是由于材料的非线性特性、几何的非线性特性、以及受力状态的非线性特性等因素导致的。
这些因素可以是单独的,也可以是相互作用的。
其中,材料的非线性特性是指材料的力学特性呈现出非线性的形态,例如材料在不同的荷载下呈现出不同的弹性模量和极限应变等;几何的非线性特性是指结构的形态或尺寸呈现出非线性的形态,例如结构由于荷载作用变形,导致结构的尺寸出现变化;而受力状态的非线性特性是指在不同荷载作用下,结构的刚度、强度等性质呈现出非线性的形态。
建筑结构的非线性分析方法建筑结构的非线性分析方法包括有限元法、分步分析法、极限荷载法等。
其中,有限元法是应用最为广泛的分析方法之一,它利用有限元离散化的方法来近似连续介质结构的行为和响应,可以进行非线性材料、几何和受力状态的分析,并能够准确地描述结构的弯曲、剪切、扭转、局部破坏及塑性行为等现象。
与有限元法不同的是,分步分析法是一种迭代计算方法,其基本思想是将整个分析过程分成若干个阶段,逐步引入不同的非线性因素,从而分析出每个阶段的响应结果。
而极限荷载法则是一种经验法,它忽略计算领域中不便考虑的因素,例如非线性响应的微小变化、材料的粘性和不均匀性等,而仅仅关注于结构在极限荷载下的反应,从而得出结构的破坏载荷。
建筑结构的非线性分析应用建筑结构的非线性分析应用非常广泛,可以用于结构的优化设计、结构的健康监测和结构的可靠性评估等方面。
首先,在结构的优化设计方面,非线性分析可以帮助工程师更准确地预测结构的响应,并根据所得到的结果对结构进行优化设计,从而提高结构的性能。
杜__ANSYS非线性分析教程1非线性结构汇总

1.非线性结构分析1.1非线性结构的定义在日常生活中,经常会遇到结构非线性。
例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状(图1-1(a))。
如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂(图1-1(b))。
当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的增加而变化(图1-1(c))。
如果将上面例子的载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征-变化的结构刚性。
图1-1 非线性结构行为的普通例子1.2非线性行为的原因:引起结构非线性的原因很多,它可以被分成三种主要类型:1.2.1状态变化(包括接触)许多普通结构表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间发生变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。
1.2.2几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性响应。
如下显示一个垂向刚性变化的例子。
随着垂向载荷的增加,杆不断弯曲以至于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性1.2.3材料非线性非线性的应力--应变关系是结构非线性问题的常见原因。
许多因素可以影响材料的应力--应变性质,包括加载历史(如在弹--塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。
1.3牛顿--拉普森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
钢结构的几何非线性分析

钢结构的几何非线性分析在结构工程设计与研究中,几何非线性分析是一项重要的任务,特别是在钢结构的设计过程中。
钢结构的几何非线性分析考虑了结构形变和位移的影响,以更准确地评估结构的性能和稳定性。
一、概述钢结构通常由大量的钢材构件组成,这些构件经受荷载作用后会发生形变和变形。
当荷载作用超过结构的弹性极限时,结构材料开始发生非弹性变形,即产生塑性变形。
这种塑性变形会导致结构的刚度和稳定性发生变化,因此在设计过程中必须考虑几何非线性效应。
二、几何非线性分析方法1. 大位移理论大位移理论是几何非线性分析的基础理论之一。
它考虑了结构在受荷载作用下发生的大位移和大变形,能够更真实地模拟结构的实际响应。
大位移理论通过引入非线性应变和非线性应力来描述结构的变形情况,从而得到更准确的分析结果。
2. 几何非线性有限元分析几何非线性有限元分析是常用的计算方法之一。
该方法将结构离散化为有限数量的单元,并在每个单元内考虑非线性效应。
通过求解非线性方程组,可以得到结构的位移和应力分布,从而评估结构的承载能力和稳定性。
三、应用领域钢结构的几何非线性分析广泛应用于工程实践中。
以下是一些典型的应用领域:1. 结构稳定性分析钢结构在受到外部荷载作用下,可能发生稳定性失效。
几何非线性分析可以考虑结构的大位移和大变形,并通过评估结构的临界载荷以判断稳定性。
2. 构件受力分析在实际工程中,钢结构的各个构件可能存在复杂的荷载作用,如弯曲、剪切和扭转等。
几何非线性分析可以考虑这些复杂的受力情况,从而准确评估构件的受力性能。
3. 地震响应分析钢结构在地震荷载下会发生较大的位移和变形,甚至可能发生破坏。
几何非线性分析可以模拟结构在地震作用下的响应,评估结构的安全性。
四、结论钢结构的几何非线性分析是设计和评估钢结构性能的重要手段。
通过考虑结构的大位移和大变形效应,可以更准确地预测结构的响应和稳定性。
在实际工程中,几何非线性分析应用广泛,涵盖了结构稳定性、构件受力分析和地震响应分析等方面。
结构设计知识:钢结构的非线性分析与设计

结构设计知识:钢结构的非线性分析与设计钢结构在建筑设计中广泛应用,具有较高的承载能力和抗震性能。
然而,在极端荷载作用下,其受力性能会发生非线性变化,需要进行
非线性分析与设计,以保证结构的安全可靠性。
钢结构的非线性分析主要包括几何非线性、材料非线性和接触非
线性。
其中,几何非线性是指在大变形情况下,结构的剪切、变形、
轻度扭曲等非线性变化;材料非线性是指在材料受到荷载作用后出现
的弹塑性行为,包括本构关系非线性和材料应力应变非线性;接触非
线性是指结构中存在的各种接触面,如焊接连接点、螺栓连接点等,
在荷载作用下出现的非线性变化。
在进行非线性分析时,需要先进行静力分析,确定结构的初始状态,并对荷载进行合理的分析与计算。
随后,对结构进行荷载施加,
观察结构的变形情况,并根据实际情况进行修正和调整,直到得出结
构的稳定状态和极限承载能力。
钢结构的非线性设计需要考虑多种因素,包括荷载的类型、结构的材料和几何形状、结构的初始状态等。
在考虑这些因素时,需要采用合理的数学模型和计算方法,以确保结构的安全可靠性。
值得注意的是,钢结构的非线性分析和设计对于结构的构造和安装也有一定的要求。
必须确保结构的零件尺寸、零件精度和装配质量符合标准要求,以最大程度地保证结构的承载能力和安全性。
综上所述,钢结构的非线性分析和设计是保障结构安全性和承载能力的一项重要工作。
其核心在于充分考虑各种非线性因素,并采用合理的方法和模型进行分析和计算。
只有真正做到了这些,才能够确保钢结构的安全可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构非线性分析理论1.结构设计方法结构设计方法从传统的容许应力设计法发展到了基于概率统计的极限状态设计法。
传统的容许应力设计法是基于线弹性理论,依照经验选取一定的安全系数,以构件危险截面某一点的计算应力不超过材料的容许应力为准则,目前在某些领域仍在使用。
安全系数,是一个单一的根据经验确定的数值,没有考虑不同结构之间的差异,不能保证不同结构具有同等的安全水平。
此外,容许应力设计法以弹性理论计算内力,对那些发展塑性变形能提高承载力的构件或结构(如受弯构件),比那些发展塑性变形不能提高承载力的构件或结构(如轴心受力构件)具有较大的安全储备。
概率极限状态设计法是采用数理统计方法按照一定概率确定荷载或材料的代表值,并给出结构的功能函数,用结构失效概率或可靠指标度量结构的可靠性。
《建筑结构可靠度设计统一标准》将极限状态分为两类:(1)承载能力极限状态,是指结构或结构构件达到最大承载能力或不适于继续承载的变形;(2)正常使用极限状态,是指结构或结构构件达到正常使用或耐久性能的某项规定限值。
结构按极限状态设计应符合下列要求:()0,21≥n X X X g (1.1)式((1.1)中g(X i )为结构功能函数,X i (i =1, 2……n)为基本变量,是指影响该结构功能的各种作用、材料性能、几何参数等。
目前我国结构设计规范基本都是采用以概率理论为基础的极限状态设计方法,用分项系数设计表达式进行计算。
美国的钢结构设计采用了两种设计方法:ASD(Allowable Stress Design)和LRFD(Load and Resistance Factor Design),即容许应力设计法和分项系数设计法,McCormac 指出LRFD 相比ASD ,并不一定节省材料,虽然在很多情况下可以取得这样的效果,而在不同荷载作用下能给结构提供等同的可靠性,对于活载和恒载,ASD 采用的安全系数是一样的,而LRFD 对恒载则采用了一个较小的荷载系数(恒载比活载能更准确的确定),也就是说如果恒载大于活载,LRFD 比ASD 节省材料。
2.结构非线性问题概述从本质上讲,工程中所有的力学问题都是非线性的,一些经典的力学理论都是对实际问题基于某些假定的简化处理,如小变形假定、线性弹性假定、边界条件保持不变假定等,不满足上述假定中的任意一种假定,就产生一种非线性现象,分别对应几何非线性、材料非线性和边界非线性,同时不满足上述假定中的多种假定,就会产生多重非线性。
一般地,力学中的非线性问题包括三类:2.1几何非线性在小变形假定下,通常是在未变形的结构上建立平衡。
当结构在荷载作用下产生较大的变形,小变形假定不成立,就必须考虑几何非线性的影响:平衡应建立在结构变形后的构形上;考虑内力的二阶效应;几何方程应包括位移的高阶项。
结构中常见的两种几何非线性情况:杆端位移△引起的P-△效应和杆件本身弦线的侧移引起的P- 效应。
通常几何非线性包括两类:大位移小应变和大位移大应变,二者的区别主要是后者在求解过程中需要引进新的应力应变关系,即使材料还处于弹性状态。
工程结构的几何非线性通常属于小应变问题,而金属成型以及橡皮类材料受荷载作用时则是大应变问题。
几何非线性问题的关键问题在于变形构形的描述,应力、应变的度量,大转动的处理,以及不平衡力的求解。
2.2材料非线性材料非线性,也叫物理非线性,主要是应力应变的非线性关系引起的,可分为两类:率无关的材料非线性和率相关的材料非线性,即不依赖于时间的弹塑和依赖于时间的薪(弹、塑)性问题。
率无关的材料非线性是材料在荷载作用后,变形立即发生并且不随时间变化,而率相关的材料非线性是荷载作用后,变形立即发生并且随时间发生变化(蠕变),或者在变形不变的情况下应力发生了衰减(松弛)。
应力应变的非线性问题包括非线性弹性问题和弹塑性问题,二者的区别主要体现在卸载的路径上。
2.3边界非线性边界非线性主要是由于在分析过程中,边界条件发生变化引起的。
当施加荷载后,悬臂梁产生变形,在梁端碰到障碍物之前,梁端竖向挠度与荷载成线性关系(小变形情况);当碰到障碍物后,梁端的边界条件发生了突然变化,阻止了梁端的进一步变形,梁的响应不再是线性的。
另一个非线性例子是将板材冲压入模型的过程,在与模具接触前,板材在压力下比较容易发生伸展变形,与模具接触后,边界条件发生改变,必须增加压力才能使板材继续变形。
3.结构非线性分析方法利用钢结构高等分析方法对结构高等非线性进行分析。
高等分析方法的定义是指在对结构进行分析的过程中,考虑各种非线性因素以及影响结构承载力的其他主要因素,对结构进行全过程分析的方法,这种方法能够准确预测结构或构件的破坏模式和极限承载力,并且不需要对单个构件进行验算,可以简化设计过程,提高设计效率。
4. 利用ANSYS处理几何非线性通常,工程结构中的非线性问题以几何非线性和材料非线性为主。
由于非线性问题的复杂性,利用解析方法能够得到的解答是很有限的。
随着有限单元法在线性分析中的成功应用,它在非线性分析中的应用也取得了很大的进展,已经获得了很多不同类型实际问题的求解方案。
有限单元法是将待分析的结构离散为有限个单元,单元通过有限个节点连接,以节点位移或节点力作为未知数,单元的特性通过位移插值函数或内力插值函数由相应的节点参量表示,根据不同类型的插值函数,基于位移场、内力场和位移内力混合场,分别对应有限单元法的刚度法、柔度法和混合法,其中应用较多的是基于位移场插值函数的刚度法。
有限单元法思想最早开始于Schellbach,在1851年将面离散为正三角形,并给出整个离散化面积上的有限差分表达式。
1943年Courant采用分片连续函数和最小势能原理求解St.Venant扭转问题。
波音公司的Turner,Clough,Martin}9}等人于1956年在分析飞机结构时成功的用三角形单元求得了平面应力问题的正确解答。
Clough于1960年第一次提出了“有限单元法”这一名词。
自有限单元法诞生后,很快就向非线性结构分析领域扩展。
ANSYS是John Swanson为Westinghouse开发的一个非线性有限元程序,其适用性非常广泛,对结构、流体、电力、电磁场及碰撞等问题都可以进行求解。
ANSYS主要包含三个模块:前处理模块,分析计算模块和后处理模块,可以求解静态和瞬态非线性问题,包括材料非线性、几何非线性和边界非线性及其组合。
在这里主要讨论利用ANSYS对非线性问题的求解方法。
其过程如下:4.1应力-应变在大应变求解中,所有应力-应变输入和结果将依据真实应力和真实(或对数)应变。
要从小工程应变转换成对数应变使用,要从工程应力转换成真实应力使用(这种应力转化仅对不可压缩塑性应力-应变数据是有效的)。
4.2单元的形状应该认识到在大应变分析的任何迭代中低劣的单元形状(也就是大的纵横比,过度的顶角以及具有负面积的已扭曲单元)将是有害的。
因此,必须像注意单元的原始形状一样注意单元已扭曲的形状。
除了探测出具有负面积的单元外,ANSYS程序对于求解中遇到的低劣单元形状不发出任何警告,必须进行人工检查。
如果已扭曲的网格是不能接受的,可以人工改变开始网格(在容限内)以产生合理的最终结果。
4.3应力刚化结构的面外刚度可能严重地受某个结构中面内应力的状态的影响。
面内应力和横向刚度之间的耦合,通称为应力刚化。
它在薄的、高应力的结构中是最明显。
一个鼓面,当它绷紧时会产生垂向刚度,这是应力强化结构的一个普通的例子。
尽管应力刚化理论假定单元的转动和应变是小的,在某些结构的系统中,刚化应力仅可以通过进行大挠度分析得到。
在其它的系统中,刚化应力可采用小挠度或线性理论得到。
对于大多数实体单元,应力刚化的效应是与问题相关的,在大变型分析中的应用可能提高也可能降低收敛性。
在大多数情况下,首先应该尝试一个应力刚化效应OFF(关闭)的分析。
如果正在模拟一个受到弯曲或拉伸载荷的薄的结构,当用应力硬化OFF(关)时遇到收敛困难,则尝试打开应力硬化。
应力刚化不适用于包含“不连续单元”(由于状态改变,刚度上经历突然的不连续变化的非线性单元,如各种接触单元)的结构。
对于这样的问题,当应力刚化为ON(开)时,结构刚度上的不连续线性很容易导致求解“胀破”。
对于桁、梁和壳单元,在大挠度分析中通常应使用应力刚化。
实际上,在应用这些单元进行非线性屈曲和后屈曲分析时,只有当打开应力刚化时才得到精确的解。
然而,当应用杆、梁或者壳单元来模拟刚性连杆、耦合端或者结构刚度的大变化时,则不应使用应力刚化。
4.4旋转软化旋转软化为动态质量效应调整(软化)旋转物体的刚度矩阵。
在小位移分析中这种调整近似于由于大的环形运动而导致几何形状改变的效应。
通常它和预应力一起使用,这种预应力由旋转物体中的离心力所产生。
它不便和其它变形非线性、大挠度和大应变一起使用。
旋转软化用OMEGA命令中的KPSIN来激活设置的,以及他们的意义是什么4.5非线性分析4.5.1材料非线性分析非线性的应力─应变关系是结构非线性的常见原因。
许多因素可以影响材料的应力─应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
ANSYS的材料非线性分析能力包括弹塑性分析、超弹分析、蠕变分析等。
塑性是一种在某种给定载荷下,材料产生永久变形的材料特性。
对大多的工程材料来说,当其应力低于比例极限时,应力—应变关系是线性的。
另外,大多数材料在其应力低于屈服点时,表现为弹性行为。
也就是说,当移走载荷时,其应变也完全消失。
由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。
在应力—应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
当材料中的应力超过屈服点时,塑性被激活,也就是说,有塑性应变发生。
而屈服应力本身可能是下列某个参数的函数:温度、应变率、以前的应变历史、侧限压力和其它参数。
对双线性选项(BKIN,BISO),输入常数和可以按下述方法来决定:如果材料没有明显的屈服应力,通常以产生0.2%的塑性应变所对应的应力作为屈服应力,而可以通过在分析中所预期的应变范围内来拟合实验曲线得到。
4.5.2状态非线性分析许多普通结构表现出一种与状态相关的非线性行为。
例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的,冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。