人工神经网络的发展与应用
人工神经网络基础与应用-幻灯片(1)

4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突
触
细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。
人工神经网络的研究进展与应用

人工神经网络的研究进展与应用人工神经网络是一种基于神经元模型的计算机模型,它能够通过学习和适应提高自己的性能,从而解决各种复杂的问题。
近年来,随着科学技术的不断进步,人工神经网络的研究和应用也越来越广泛,本文将以此为主题,探讨其研究进展和应用。
一、人工神经网络的发展历程人工神经网络的概念最早可以追溯到1943年,当时生物学家麦卡洛克和数学家皮茨在研究海马的神经元模型时,提出了“神经元网络”的概念。
然而,由于当时计算机技术的不发达,研究进展缓慢,直到20世纪80年代,人工神经网络才开始进入蓬勃发展期。
在接下来的几十年里,人工神经网络不断得到完善和改进。
1986年,加利福尼亚大学教授里夫金首次提出了反向传播算法,从理论上提高了神经网络的学习能力;1998年,Yan LeCun等人在训练卷积神经网络上取得了突破性的进展,为语音识别、图像识别等领域的应用奠定了基础;2006年,西谷和众人提出了深层神经网络,在语音识别、自然语言处理、图像处理等领域取得了重大突破。
二、人工神经网络的应用领域1. 图像识别人工神经网络在图像识别领域的应用非常广泛。
以2012年ImageNet大规模视觉识别挑战赛为例,该比赛采用卷积神经网络进行图像识别,识别准确率达到了85.4%,远高于传统算法。
2. 语音识别人工神经网络在语音识别领域也有广泛的应用。
在过去的十年里,深度神经网络被广泛用于语音识别,取得了显著的进展。
例如,微软研究院的DeepSpeech就是一种深度神经网络模型,能够通过学习进行语音识别并生成相应的文本。
3. 金融分析人工神经网络在金融领域也有广泛的应用。
例如,在股票交易中,人工神经网络能够通过学习历史股价数据,预测未来的股票价格走势。
此外,人工神经网络还可以用于信用评估、风险管理等方面,为金融决策提供有力的辅助。
4. 医学诊断人工神经网络在医学诊断领域也有广泛的应用。
例如,在疾病诊断方面,人工神经网络能够通过学习医学数据,对病情进行准确的判断和诊断。
(完整word版)神经网络历史发展及应用综述个人整理(word文档良心出品)

人工神经网络历史发展及应用综述1、引言人类为了生存在改造探索自然的过程中,学会利用机械拓展自身的体力,随着对自然认识的不断深入,创造语言,符号,算盘、计算工具等来强化自身脑力。
复杂的数字计算原本是靠人脑来完成的,为了摆脱这种脑力束缚发明了计算机。
其数字计算能力比人脑更强,更快、更准。
计算机的出现,人类开始真正有了一个可以模拟人类思维的工具,期盼可以实现人工智能,构造人脑替代人类完成相应工作。
要模拟人脑的活动,就要研究人脑是如何工作的,要怎样模拟人脑的神经元。
人脑的信息处理具有大规模并行处理、强容错性和自适应能力、善于联想、概括、类比和推广的特点,多少年以来,人们从生物学、医学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图获悉人脑的工作奥秘,寻求神经元的模拟方法。
在寻找上述问题答案的研究过程中,从20世纪40年代开始逐渐形成了一个新兴的边缘性交叉学科,称之为“神经网络”,是人工智能、认知科学、神经生理学、非线性动力学、信息科学、和数理科学的“热点”。
关于神经网络的研究包含众多学科领域,涉及数学、计算机、人工智能、微电子学、自动化、生物学、生理学、解剖学、认知科学等学科,这些领域彼此结合、渗透,相互推动神经网络研究和应用的发展。
2、定义思维学普遍认为,人类大脑的思维有三种基本方式,分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维。
逻辑性的思维是根据逻辑规则进行推理的过程,这一过程可以写成指令,让计算机执行,获得结果。
而直观性(形象)的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的有以下两个特点:一是信息通过神经元上的兴奋模式分布储在网络上;二是信息处理通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟第二种人类思维方式。
人工神经网络是由大量具备简单功能的人工神经元相互联接而成的自适应非线性动态系统。
虽然单个神经元的结构和功能比较简单,但大量神经元连接构成的网络系统行为却异常复杂。
《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
神经网络的现状与发展趋势

神经网络的现状与发展趋势一、引言人工神经网络(Artificial Neural Network, ANN)是一种通过模拟人类神经系统实现信息处理、表达和识别的计算模型。
自 1943 年 McCulloch 和 Pitts 提出 ANNs 模型以来,神经网络成为了人工智能领域研究的热点之一,并在计算机视觉、语音识别、自然语言处理、数据挖掘、模式识别等方面取得了卓越成果。
随着技术和应用的不断深入,神经网络技术也在不断发展和成熟。
本文将阐述神经网络的现状与发展趋势。
二、神经网络的现状1.神经网络应用领域广泛神经网络现在应用在各个领域中,包括医疗、金融、保险、制造业、游戏等。
在医疗领域中,神经网络广泛应用于癌症筛查、药物研发、疾病预测等方面;在金融领域中,神经网络被用于股票价格预测、风险评估、欺诈检测等方面;在游戏领域中,神经网络被广泛用于图像处理、行为预测等方面。
神经网络在这些领域中具有较高的精度和灵活性,成为了人工智能技术中不可或缺的一部分。
2.深度学习技术的广泛应用深度学习作为神经网络技术的分支之一,逐渐成为了人工智能应用的主流。
深度学习通过多个隐层来逐步提取数据的高层次特征,大幅度提高了模型的准确性和鲁棒性。
目前,深度学习模型已经迅速应用于语音识别、机器翻译、自然语言处理、图像、视频等多个领域中。
深度学习的发展极大地促进了人工智能技术的研究和应用。
3.大数据技术的支持大数据技术是神经网络技术得以快速发展和应用的重要因素。
神经网络需要大量的数据进行训练和调整,而大数据时代的到来使得海量数据的存储和挖掘变得更加容易。
此外,人工智能应用也逐渐从精准分析转向预测和决策,并需要从大规模数据中发现规律和趋势。
大数据技术在神经网络技术的发展和应用中发挥了重要的作用。
三、神经网络的发展趋势1.自适应神经网络的发展传统的神经网络技术需要大量的人工调试和参数设置,而自适应神经网络技术可以根据自身的表现动态调整参数,自我进化。
人工神经网络在哪些领域中得到广泛应用?

人工神经网络在哪些领域中得到广泛应用?一、医疗健康领域人工神经网络在医疗健康领域中的应用,早已成为一个备受瞩目的话题。
目前,人工神经网络已经成功应用于医学图像诊断、疾病预测和药物开发等多个方面。
1. 医学图像诊断通过使用深度学习算法,人工神经网络可以对医学图像进行自动分析和识别。
例如,在肿瘤检测方面,人工神经网络可以通过训练大量的肿瘤图像,自动识别出患者是否存在肿瘤,并提供相应的诊断建议,从而帮助医生提高诊断准确性。
2. 疾病预测人工神经网络可以通过学习大量的病例数据,预测患者未来可能发生的疾病。
例如,在心脏病预测方面,人工神经网络可以根据患者的年龄、性别、血压、血脂等指标,预测患者是否患有心脏病的风险,并提供相应的预防建议。
3. 药物开发人工神经网络可以通过分析药物分子的结构和特性,预测药物的疗效和潜在副作用。
例如,在药物筛选方面,人工神经网络可以通过学习已知药物和疾病之间的关系,预测新的药物对特定疾病的治疗效果,从而加快药物研发的速度和效率。
二、智能交通领域人工神经网络在智能交通领域中的应用,正在推动城市交通系统的智能化和高效化发展。
通过利用人工神经网络技术,可以实现交通流量预测、交通信号优化和智能驾驶等多个领域的创新。
1. 交通流量预测通过分析历史交通数据,人工神经网络可以预测未来交通流量的变化趋势。
例如,在城市交通规划方面,人工神经网络可以通过学习大量的历史交通数据,预测未来某一时间段某一路段的交通流量,从而帮助交通部门优化道路资源的配置。
2. 交通信号优化人工神经网络可以通过学习交通流量数据和信号控制策略,优化交通信号的配时方案。
例如,在城市交通拥堵缓解方面,人工神经网络可以根据实时的交通流量信息,自动调整交通信号的配时,从而提高交通效率和减少交通拥堵。
3. 智能驾驶人工神经网络在智能驾驶中的应用,可以帮助汽车实现自主驾驶和智能化的交通系统。
通过学习大量的驾驶数据,人工神经网络可以模拟人类的驾驶行为,并做出智能决策。
人工神经网络的最新发展

人工神经网络的最新发展在目前的科技时代,人工智能是一个相对热门的话题,其中包含了许多不同的技术和算法。
而人工神经网络,作为其中的一个重要分支,近年来经过不断的发展和进步,在应用领域和算法效果上都取得了不俗的成绩。
一、发展历程人工神经网络的发展历程可以追溯到1943年,当时McCulloch 和Pitts提出了一种类似于神经元模拟的计算模型,这种模型被称为McCulloch-Pitts神经元。
不久之后,Rosenblatt提出了一种全新的感知机模型,并将其应用于图像识别等领域。
然而,由于感知机存在很多限制和缺陷,导致其应用范围十分有限。
直到20世纪80年代,BP神经网络被提出后,人工神经网络才真正进入到了大规模繁荣的时期。
从此,神经网络的领域开始不断扩大,涉及到了机器学习、自然语言处理、计算机视觉、金融预测等多个领域。
二、技术突破近年来,人工神经网络在实践应用和算法研究方面获得了多项技术突破。
其中最重要的是深度学习算法的发展,这种算法结合了神经网络的分层特性和大规模数据的优势,可以处理更加复杂和庞大的数据集,从而实现更精准和有效的模型构建。
在实际应用方面,机器学习和神经网络被广泛应用于金融预测、医疗诊断、自然语言处理、计算机视觉和自动控制等多个领域。
在金融预测中,神经网络能够准确预测股票价格、货币汇率和黄金价格等。
在医疗诊断中,神经网络可以自动识别病理图像和电生理信号等,为医生做出正确的诊断提供有力的支持。
此外,人工神经网络的硬件和软件技术也在不断发展。
例如,GPU的使用能够大幅提高神经网络的计算效率,而新的深度学习框架和模型库能够更加便捷地搭建和应用神经网络模型。
三、应用挑战尽管人工神经网络在应用领域和算法研究方面取得了不俗的成绩,但仍然存在一些应用挑战需要克服。
首先,神经网络需要大量的数据和计算资源支持,这使得许多中小型企业难以使用神经网络技术。
此外,由于神经网络存在黑箱化问题,其内部变量和运作逻辑很难被人类理解和解释,这也制约了神经网络的应用。
神经网络算法在人工智能发展中的应用现状和未来趋势

神经网络算法在人工智能发展中的应用现状和未来趋势随着科技的不断进步和人工智能的快速发展,神经网络算法已经成为人工智能领域中最重要的技术之一。
神经网络算法是受到大脑神经元工作原理启发而设计的一种模型,通过模拟人脑神经元之间的连接方式,实现了机器的自主学习和推理能力。
在各个领域中,神经网络算法的应用都在不断推动人工智能技术的发展。
目前,神经网络算法已经广泛应用于图像识别、自然语言处理、语音识别以及智能推荐系统等方面。
其中,图像识别是神经网络算法应用的重点领域之一。
随着深度学习的兴起,深度神经网络算法在图像分类、目标检测和图像生成等方面取得了重大突破。
例如,通过对大量图像数据进行训练,神经网络可以自动学习到图像的特征和模式,从而实现高精度的图像分类和识别。
另外,自然语言处理领域也受益于神经网络算法的应用。
通过使用深度神经网络,可以构建强大的文本分析模型,实现自动文本翻译、情感分析和问答系统等功能。
神经网络在自然语言处理领域的应用,使得机器能够理解和处理自然语言,为人机交互提供了更加便捷和智能化的方式。
此外,语音识别技术的快速发展也离不开神经网络算法的应用。
神经网络可以通过学习海量的语音数据,并对其进行模式识别和特征提取,从而实现准确和高效的语音识别。
这对于语音助手、语音翻译和智能家居等领域来说,是一次重要的突破。
在智能推荐系统方面,神经网络的广泛应用也取得了显著的进展。
神经网络算法可以通过分析用户的历史行为和喜好,为用户提供个性化的推荐服务。
这种个性化推荐可以大大提高用户体验,为用户带来更多便利和惊喜。
未来,神经网络算法在人工智能领域的应用前景相当广阔。
首先,随着硬件技术的不断进步,例如量子计算和神经芯片,将会为神经网络算法提供更加强大的计算能力和更高的效率,进一步推动人工智能技术的发展。
其次,神经网络算法也将与其他人工智能技术相结合,形成更为复杂和强大的人工智能系统。
例如,与机器学习、自然语言处理和计算机视觉等技术相结合,可以构建多模态智能系统,使得机器在感知、理解和决策等方面更加全面和智能化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李凡(MZ12663)人工神经网络的发展与应用1、神经网络发展1)启蒙时期启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。
早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。
可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。
现在来看M—P模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。
因此,M—P模型被认为开创了神经科学理论研究的新时代。
1949年,心理学家D.0.Hebb提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。
1957年,计算机学家FrankRosenblatt 提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。
1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。
2)低潮期人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。
引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。
但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。
以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。
3)复兴时期20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们怀疑当前的冯·诺伊曼型计算机是否能解决智能问题,同时也促使人们探索更接近人脑的计算模型,于是又形成了对神经网络研究的热潮。
1982年,美国加州理工学院的物理学家JohnJ.Hopfield博士发表了一篇对神经网络研究的复苏起了重要作用的文章,他总结与吸取前人对神经网络研究的成果与经验,把网络的各种结构和各种算法概括起来,塑造出一种新颖的强有力的网络模型,称为Hopfield网络。
他引入了“计算能量函数”的概念,给出了网络稳定性依据。
从而有力地推动了神经网络的研究与发展。
1986年,Rumelhart及.Cun等学者提出了多层感知器的反向传插算法,克服了当初阻碍感知器模型继续发展的重要障碍。
这一时期,大量而深入的开拓性工作大大发展了神经网络的模型和学习算法,增强了对神经网络特性的进一步认识,使人们对模仿脑信息处理的智能计算机的研究重新充满了希望。
4)新时期1987年6月,首届国际神经网络学术会议在美国加州圣地亚哥召开,这标志着世界范围内掀起了神经网络开发研究的热潮。
在这次会上成立了国际神经网络学会(INNS),并于1988年在美国波士顿召开了年会,会议讨论的议题涉及到生物、电子、计算机、物理、控制、信号处理及人工智能等各个领域。
自1988年起,国际神经网络学会和国际电气工程师与电子工程师学会(IEEE)联合召开了每年一次的国际学术会议。
这次会议后不久,美国波士顿大学的StephenGrossberg教授、芬兰赫尔辛基技术大学的Teuvo Kohonen教授及日本东京大学的甘利俊一教授,主持创办了世界第一份神经网络杂志《Neural Network)。
随后,IEEE也成立了神经网络协会并于1990年3月开始出版神经网络会刊,各种学术期刊的神经网络特刊也层出不穷。
从1987年以来,神经网络的理论、应用、实现及开发工具均以令人振奋的速度快速发展。
神经网络理论已成为涉及神经生理科学、认知科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、生物电子学等多学科交叉、综合的前沿学科。
神经网络的应用已渗透到模式识别、图像处理、非线性优化、语音处理、自然语言理解、自动目标识别、机器人专家系统等各个领域,并取得了令人瞩目的成果。
2、人工神经网络的应用(1)信息领域信息领域神经网络作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工利用等各个环节。
1)信号处理神经网络广泛应用于自适应信号处理和非线性信号处理。
前者如信号的自适应滤波、时间序列预测、谱估计、噪声消除等;后者如非线性滤波、非线性预测、非线性编码、调制解调等。
2)模式识别模式识别涉及模式的预处理变换和将一种模式映射为其他类型的操作。
神经网络不仅可以处理静态模式如固定图像、固定能谱等,还可以处理动态模式如视频图像、连续语音等。
3)数据压缩在数据传送存储时,数据压缩至关重要。
神经网络可对待传送的数据提取模式特征,只将该特征传出,接收后再将其恢复成原始模式。
(2) 自动化领域神经网络和控制理论与控制技术相结合,发展为神经网络控制。
为解决复杂的非线性不确定、不确知系统的控制问题开辟了一条新的途径。
1)系统辨识在自动控制问题中,系统辨识的目的是为了建立被控对象的数学模型。
多年来控制领域对于复杂的非线性对象的辨识,一直未能很好的解决。
神经网络所具有的非线性特性和学习能力,使其在系统辨识方面有很大的潜力,为解决具有复杂的非线性、不确定性和确知对象的辨识问题开辟了一条有效途径。
2)神经控制器控制器在实时控制系统中起着“大脑”的作用,神经网络具有自学习和自适应等智能特点,因而非常适合于做控制器。
对于复杂非线性系统神经控制器所达到的控制效果往往明显好于常规控制器。
3)智能检测所谓智能检测一般包括干扰量的处理,传感器输入特性的非线性补偿,零点和量程的自动校正以及自动诊断等。
这些智能检测功能可以通过传感元件和信号处理元件的功能集成来实现。
在综合指标的检测(例如对环境舒适度这类综合指标的检测)中,以神经网络作为智能检测中的信息处理元件便于对多个传感器的相关信息(如温度、湿度、风向和风速等)进行复合、集成、融合、联想等数据融合处理,从而实现单一传感器所不具备的功能。
(3)工程领域1)汽车工程汽车在不同状态参数下运行时,能获得最佳动力性与经济性的档位称为最佳档位。
利用神经网络的非线性映射能力,通过学习优秀驾驶员的换档经验数据,可自动提取蕴含在其中的最佳换档规律。
另外,神经网络在汽车刹车自动控制系统中也有成功的应用,该系统能在给定刹车距离、车速和最大减速度的情况下一人体感受到最小冲击实现平稳刹车而不受路面坡度和车重的影响。
神经网络在载重车柴油机燃烧系统方案优化中也得到了应用,有效的降低了油耗和排烟度,获得了良好的社会经济效益。
2)军事工程神经网络同红外搜索与跟踪系统配合后,可发现和跟踪飞行器。
例如借助于神经网络可以检测空间卫星的动作状态是稳定、倾斜、旋转还是摇摆,一般正确率可达95%。
3)化学工程神经网络在制药、生物化学、化学工程等领域的研究与应用蓬勃开展,取得了不少成果。
例如在谱分析方面,应用神经网络在红外谱、紫外谱、折射光谱和质谱与化合物的化学结构问建立某种确定的对应关系方面的成功应用。
(4)经济领域人工神经网络在经济领域的应用主要有:1)价格预测影响商品和服务价格变动的因素是复杂、多变的,传统的统计经济学方法存在不适合动态系统、建模复杂等局限性,难以对价格变动作出科学的预测,人工神经网络容易处理不完整的、模糊不确定或规律性不明显的数据,所以用人工神经网络进行价格预测是可行的,且有着传统方法无法比拟的优势。
从市场价格的确定机制出发,寻求影响商品住宅价格的因素.并采用BP人工神经网络定量分析这些影响因素,对商品住宅价格的变动趋势进行科学预测,并取得了满意的效果。
商品住宅价格影响因素选取及相关数据收集是进行价格预测的关键。
影响商品住宅价格变动的因素是复杂、多变的,很难将所有因素纳入分析研究。
但是在政治、经济比较平稳的时期,商品住宅价格的变动是由一些基本因素决定的。
基于稳定性、数据可获得性以及代表性三大原则。
该文选择了以下因素:家庭户数、人均可支配收入、住宅建造成本、一年期贷款利率、城市化水平。
同时为了消除通货膨胀对数据波动的不利影响,将2)风险评估商业银行的风险管理问题是我国加入WTO后的一个突出问题。
目前。
信用风险仍然是我国商业银行最主要的风险。
我国商业银行目前正处在转轨时期,用传统方法评估信用风险难以达到满意的效果,而神经网络学习能力强,容错性好,具有很强的鲁棒性,适合评价信息不全的系统。
文僻根据我国的具体现实,运用人工神经网络技术。
构造出适合中国的信用风险模型,并对某国有银行提供的数据进行了实证研究。
文嘲对人工神经网络及其应用于信贷风险分析的可行性进行了论述,着重对构建商业银行信贷风险分析的人工神经网络模型进行了深入细致的研究。
文01将人工智能方法用于解决投资风险管理问题,研究了用人工神经网络方法进行风险评价的可行性,确定了神经网络投资风险评价模型的结构和算法,计算出了节点间的权重分布。
利用该模型进行了实证分析,取得满意效果。
3、人工神经网络的发展趋势与展望人工神经网络是对人脑信息处理方式的模拟,但是目前的对人脑处理信息方式中一些实质性问题还没有取得突破性进展。
由于人们对人脑完整工作过程几乎没有什么认识,连一个稍微完善的可令人接受的假设也没有,这造成神经网络研究始终缺乏一个明确的大方向。
这方面如果不能有所突破,神经网络研究将始终限于模仿人脑局部功能的缓慢摸索过程当中,而难以达到研究水平的质的飞跃。