2优化设计的数学基础

合集下载

优化设计的数学模型

优化设计的数学模型

优化设计的应用
生产计划优化
生产计划优化
通过数学模型,对生产计划进行优化,以最小化成本、最大化利润为目标,制定最优的生产计划 。
生产调度优化
利用数学模型对生产调度进行优化,以提高生产效率、减少生产成本、缩短生产周期。
资源分配优化
通过数学模型对资源进行合理分配,以最大化资源利用率、最小化资源浪费为目标,实现资源的 最优配置。
总结词
生产计划优化是利用数学模型对生产过程中的资源、时间和成本进行合理配置, 以提高生产效率和降低成本。
详细描述
生产计划优化案例包括对生产流程、生产计划、生产调度等方面的优化。通过 建立数学模型,对生产计划进行优化,可以减少生产过程中的浪费,提高生产 效率,降低生产成本。
物流优化案例
总结词
物流优化是利用数学模型对物流运输过程中的路线、时间和 成本进行合理规划,以提高物流效率和降低物流成本。
线性规划
线性规划是数学优化技术中的一 种,它通过找到一组变量的最优 组合,使得一个线性目标函数达
到最大或最小值。
线性规划问题通常表示为在一组 线性不等式约束下最大化或最小
化一个线性目标函数。
线性规划问题可以通过使用单纯 形法、对偶理论等算法进行求解。
非线性规划
非线性规划是数学优化技术中的一种, 它通过找到一组变量的最优组合,使 得一个非线性目标函数达到最大或最 小值。
04
优化算法的进展
遗传算法
1
遗传算法是一种模拟生物进化过程的优化算法, 通过选择、交叉和变异等操作,寻找问题的最优 解。
2
遗传算法适用于解决大规模、多变量和非线性优 化问题,尤其在组合优化、机器学习、数据挖掘 等领域有广泛应用。
3

优化设计的数学基础

优化设计的数学基础

a11 a12 a11 0, a11 a12 a21 a22 0, , a21 a22 an1 an 2
a1n a2 n ann 0
即矩阵A的各阶主子式均大于零。当矩阵A为正定时,其对应的二次型 为正定二次型。 如果实二次型 XTAX 中的矩阵A的各阶主子式负、正相间(即所 有奇数阶主子式小于零,而所有偶数阶主子式大于零),即
■ 函数的泰勒近似展开式和黑塞矩阵 ■ 无约束优化问题的极值条件 ■ 凸函数与凸规划 ■
约束优化问题的极值条件
2.1 二次型与正定矩阵
在介绍优化方法时,常常是将二次型函数作为对象。其原因除了 二次型函数在工程优化问题中有较多的应用且比较简单之外,还因为 任何一个复杂的多元函数都可采用泰勒二次展开式做局部逼近,使复 杂函数简化为二次函数。因此,需要讨论有关二次型函数的问题。
A 称为二次型矩阵,因为 aij = aji ,所以 A =AT,称为对称矩阵,
因此二次型矩阵都是对称矩阵。
2. 正定矩阵
在采用泰勒二次近似展开式讨论函数的极值时,常要分析二次型 函数是否正定或负定。二次型的正定与负定的定义简述如下: 如果对于任意的非零向量 X = [x1, x2, …,xn]T,即x1,x2,…,xn 不全为零,若有 XTAX > 0,则称此二次型 f (X)=XTAX 是正定二次 型, 其对应的矩阵A 称为正定矩阵; 若有 XTAX ≥0,则称此二次型 f (X) = XTAX 为半正定二次型,并称 其相应的矩阵A为半正定矩阵; 若有XTAX < 0,则称此二次型 f (X)=XTAX 为负定二次型,其对应 的矩阵A为负定矩阵。 矩阵A的正定与负定的判别,可用矩阵A的各阶顺序主子式的正负 来判别。矩阵A的正定条件是:
a1n a2 n ann

现代设计方法课件PPT 第2章 优化设计的数学基础

现代设计方法课件PPT 第2章 优化设计的数学基础
1 [ X X (1) ]T 2 f ( X (1) )[ X X (1) ] 2
3x2 6 6(x1 1)2 6x12 12x1 3x2
将 X (点 X (1) 的值相等。
重庆大学机械工程学院
5
现代设计方法——第2章 优化设计的数学基础
分析式(2-9)中的取值对方向导数 f ( X k) ) / S 影响,可知,在设计空间
中,凡是与梯度方向成锐角的方向函数值都增加;凡是与梯度方向成钝角的方
向函数值都减小;梯度 f (X ) 的方向为函数 f(X) 过 X (k) 点的等值线(或等值面)
的外法线方向。
Δ Δ Δ
x2
变化率为零的方向
下降方向
将代数式(2-6)写成矩阵形式,则有
f
(X (k) S
)
f
(X (k) x1
)
cos1
f
(X (k) x2
)
cos2
f ( X (k) )
x1
f ( X (k) ) cos1
x2
cos
2
f ( X (k) )

f ( X (k) )
x1
,
f ( X (k) )
S
cos1 cos2
当 X (k) 为函数的极小点时,有 f (X ) f (X (k) ) 0 ,故必有
[ X X (k) ]T 2 f ( X (k) )[ X X (k) ] 0
根据线性代数的二次型有关知识,上式说明函数的二阶导数矩阵必 须是正定的,这就是多元函数极小值的充分条件。故,多元函数在点 X (k) 取得极小值的充分必要条件是:函数在该点的梯度为零,海赛矩阵(二 阶导数矩阵)正定,即
求展开式的二次项

最优化_第2章 优化设计的数学基础

最优化_第2章 优化设计的数学基础

(0) (0) f ( x1(0) , x2 x2 ) f ( x1(0) , x2 ) f ( x) lim x2 X ( 0) x2 0 x2
分别表示沿坐标轴x1和x2方向在X (0)处的f(X)变化率。
§2.1
多元函数的导数与梯度
(0) (0) f x1(0) x1 , x2 x2 f x1(0) , x2 f lim d X ( 0 ) d 0 d (0) (0) (0) f x1 x1 , x2 f x1(0) , x2 x1 lim d 0 x1 d
n元函数极值充分条件:海塞矩阵为正定。
2 f 2 x 1 2 f x2 x1 (0) G( X ) 2 f xn x1
2 f xn x2
§2.4
凸集、凸函数与凸规划
f X f X*
函数f(X)在X*附近的一切X均满足不等式
2.二阶导数( Hessian矩阵)判断
Hessian矩阵G(X)在R上处处半正定。
(0) 1 (0) 2
X (0)
x2
§2.2
多元函数的泰勒展开
二元函数泰勒展开矩阵形式:
f x1 , x2 f X
(0)
f ( X
(0) T
1 ) X X TG ( X (0) )X 2
2 f x 2 1 其中: G ( X (0) ) 2 f x2 x1
2 2
2 5 5 5 1 5 1 5 5
f
X
(1)
26 3x 4 x1 x2 x |X ( 0 ) 5 2 5
2 1

第二章 优化设计

第二章 优化设计
max

l 。这是一个合理选择 d 和 l
Fl w 0.1d 3
T 3 0.2d
②刚度条件:
挠度表达式
Fl 3 64 Fl 3 f f 3EJ 3Ed 4
③结构尺寸边界条件: l lmin 8 cm 将题意的有关已知数值代入,按优化数学模型的规范形式,可归纳为 如下数学模型:
3
例2-2 现用薄钢板制造一体积为5 m ,长度不小于4m的无上盖 的立方体货箱。要求该货箱的钢板耗费量最少,试确定货箱的长、 宽和高的尺寸。 解:分析可知,钢板的耗费量与货箱的表面积成正比。 设货箱的长、宽、高分别为 x1 , x2 , x3,货箱的表面积为S,则 该问题的物理表达式为: (1) 货箱的钢板耗费量(即货箱的表面积用料)最少:
设计变量:
X [ x1 x2 ]T
1 1 ) x2 x1
目标函数的极小化: min f ( X ) x1 x2 2( x1 x3 x2 x3 ) x1 x2 10(
约束条件:
g1 ( X ) 4 x1 0 g 2 ( X ) x2 0 h( X ) 5 x1 x2 x3 0
例2-3 某车间生产甲、乙两种产品。生产甲种产品每件需使用材 料9kg、3个工时、4kw电,可获利润60元。生产乙种产品每件需用材 料4kg、10个工时、5kw电,可获利120元。若每天能供应材料360kg, 有300个工时,能供200kw电。试确定两种产品每天的产量,以使每天 可能获得的利润最大。 解:这是一个生产计划问题,可归结为既满足各项生产条件,又 使每天所能获得的利润达到最大的优化设计问题。 设每天生产的甲、乙两种产品分别为 x1 , x2 件,每天获得的利润可 用函数 f ( x1 , x2 ) 表示,即

机械优化设计ppt课件第二章机械优化设计的数学基础

机械优化设计ppt课件第二章机械优化设计的数学基础

f(x)f(x(k))f(x(k))(xx(k))1f(x(k))(xx(k))2 2
f(x(k))f(x(k))x1f(x(k)) x2 2
二元函数f (x1,x2)的泰勒展开:
f(x1,x2)f(X(k))fx1(X(k))(x1x1(k))fx2(X(k))(x2x2(k))
1 2[fx12(X(k))(x1x1(k))22fx1x2(X(k))(x1x1(k))(x2x2(k))
f (X (k))
ds X (k ) min
df
f (X (k))
ds X (k ) max
精选课件ppt
11
所以,目标函数在某一点的最速下降方向为 负梯度方向
与负梯度方向成锐角的方向为目标函数 值的下降方向,成钝角的方向为目标函 数值的增加方向。
• 目标函数的梯度方向是目标函数等值线 (面)在同一点的法向矢量方向。
一个点集(或区域),如果连接其中任
意两点的线段都全部包含在该点集内,则 称该点集为凸集。否则,称为非凸集。
• 凸函数(见图2M10)
设函数f (X)定义域为凸集G,X(1)、X(2)
为凸集G上的任意两点,若函数f (X)在线段
X(1)X(2)上的函数值总小于或等于用f (X(1))及
f (X(2))作线性内插所得的值,则称函数f (X)
6
• 目标函数的等值线(面)
• 可计算函数与等值面
给定一组设计变量的值,就对应一个确
定的目标函数值f(X)=C,具有这种性质的 函数叫可计算函数。反之,给定目标函数 f(X)的值C,即f(X)=C,那么将有无限多个 设计点X使该式成立,这些设计点在n维设 计空间中将组成一个点集,称之为等值曲 面(三维空间)或等值超曲面(n>3),通 称等值面。在二维平面中为等值线。若给

高中同步测控优化设计数学必修二

高中同步测控优化设计数学必修二

高中同步测控优化设计数学必修二
《高中同步测控优化设计数学必修二》本册教材包括九个章节,分别为第一章《函数的图象》、第二章《复平面初步》、第三章《复数的指数形式》、第四章《复数函数》、第五章《曲线积分及应用》、第六章《矩阵及其应用》、第七章《矩阵分析》、第八章《优化设计数学》以及第九章《计算机科学应用》。

本册教材旨在培养学生熟练掌握和应用函数的图象、复数、曲线积分及其应用、矩阵及其应用、矩阵分析、优化设计数学与计算机科学应用等知识,全面提高工科学生数学能力,为中学生未来的深造和就业打下坚实的基础。

本册教材按照“讲授、练习、讨论”的教学方法,注重教学过程中学生的认识和体验,将学生从实践事实出发,引导学生通过实践形成认识,实践归纳、讨论提高理解能力;丰富的例题及习题,可以促进学生掌握本册教材中的概念、规律和方法,从而提高学生解决实际问题的能力。

- 1 -。

优化设计_精品文档

优化设计_精品文档

现代设计方法
等值曲面:目标函数值相等的所有设计点的集合称为目
标函数的等值曲面。二维:等值线;三维:等值面;三
维以上:等超越面。
等高线
z
等值线族形象地反映了目 标函数值的变化规律,越 靠近极值点的等值线,表 示的目标函数值越小,其 分布也越密集。
等值线族
y
o
x
x*(中心极值点)
二维设计变量下的等值线
用性外,还要检查其可行性,即是否满足 gu (X ) 0 的约束条件,如果适用性和可行性兼备,再进行 下一次迭代,最终自然也能求得非常接近约束最 优点的近似最优点 X * 。
现代设计方法
综上所述,采用数值法进行迭代求优时,除了 选择初始点X (0)以外,如何确定迭代方向 S (k)和步长 (k)成为非常重要的环节,他们将直接决定着搜索的 效率、函数值逐步下降的稳定性和优化过程所需的 时间等。
f ( X (k1) ) f ( X (k) )
相对下降量准则:
f ( X (k1) ) f ( X (k) ) f ( X (k1) )
( f ( X ) (k1) 1)
现代设计方法
C. 梯度准则
根据迭代点的函数梯度达到足够小而建立的准 则,表示为
f ( X (k1) )

f x1
X X (3) X (4) *
S (2) S (3)
S (1) X (1)
X (2)
若不满足则改变步长, S (0)
X (0)
满足则进入下一步
x1
现代设计方法
X (k) ——第k个迭代点 S (k) ——从第k个迭代点出发寻找下一个迭代
点的搜索方向 (k) ——沿S (k)前进的步长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 优化设计的数学基础优化设计中绝大多数是多变量有约束的非线性规划问题,即是求解多变量非线性函数的极值问题。

由此可见,优化设计是建立在多元函数的极值理论基础上的,对于无约束优化问题为数学上的无条件极值问题,而对于约束优化问题则为数学上的条件极值问题。

本章主要叙述与此相关的数学基础知识。

第一节 函数的方向导数与梯度一、函数的方向导数一个二元函数()21,x x F 在点()02010,x x X 处的偏导数,即函数沿坐标轴方向的变化率定义为:而沿空间任一方向S 的变化率即方向导数为:方向导数与偏导数之间的数量关系为依此类推可知n 维函数()n x x x F ,,,21 在空间一点()002010,,,n x x x X 沿S 方向的方向导数为二、函数的梯度 函数()X F 在某点X 的方向导数表明函数沿某一方向S 的变化率。

—般函数在某一确定点沿不同方向的变化率是不同的。

为求得函数在某点X 的方向导数为最大的方向,引入梯度的概念。

仍以二元函数()21,x x F 为例进行讨论,将函数沿方向S 的方向导数写成如下形式令:图2-1 二维空间中的方向图2-2 三维空间中的方向称为()21,x x F 在点X 处的梯度()X F grad ,而同时设S 为单位向量于是方向导数可写为:此式表明,函数()X F 沿S 方向的方向导数等于向量()X F ∇在S 方向上的投影。

且当()()1,cos =∇S X F ,即向量()X F ∇与S 的方向相向时,向量()X F ∇在S 方向上的投影最大,其值为()X F ∇。

这表明梯度()X F ∇是函数()X F 在点X 处方向导数最大的方向,也就是导数变化率最大的方向。

上述梯度的定义和运算可以推广到n 维函数中去,即对于n 元函数()n x x x F ,,,21 ,其梯度定义为由此可见,梯度是一个向量,梯度方向是函数具有最大变化率的方向。

即梯度()X F ∇方向是函数()X F 的最速上升方向,而负梯度()X F ∇-方向则为函数()X F 的最速下降方向。

例2-1 求二元函数()2214x x F π=X 在[]T 1,10=X 点沿⎩⎨⎧===44211πθπθS 和⎩⎨⎧===63212πθπθS 的方向导数。

解:()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=∇21212142x x x x F x F F ππX X X ,将[]T 1,10=X 代入可得()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∇42ππX F ,因此而这说明同一函数在不同方向上的方向导数不同,其变化率也不同。

函数()X F 由0X 出发,沿S 1方向的变化率大于沿S 2方向的变化率。

所以,函数()X F 沿S 1方向增长得较快。

第二节 凸集、凸函数与凸规划如果函数在整个可行域中有两个或两个以上的极值点,则称每一个极值点为局部极值点。

在整个可行域中,函数值最小的点为全域极值点。

为求得全域极值点,以获得最好的可行设计方案,就需要进一步讨论局部最小点和全域最小点的关系,因而涉及到凸集、凸函数及凸规划问题。

一、凸集设D 为n 维欧氏空间内的一个集合,如果D 内任意两点X 1和X 2的连线整个都包围在D 内,即对于任意实数α(10≤≤α),点()D X X ⊂-+211αα,则称这种集合为凸集,如图2-3a 所示,否则为非凸集,如图2-3b 、c 所示。

凸集满足以下性质:若D 是一个凸集,λ是一个实数,则集合λD 仍为凸集;若D 与F 均为凸集,则其和(或并)还是凸集;任何一组凸集的积(或交)还是凸集。

二、凸函数设D 为E n 中的一凸集,()X F 为定义在D 上的一个函数,若对于任意实数α(10≤≤α)和D 内任意两点X 1和X 2,恒有则()X F 为D 上的凸函数;若式中不等号反向,则为凹函数。

凸函数的几何意义如图2-4所示。

若()X F 在区间[]b a ,内为凸函数,则曲线上任意两点A 、B间(与X 1和X 2相对应)所连成直线上的点K ’总不会落在这两点间曲线的下方,即大于相应点K 的函数值。

因而,若()X F 为凸函数,则-()X F 为凹函数;线性函数既可视为凸函数,又可视为凹函数。

凸函数的性质:1)设取()X F 为定义在凸集D 的凸函数,则对于任意正实数λ,图2-3 凸集a )与非凸集b )、c )图2-4 凸函数的几何含义函数λ()X F 在D 上也是凸函数;2)设()X 1F 、()X 2F 为定义在凸集D 上的凸函数,则函数()()()X X X 21F F F +=在D 上也是凸函数:3)若函数()X F 在n 维欧氏空间E n 一阶可微,则对于任意2121,X X X X ≠∈n E ,()X F 为凸函数的充分必要条件为(其证明可参见教材p. 26) ()()()[]()12112X X X X X -∇+≥TF F F 图2-5所示为一维函数情况,其凸函数的几何意义在于函数曲线永远在切线的上面。

若()X F 是凸集D 上的凸函数,并且在D 内有极小点,则极小点是唯一的。

最优化方法中很多结论都是以函数具有凸性为前提的。

三、凸规划对于约束优化问题式中,若()X F 、()X u g 、u =1,2,…,n 均为凸函数,则称此问题为凸规划。

凸规划的性质:1)可行域(){}n u g u ,,2,1,0 =≤X X 为凸集。

2)凸规划问题的任何局部最优解都是全局最优解。

图2-5 一维凸函数3)若()X F 可微,则*X 为凸规划问题的最优解的充分必要条件是:对于D ∈X ,都满足(该式表明在*X 的邻域内的所有点的目标函数值均大于*X 处的值)但在实际应用中,要证明一个线性规划问题是否为凸规划,一般比较困难,有时甚至比求解一个优化问题还要麻烦得多,尤其对一些工程问题,由于其数学模型的性态都比较复杂,更难以实现。

因此,在优化设计的求解时,就不必花精力进行求证,而通常是从几个初始点出发,看它是否能收敛于同一点上,否则从求得的几个方案中,选取相对较好的方案,作为最优设计的结果,也就是从局部最优解的比较中来选取全局的最优解。

第三节 无约束优化问题的极值条件优化问题的几何表达只能形象地给出最优解的有关概念,而最优解数值的求得,还得靠必要的定量计算来达到。

这种运算的理论依据是函数的极值理论,因而有必要对其有关概念作必要的回顾和介绍。

多元目标函数的表达形式往往十分复杂,为了便于讨论,需用简单的函数作局部逼近,使其简化。

用泰勒展开式求目标函数在某点邻近的近似表达式,则是常用的方法。

一、多元函数的泰勒展开式一元函数()X F 在X k 点的泰勒展开式为而多元函数()X F 在X k 点的泰勒展开式为式中,()i kx F ∂∂X 为函数在X k 点处对x i 的偏导数;()j i k x x F ∂∂∂X 2为函数在X k 点处对x i 、x j 的二阶偏导数;x i 、x j 分别表示变量X 的第i 和j 个分量;n 为变量的个数。

若用向量矩阵表示,可写为:F在X k点的泰勒展开式可用向量矩阵形式表达为因此,多元函数()X其中,F在X k点的一阶偏导数的列向量,称为梯度;为()XF在X k点的二阶偏导数矩阵,由于函数的二次连续性,它是一为()XF在点X k的海色(Hessian)个n×n阶的对称方阵,统称为函数()X矩阵。

在优化设计中,目标函数取到自变量(设计变量)的二次函数表达式已足够准确(这称为目标函数的平方近似表达式),因为数学上己证明:对于非标准球面或椭球抛物面的一般非线性目标函数(即高次函数),在其极值点附近的等值线簇仍为同心椭圆簇,即目标函数在极值点附近是二次函数。

此外,二次函数的某些特征还为一些高效寻优方法的建立提供了理论依据,因此要重视二次函数。

这样,对多元函数的泰勒展开式只取前三项就可以,记为如下形式:二、无约束优化问题的极值条件从高等数学可知,一元函数存在极值点的必要和充分条件是:函数的一阶导数()()0'==∂∂x F xx F (即找到驻点)和二阶导数()()0''22≠=∂∂x F xx F 。

当()0''<x F 时为极大;()0''>x F 时为极小。

类似地,对于n 元函数()()n x x x F F ,,,21 =X 的无约束极值问题点*X 为一个局部极值点的充分必要条件是:1)一阶导数向量()0=∇*X F ,即()n i x F i,,2,10 ==∂∂*X ; 2)二阶导数矩阵,即海色矩阵()*∇X F 2为正定或负定,即为正定或负定,且当()*X H 为正定时*X 为极小点;当()*X H 为负定时*X 为极大点。

(其证明可参见教材p. 20~22)判断矩阵A 正定或负定的方法是检验其各阶顺序主子式,若各阶顺序主子式均大于0,如下:则A 为正定矩阵;若各阶顺序主子式行列式值正负号交替出现,则为负定矩阵。

若不满足正负定矩阵条件则为不定矩阵,则不可采用上述方法计算极值。

例2-2 求函数()744,21222121+--+=x x x x x x F 的极值。

解:根据极值的必要条件求驻点得到驻点[]T4,2=*X 再根据极值的充分条件,判断此点是否为极值点。

由于其各阶主子式均大于0,即()*X H 为正定,故[]T4,2=*X 为极小点,极小值为()13-=*X F 第四节 约束优化问题的极值条件求解约束优化问题求解上述问题的实质是在所有的约束条件所形成的可行域内,求得目标函数的极值点,即约束最优点。

由于约束最优点不仅与目标函数本身的性质有关,还与约束函数的性质有关,因此约束条件下的优化问题比无约束条件下的优化问题更为复杂。

库恩-塔克(Kuhn-Tucker )条件(简称K-T 条件)是非线性规划领域中最重要的理论成果之一,通常借助库恩-塔克条件来判断和检验约束优化问题中某个可行点是否为约束极值点,即将K-T 条件作为确定一般非线性规划问题中某点是否为极值点的必要条件,对于凸规划问题,K-T 条件同时也是一个充分条件。

但是如何判别所找到的极值点是全域最优点还是局部极值点,至今还没有一个统一而有效的判别方法。

K-T 条件可阐述为:若*X 是一个局部极小点,则该点的目标函数梯度()*∇XF 可表示成诸约束面梯度()*∇X u g 和()*∇X v h 的线性组合的负值,即式中,q 为设计点处的不等式约束面数;j 为设计点处的等式约束面数;()q u u ,,2,1 =λ、()j v v ,,2,1 =λ为非负值的乘子,也称为拉格朗日乘子。

式中,在点*X 处不起作用的约束条件()X u g 对应的义u λ一定为零,只有当某一约束()X u g 在点*X 为起作用约束时,u λ才可以不为零。

相关文档
最新文档