高中数学三角函数求周期
苏教版高中数学高一1.3.1三角函数的周期性

解析 根据周期函数的定义容易知道A,C均是错误的,同时D是正确的; 对于B,我们只能得出2π是函数y=tan x的一个周期,但不是最小正周期.
1234
2.函数 y= 2cosπ4-2x的最小正周期为__π___. 解析 T=|2ωπ|=π.
知识点二 正弦函数、余弦函数、正切函数的周期
1.正弦函数、余弦函数的周期 正弦函数和余弦函数都是周期函数,2kπ(k∈Z且k≠0)都是它们的周期,它们的最 小正周期都是2π. 2.正切函数的周期 正切函数是周期函数,最小正周期是π. 3.函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的周期 一般地,函数y=Asin(ωx+φ)和y=Acos(ωx+φ)(其中A,ω,φ为常数,且A≠0, ω>0)的周期T= 2π .
第1章 §1.3 三角函数的图象和性质
学习目标
XUEXIMUBIAO
1.了解周期函数、周期、最小正周期的定义. 2.理解函数y=sin x,y=cos x,y=tan x都是周期函数,都存在最小正周期. 3.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.
内容索引
NEIRONGSUOYIN
3 达标检测
PART THREE
1.下列说法中,正确的是 A.因为sin(π-x)=sin x,所以π是函数y=sin x的一个周期 B.因为tan(2π+x)=tan x,所以2π是函数y=tan x的最小正周期 C.因为当 x=π4时,等式 sinπ2+x=sin x 成立,所以π2是函数 y=sin x 的一个周期
3.当 x=74π 时,cosx+π2=cos x,所以π2是 cos x 的一个周期.( × )
高中数学必修四 第一章三角函数 1.4.2.1 周期函数

7 2
-4
, 即������
7 2
= ������
-
1 2
.
又当 x∈(-1,0)时,f(x)=2x+1,
∴������
7 2
= ������
-
1 2
=2×
-
1 2
+ 1 = 0.
题型一 题型二 题型三 题型四
反思1.解答此类题目的关键是利用化归的思想,借助周期函数的 定义把待求问题转化到已知区间上,代入求值即可.
π 6
+ 2π = 2(������ + π) − π6,
∴f(x+π)=sin
2(������
+
π)-
π 6
=sin
2������-
π 6
+
2π
= sin
2������-
π 6
= ������(������).
∴T=π.
本节结束,谢谢大家!
题型一 题型二 题型三 题型四
题型二 求三角函数的周期
【例 2】 求下列函数的周期:
(1)f(x)=sin
1 4
������
+
π 3
(������∈R);
(2)y=|sin x|(x∈R).
分析:对于(1),可结合周期函数的定义求解;对于(2),可通过画函
数图象求周期.
题型一 题型二 题型三 题型四
(2)函数 y=sin
������������
+
π 4
(������
>
0)的周期是
2π 3
,
则������
=
_____.
三角函数周期的几种求法.doc

三角函数周期的几种求法深圳市福田区皇岗中学蔡舒敏高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。
本文就这个问题谈三角函数周期的几种求法。
1.定义法:定义:一般地y=c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值吋,f (x+T) = f ( X )都成立,那么就把函数y = f (x)叫做周期函数;不为零的常数叫做这个函数的周期。
对于一个周期函数來说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。
下面我们谈到三角函数的周期时,一般指的是三角函数折最小止周期。
例1.求函数y=3sin (-% + -)的周期3 3解:Vy=f (x) =3sin (-x+—) =3sin (-% + —+2^-)3 3 3 3=3sin (拿+ 2兀 +彳)=3sin[|(x + 3^) + |]二f (x+3兀)这就是说,当自变量由x增加到x+3龙,且必增加至!J x+3龙时,函数值重复出现。
二函数y=3sin (-x + —)的周期是T二3龙。
3 3例2:求f (x) =sin6x+cos6x 的周期解Tf (x+—) = sin b (x+—) + cos6 (x+—)2 2 2二cos h x +sir?x二f (x).•.f (x) =sin6x+cos6x 的周期为T= —2例3:求f (x)二血兀+血3兀的周期cosx + cos3x解:Vf (x+兀)二曲(只+兀)+血如+兀)COS(X + 7l) + COS(X + 71)_ -sinx-sin3x-cox - cos3x_ sinx + sin 3xcos x +cos 3^二f (x)■求f(X)二Siz + sin3兀的周期:T Fcos x +cos 3x2.公式法:(1)如果所求周期函数可化为y二Asin (亦+ ©)、y二Acos (亦+炉)、y = tg (亦 + 0 )形成(其中X、co、cp为常数,且A H O、®>O、0W R),则可知道它们的周期分别是:—> —> -Oco co co例4:求函数y=l-sinx+V3 cosx的周期解:Vy=l-2 (- sinx- —cosx)- 2 2= 1-2 (cos —sinx-sin— cosx)3 3= l-2sin (x-—)3这里0二1 ・••周期T二2龙例5:求:y=2 (— sinx--cos3x) -12 2解:Vy=2 (— sinx-—cos3x) -12 2=2sin (3x-— ) -16这里⑵二3 ・•・周期为T二弐3例6:求y二tg (1+—)的周期解:这里g二丸,・•.周期为:T=^-/ —=-5 5 3(2)如果f (x)是二次或高次的形式的周期函数,可以把它化成sinox、COSGX、tgcox的形式,再确定它的周期。
高中数学三角变换知识点总结

高中数学三角变换知识点总结三角变换是高中数学中一个重要的概念,它涉及到三角函数的性质、图像和方程的变换,是解决各类三角函数问题的基础。
本文将对高中数学中常见的三角变换知识点进行总结和归纳,以帮助学生更好地理解和掌握这一内容。
1. 三角函数的周期性变换三角函数的周期性变换是指通过改变角度的取值范围,可以得到相同函数值的新角度。
常见的三角函数有正弦函数、余弦函数和正切函数。
它们的周期性变换分别如下:正弦函数:f(x) = sin(x)周期:2π周期性变换:f(x + 2π) = f(x)余弦函数:f(x) = cos(x)周期:2π周期性变换:f(x + 2π) = f(x)正切函数:f(x) = tan(x)周期:π周期性变换:f(x + π) = f(x)通过理解和掌握这些周期性变换的性质,可以简化三角函数的求解过程,同时也能更好地理解三角函数的图像特征。
2. 三角函数图像的变换三角函数的图像变换是指通过改变系数和常数的值,可以改变函数图像在坐标平面上的位置和形状。
常用的图像变换包括平移、伸缩、翻转和相位差变换。
平移变换:将函数图像沿x轴或y轴方向上下左右平移,改变函数的位置。
平移变换可用函数的形式来表示,如f(x) + a、f(x - b)等。
伸缩变换:将函数图像在x轴或y轴方向上进行拉伸或压缩,改变函数的形状。
伸缩变换可用函数的系数来表示,如af(x)、f(bx)等。
翻转变换:将函数图像关于x轴或y轴进行翻转,改变函数的对称性。
翻转变换可用函数的负号来表示,如-f(x)、f(-x)等。
相位差变换:将函数图像在x轴方向上进行平移,改变函数的起始位置。
相位差变换可用函数的参数表示,如f(x - c)、f(x + c)等。
通过掌握这些图像变换的规律,可以更清晰地观察和分析三角函数图像的各个特点,从而更准确地解决相关问题。
3. 三角方程的变换和解法三角方程是指含有三角函数的方程,解决三角方程需要通过变换和求解来得到最终结果。
【优化指导】高中数学(基础预习 课堂探究 达标训练)341 三角函数的周期性以及函数y=Asinx,

3.4.1 三角函数的周期性以及函数y =Asin x ,y =sin ωx 的图象与性质学习目标重点难点1.知道什么是周期函数,什么是函数的周期以及最小正周期;2.能说出函数y =sin x ,y =cos x ,y =tan x 的最小正周期;3.能分析y =A sin x ,y =sin ωx 的图象与y =sin x 图象的关系; 4.会解决函数y =A sin x ,y =sin ωx 的性质问题.重点:周期函数的定义以及正弦函数、余弦函数、正切函数的周期.分析函数y =A sin x ,y =sin ωx 的图象与性质;难点:周期函数的定义;疑点:函数y =A sin x ,y =sin ωx 的图象与函数y =sin x 图象的关系.1.三角函数的周期性(1)一般地,对于函数y =f (x ),如果存在非零常数T ,使得当x 取定义域内每一个值时,x ±T 都有定义,并且f (x ±T )=f (x ),则这个函数y =f (x )称为周期函数,T 称为这个函数的一个周期.如果周期函数y =f (x )的所有的周期中存在一个最小的正数,这个最小的正数就称为这个函数的最小正周期,我们也常常将“最小正周期”简称为“周期”.(2)y =sin x 是周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是2π. (3)y =cos x 是周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是2π. (4)y =tan x 是周期函数,k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是π. 预习交流1能否由sin ⎝ ⎛⎭⎪⎫π2+π4=sin π4,sin ⎝ ⎛⎭⎪⎫π2+5π4=sin 5π4等说明π2是y =sin x 的周期?提示:不能,周期函数中的定义中应要求对定义域中的每一个x ,都满足f (x +T )=f (x ),如果只有个别x 的值满足f (x +T )=f (x ),则不能说f (x )的周期为T .预习交流2所有的周期函数都具有最小正周期吗? 提示:并不是所有周期函数都存在最小正周期.例如,常数函数f (x )=C (C 为常数),x ∈R ,当x 为定义域内的任何值时,函数值都是C ,即对于函数f (x )的定义域内的每一个值x ,都有f (x +T )=C ,因此f (x )是周期函数,由于T 可以是任意不为零的常数,而正数集合中没有最小者,所以f (x )没有最小正周期.2.函数y =A sin x (A >0,A ≠1)的图象与性质(1)一般地,对任意A >0,A ≠1,函数y =A sin x 的图象可以由y =sin x 的图象上每一点的横坐标不变,纵坐标乘以A 得到.(2)函数y =A sin x 的周期是2π,值域是[-A ,A ],最大值和最小值分别为A 和-A . 预习交流3函数y =A sin x (A >0,A ≠1)的奇偶性、单调区间是怎样的?提示:函数y =A sin x (A >0,A ≠1)仍然是奇函数,它的单调区间与y =sin x 的单调区间也完全相同.3.函数y =sin ωx (ω>0,ω≠1)的图象与性质(1)函数y =sin ωx (ω>0,ω≠1)的图象可以由y =sin x 的图象上每一点(x ,sin x )的纵坐标不变,横坐标伸长(0<ω<1)或缩短(ω>1)为原来的1ω得到.(2)函数y =sin ωx (ω>0,ω≠1)的周期是T =2πω,值域为[-1,1].预习交流4你能由周期函数的定义说明y =sin ωx (ω>0,ω≠1)的周期为什么是2πω吗?提示:由于sin(ωx +2π)=sin ωx ,即sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +2πω=sin ωx ,因此y =sin ωx 的周期为2πω.预习交流5若对于函数f (x )定义域中的每个值x ,都有f (2x +T )=f (2x ),能否说f (x )的周期为T? 提示:不能.从周期函数的定义式f (x +T )=f (x )可知,自变量x 本身增加的常数才是周期.当f (2x +T )=f (2x )时,有f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +T 2=f (2x ),所以f (x )的周期不是T ,而是T2.在预习中,还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点 我的学疑点一、求三角函数的周期求下列函数的周期:(1)y =-3sin x ;(2)y =cos 5x ;(3)y =3tan 3x .思路分析:利用三角函数的周期以及周期的定义求解.解:(1)由于-3sin x =-3sin(x +2π),所以y =-3sin x 的周期T =2π;(2)由于cos 5x =cos(5x +2π)=cos ⎣⎢⎡⎦⎥⎤5⎝⎛⎭⎪⎫x +2π5,所以y =cos 5x 的周期T =2π5; (3)由于3tan 3x =3tan(3x +π)=3tan ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π3,所以y =3tan 3x 的周期T =π3.1.函数y =cos(-4x )的最小正周期为__________.答案:π2解析:y =cos(-4x )=cos 4x ,而cos 4x =cos(4x +2π)=cos ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x +π2,所以函数的最小正周期为π2.2.已知y =2sin ωx (ω>0)的周期为4π,则ω=__________.答案:12解析:依题意应有2πω=4π,所以ω=12.一般地,函数y =A sin(ωx +φ)及函数y =A cos(ωx +φ)(A ≠0,ω≠0)的周期为2π|ω|,函数y =A tan(ωx +φ)的周期为π|ω|.二、三角函数的图象变换画出函数y =2sin 12x 的图象,并说明由这个函数的图象怎样得到函数y =sin x 的图象?思路分析:利用五点作图法画函数y =2sin 12x 的图象,然后通过横、纵坐标的变换得到函数y =sin x 的图象.解:令12x 分别取0,π,π,3π,2π,列表如下:x 0 π 2π 3π 4π 12x 0 π2 π 3π22πy =2sin 12x 02 0 -2 0 描点、连线即得函数y =2sin 2x 在一个周期上的图象,然后根据周期性,将其向左、右扩展,即得y =2sin 12x ,x ∈R 的图象.将y =2sin 12x 的图象上每一点的横坐标不变,纵坐标变为原来的12,可以得到函数y =sin 12x的图象,然后再将y =sin 12x 图象上每一点的纵坐标不变,横坐标变为原来的12,即可得到函数y =sin x 的图象.1.(2012浙江高考,文6)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( ).答案:A解析:y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应图象为A .2.为了得到函数y =sin x 的图象,应将函数y =13sin x 的图象上每一点的横坐标不变,纵坐标变为原来的( )倍即可.A .3B .13C .1D .32答案:A1.画函数y =A sin ωx (A >0,ω>0)的图象时,仍然可以用“五点法”,但应先作变量代换,令ωx =0,π2,π,3π2,2π,求得x 相应的值,然后根据x ,y 的值描点,连线画出函数的图象.2.进行图象变换时,一是要牢记横坐标与纵坐标的变化规则,二是要分清哪是变换前的函数,哪是变换后的函数.三、函数y =A sin ωx 的性质已知函数f (x )=3cos(2x +φ),其中0<φ<π,若f (x )是奇函数. (1)求φ的值;(2)求f (x )的单调区间.思路分析:结合诱导公式求φ的值,根据φ的值,将f (x )解析式化简,然后求其单调区间.解:(1)由于cos ⎝⎛⎭⎪⎫2x +π2=-sin 2x . 而y =-sin 2x 是奇函数,从而y =-3sin 2x 也是奇函数,故当φ=π2时,f (x )=3cos ⎝⎛⎭⎪⎫2x +π2=-3sin 2x 是奇函数,即φ的值为π2. (2)由(1)知f (x )=-3sin 2x .令2k π-π2≤2x ≤2k π+π2解得k π-π4≤x ≤k π+π4,k ∈Z ,所以f (x )的单调减区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ); 令2k π+π2≤2x ≤2k π+3π2解得k π+π4≤x ≤k π+3π4,所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).若函数f (x )=14sin ωx (ω>0)的周期为3π,则其递减区间为__________.答案:⎣⎢⎡⎦⎥⎤3k π+3π4,3k π+9π4(k ∈Z ) 解析:由于f (x )的周期为3π,所以2πω=3π,ω=23.于是f (x )=14sin 23x .令2k π+π2≤23x ≤2k π+3π2,解得3k π+3π4≤x ≤3k π+94π,k ∈Z .故f (x )的减区间是⎣⎢⎡⎦⎥⎤3k π+3π4,3k π+9π4(k ∈Z ).求y =A sin ωx 的单调区间,可以把ωx 看作一个整体(保证ω>0)放入y =sin x 的单调区间内,解不等式求得.1.函数y =-sin x 的周期为( )A .π B.2π C.4π D.π2答案:B2.函数y =-3cos 2x 的最大值是( ) A .-1 B .-3 C .1 D .3 答案:D3.要得到函数y =sin 4x 的图象,只须将函数y =sin x 的图象上每一点的( ) A .横坐标不变,纵坐标变为原来的4倍 B .纵坐标不变,横坐标变为原来的4倍C .横坐标不变,纵坐标变为原来的14倍D .纵坐标不变,横坐标变为原来的14倍答案:D4.函数y =sin 3x 的图象,可以由函数y =12sin 3x 的图象上每一点( )得到.A .横坐标变为原来的3倍B .纵坐标变为原来的12倍C .横坐标变为原来的13倍D .纵坐标变为原来的2倍 答案:D5.若函数y =-5cos ωx (ω>0)的周期为4,则其递增区间是__________. 答案:[4k,4k +2](k ∈Z )解析:依题意有2πω=4,所以ω=π2,即y =-5cos π2x .令2k π≤π2x ≤2k π+π,解得4k ≤x ≤4k +2,k ∈Z ,因此函数的递增区间是[4k,4k +2](k ∈Z ).。
高中数学三角函数公式归纳

高中数学三角函数公式归纳高中数学三角函数公式归纳三角函数是高中数学中的重要内容,其公式是学习三角函数的基础。
在高中数学中,我们主要学习了正弦函数、余弦函数、正切函数以及其反函数。
这些函数都有一些常用的公式,下面我将对这些公式进行归纳整理。
1. 正弦函数的公式:(1)周期性: sin(x+2πk) = sin x,其中 k∈Z(2)奇偶性: sin(-x) = - sin x(3)值域范围: -1 ≤ sin x ≤ 1(4)正弦函数的平方等于余弦函数的平方与1的差值: sin²x + cos²x = 12. 余弦函数的公式:(1)周期性: cos(x+2πk) = cos x,其中 k∈Z(2)奇偶性: cos(-x) = cos x(3)值域范围: -1 ≤ cos x ≤ 1(4)余弦函数的平方等于正弦函数的平方与1的差值: sin²x + cos²x = 13. 正切函数的公式:(1)周期性: tan(x+πk) = tan x,其中 k∈Z(2)奇偶性:tan(-x) = - tan x(3)值域范围: -∞ < tan x < ∞4. 反正弦函数的反函数公式:(1)正弦函数的反函数: y = sin^(-1)(x) => x = sin(y)(2)值域范围: - π/2 ≤ y ≤ π/2(3)对称性: sin^(-1)(-x) = - sin^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/25. 反余弦函数的反函数公式:(1)余弦函数的反函数: y = cos^(-1)(x) => x = cos(y)(2)值域范围: 0 ≤ y ≤ π(3)对称性: cos^(-1)(-x) = π - cos^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/26. 反正切函数的反函数公式:(1)正切函数的反函数: y = tan^(-1)(x) => x = tan(y)(2)值域范围: -π/2 < y < π/2以上是常用的三角函数公式,对于学习三角函数非常重要。
三角函数 周期 高中数学

(1)如果所求周期函数可化为y=Asin (ϕω+x )、y=Acos (ϕω+x )、y=tg (ϕω+x )形成(其中A 、ω、ϕ为常数,且A ≠0、ω>0、ϕ∈R ),则可知道它们的周期分别是:ωπ2、ωπ2、ωπ。
例4:求函数y=1-sinx+3cosx 的周期例5:求:y=2(23sinx-21cos3x )-1例6:求y=tan (1+53xπ)的周期(2)如果f (x )是二次或高次的形式的周期函数,可以把它化成sin ωx 、cos ωx 、tan ωx 的形式,再确定它的周期。
例7:求f (x )=sinx ·cosx 的周期例8:求f (x )=sin 2x 的周期例10:函数y=3sin 2x-23sinx ·cosx+5cos 2x 的周期。
例1、求下列函数的周期。
(1)x x f 2cos )(= (2))421cos(2)(π---=x x f(3)|sin |)(x x f =例2、若函数)5sin(2)(π+=kx x f 的最小正周期为π32,求正数k 的值。
例3、若函数)(x f 的定义域为R ,且对一切实数x ,都有)()(x f x f =-,且)2()2(x f x f -=+,试证明)(x f 为周期函数,并求出它的一个周期。
例4、电流强度I 随时间t 变化的关系式是)3100sin(5ππ+ =t I ,),0[+∞∈t 。
(1)求电流强度I 的周期; (2)当0=t ,6001,1501(单位:s )时,求电流强度I 。
巩固练习1、函数)23sin(x y -=π是( )A 、周期为π的奇函数B 、周期为π的偶函数C 、周期为π2的奇函数D 、周期为π2的偶函数2、如图是周期为π2的函数)(x f 在]2,0[π上的图象,请画出该函数在]4,2[ππ上的图象。
课堂小函数的周期性的定义,最小正周期的定义,简单三角函数的周期的求法。
高中数学第一章三角函数三角函数的图象与性质正弦余弦函数的周期性与奇偶性

第1课时 正弦、余弦函数的周期性与奇偶性学习目标:1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.(重点)3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.(重点、易混点)[自 主 预 习·探 新 知]1.函数的周期性(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么这个函数的周期为T .(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数的周期性和奇偶性1.思考辨析 (1)若sin ⎝⎛⎭⎪⎫2π3+π6=sin π6,则2π3是函数y =sin x 的一个周期.( )(2)所有的周期函数都有最小正周期.( ) (3)函数y =sin x 是奇函数.( ) [解析] (1)×.因为对任意x ,sin ⎝⎛⎭⎪⎫2π3+x 与sin x 并不一定相等.(2)×.不是所有的函数都有最小正周期,如函数f (x )=5是周期函数,就不存在最小正周期.(3)×.函数y =sin x 的定义域为{x |2k π≤x ≤2k π+π,k ∈Z },不关于原点对称,故非奇非偶.[答案] (1)× (2)× (3)× 2.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π2是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数B [y =2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x ,它是周期为π的偶函数.]3.若函数y =f (x )是以2为周期的函数,且f (5)=6,则f (1)=________. 6 [由已知得f (x +2)=f (x ), 所以f (1)=f (3)=f (5)=6.][合 作 探 究·攻 重 难](1)y =sin ⎝⎛⎭⎪⎫2x +π4; (2)y =|sin x |. 【导学号:84352085】[思路探究] (1)法一:寻找非零常数T ,使f (x +T )=f (x )恒成立. 法二:利用y =A sin(ωx +φ)的周期公式计算. (2)作函数图象,观察出周期.[解] (1)法一:(定义法)y =sin ⎝ ⎛⎭⎪⎫2x +π4=sin ⎝ ⎛⎭⎪⎫2x +π4+2π=sin ⎣⎢⎡⎦⎥⎤x +π+π4, 所以周期为π.法二:(公式法)y =sin ⎝ ⎛⎭⎪⎫2x +π4中ω=2,T =2πω=2π2=π.(2)作图如下:观察图象可知周期为π.[规律方法] 求三角函数周期的方法: (1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|. [跟踪训练]1.利用周期函数的定义求下列函数的周期. (1)y =cos 2x ,x ∈R ;(2)y =sin ⎝ ⎛⎭⎪⎫13x -π4,x ∈R .[解] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎢⎡⎦⎥⎤13x +6π-π4 =sin ⎝ ⎛⎭⎪⎫13x +2π-π4=sin ⎝ ⎛⎭⎪⎫13x -π4,由周期函数的定义知,y =sin ⎝ ⎛⎭⎪⎫13x -π4的周期为6π.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .[思路探究][解] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R 且x ≠k π+π2,k ∈Z, ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ), ∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ), ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称, ∴该函数是非奇非偶函数.[规律方法] 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称; 二看f (x )与f (-x )的关系.2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 提醒:研究函数性质应遵循“定义域优先”的原则. [跟踪训练]2.判断下列函数的奇偶性:(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ;(2)f (x )=1-2cos x +2cos x -1. [解] (1)f (x )=sin 2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x ) =-sin 2x -x 2sin x =-f (x ), ∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12,∴f (x )=0,x =2k π±π3,k ∈Z ,∴f (x )既是奇函数又是偶函数.1.试举例说明哪些三角函数具有奇偶性?提示:奇函数有y =2sin x ,y =sin 2x ,y =5sin 2x ,y =sin x cos x 等.偶函数有y =cos 2x +1,y =3cos 5x ,y =sin x ·sin 2x 等.2.若函数y =f (x )是周期T =2的周期函数,也是奇函数,则f (2 018)的值是多少? 提示:f (2 018)=f (0+1 009×2)=f (0)=0.(1)下列函数中是奇函数,且最小正周期是π的函数是( ) A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝ ⎛⎭⎪⎫π2+2x D .y =cos ⎝⎛⎭⎪⎫3π2-2x(2)定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12B.12 C .-32D.32[思路探究] (1)先作出选项A ,B 中函数的图象,化简选项C 、D 中函数的解析式,再判断奇偶性、周期性.(2)先依据f (x +π)=f (x )化简f ⎝ ⎛⎭⎪⎫5π3;再依据f (x )是偶函数和x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=sin x 求值.(1)D (2)D [(1)y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos2x 是偶函数,y =cos ⎝⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π.(2)f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3=f ⎝⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.]母题探究:1.若本例(2)中的“偶函数”改为“奇函数”,“π”改为“11π12”,其他条件不变,结果如何?[解] f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-11π12×2=f ⎝ ⎛⎭⎪⎫-π6=-f ⎝ ⎛⎭⎪⎫π6=-sin π6=-12.2.若本例(2)中的“π”改为“π2”,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π.[解] ∵f (x )的周期为π2,且为偶函数,∴f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6 =f ⎝⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6.又∵f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π2-π3 =f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32, ∴⎝ ⎛⎭⎪⎫-176π=32.[规律方法] 1.三角函数周期性与奇偶性的解题策略探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(A ω≠0)为奇函数,则φ=k π(k ∈Z ); (2)要使y =A sin(ωx +φ)(A ω≠0)为偶函数,则φ=k π+π2(k ∈Z );(3)要使y =A cos(ωx +φ)(A ω≠0)为奇函数,则φ=k π+π2(k ∈Z );(4)要使y =A cos(ωx +φ)(A ω≠0)为偶函数,则φ=k π(k ∈Z ).[当 堂 达 标·固 双 基]1.如图所示的是定义在R上的四个函数的图象,其中不是周期函数的图象的是( )D [观察图象易知,只有D 选项中的图象不是周期函数的图象.] 2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数A [f (x )=2sin 2x 的定义域为R ,f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),所以f (x )是奇函数.]3.函数f (x )=3sin ⎝⎛⎭⎪⎫πx 2-π4,x ∈R 的最小正周期为________.4 [由已知得f (x )的最小正周期T =2ππ2=4.]4.若函数y=f(x)是定义在R上的周期为3的奇函数且f(1)=3,则f(5)=________.-3[由已知得f(x+3)=f(x),f(-x)=-f(x),所以f(5)=f(2)=f(-1)=-f(1)=-3.]5.判断下列函数的奇偶性:(1)f(x)=-2cos 3x;(2)f(x)=x sin(x+π).[解](1)f(-x)=-2cos 3(-x)=-2cos 3x=f(x),所以f(x)=-2cos 3x为偶函数.(2)f(x)=x sin(x+π)=-x sin x,所以f(-x)=x sin(-x)=-x sin x=f(x),故函数f(x)为偶函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求三角函数的周期三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法.1、根据周期性函数的定义求三角函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π.∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 32tan )(32tanx T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tanππ+=+=x x x , 即32tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π23. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值,如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立.2、根据公式求周期对于函数B x A y ++=)sin(ϕω或B x A y ++=)cos(ϕω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(ϕω或B x y ++=)cot(ϕω的周期公式是||ωπ=T . 例3 求函数)623sin(3π-=x y 的周期 解: 34232ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ ππ==22T . 例5 已知函数),3cos 3(sin 3sin)(x x x x f +=求周期 解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ ππ3322==T . 4、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ ππ==22T . 例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴ 函数|cos ||sin |x x y +=的最小正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最小正周期分别为k T T T ,,21,如果找到一个正常数T , 使k k T n T n T n T ==== 2211, (k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最小正周期. 例8 求函数x x y 21cos sin +=的周期 解:∵ x sin 的最小正周期是π21=T , x 21cos的最小正周期是π42=T . ∴ 函数y 的周期2211T n T n T == ,把21T T ,代入得 21 4 2n n ππ=,即212n n =,因为21,n n 为正整数且互质, 所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=⨯==T n T . 例9 求函数x x y 43cos 32sin +=的周期 解: ∵ x 32s i n 的最小正周期是ππ33221==T ,x 43cos 的最小正周期是384322ππ==T , 由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9 ,821==n n .所以 函数x x y 43cos 32sin +=的周期是ππ243811=⨯==T n T .函数的周期性--函数的周期性不仅存在于三角函数中,在其它函数或者数列中"突然"出现的周期性问题更能考查你的功底和灵活性,本讲重点复习一般函数的周期性问题一.明确复习目标1.理解函数周期性的概念,会用定义判定函数的周期;2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。
二、建构知识网络1.函数的周期性定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的2.若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。
一般所说的周期是指函数的最小正周期。
周期函数并非所都有最小正周期。
如常函数f(x)=C;3.若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期。
(若f(x)满足f(a+x)=f(a-x)则f(x)的图象以x=a为图象的对称轴,应注意二者的区别)4.若函数f(x)图象有两条对称轴x=a和x=b,(a<b),则2(b-a)是f(x)的一个周期5.若函数f(x)图象有两个对称中心(a,0),(b,0)(a<b),则2(b-a)是f(x)的一个周期。
(证一证)6.若函数f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则4(b-a)是f(x)的周期。
举例:y=sinx,等.三.双基题目练练手1.f(x)是定义在R上的以3为周期的偶函数,且f(1)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5 B.4 C.3 D.22.若函数y=f(x)是周期为2的奇函数,且当x∈(0,1)时f(x)=x+1,则f(π)的值为()A.π-5 B.5-π C.4-π D. π-43. 是偶函数,且为奇函数,则f(1992)=4.设存在常数p>0,使,则的一个周期是,f(px)的一个正周期是;5.数列中简答精讲:1、B;2、A;3、993;因(-1,0)是中心,x=0是对称轴,则周期是4;4、,;5、;由已知,周期为6。
四.经典例题做一做【例1】已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=x+1.求f(x)在(1,2)上的解析式。
解法1:(从解析式入手,由奇偶性结合周期性,将要求区间上问题转化为已知解析式的区间上。
)∵x∈(1,2), 则-x∈(-2,-1),∴2-x∈(0,1), ∵T=2,是偶函数∴f(x)=f(-x)=f(2-x)=2-x+1=3-x.x∈(1,2).解法2(从图象入手也可解决,且较直观)f(x)=f(x+2) 如图:x∈(0,1), f(x)=x+1.∵是偶函数∴x∈(-1,0)时f(x)=f(-x)=-x+1.又周期为2,x∈(1,2)时x-2∈(-1,0)∴f(x)=f(x-2)=-(x-2)+1=3-x.提炼方法:1.解题体现了化归转化的思想,即把未知的(1,2)上向已知的(0,1)上转化;2.用好数形结合,对解题很有帮助.【例2】f(x)的定义域是R,且f(x+2)[1-f(x)]=1+f(x),若f(0)=2008,求f(2008)的值。
解:周期为8,法二:依次计算f(2、4、6、8)知周期为8,须再验证。
方法提炼:1.求周期只需要弄出一个常数;2.注意既得关系式的连续使用.【例3】若函数在R上是奇函数,且在上是增函数,且.①求的周期;②证明f(x)的图象关于点(2k,0) 中心对称;关于直线x=2k+1轴对称, (k∈Z );③讨论f(x)在(1,2)上的单调性;解: ①由已知f(x)=-f(x+2)=f(x+2+2)=f(x+4),故周期T=4.②设P(x,y)是图象上任意一点,则y=f(x),且P关于点(2k,0)对称的点为P1(4k-x,-y).P关于直线x=2k+1对称的点为P2(4k+2-x,y).∵f(4k-x)=f(-x)=-f(x)=-y,∴点P1在图象上,图象关于点(2k,0)对称.又f(x)是奇函数,f(x+2)=-f(x)=f(-x)∴f(4k+2-x)=f(2-x)=f(x)=y, ∴点P2在图象上,图象关于直线2k+1对称.③设1<x1<x2<2,则-2<-x2<-x1<-1, 0<2-x2<2-x1<1.∵f(x)在(-1,0)上递增, ∴f(2-x1)<f(2-x2)……(*)又f(x+2)=-f(x)=f(-x) ∴f(2-x1)=f(x1), f(2-x2)=f(x2).(*)为f(x2)<f(x1),f(x)在(1,2)上是减函数.提炼方法:总结解周期性、单调性及图象对称性的方法。
【研究.欣赏】已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.①证明:;②求的解析式;③求在上的解析式.解:∵是以为周期的周期函数,且在[-1,1]上是奇函数,∴,∴.②当时,由题意可设,由得,∴,∴.③∵是奇函数,∴,又知在上是一次函数,∴可设,而,∴,∴当时,,从而时,,故时,.∴当时,有,∴.当时,,∴∴.五.提炼总结以为师1.函数的周期性及有关概念;2.用周期的定义求函数的周期;3.函数的周期性与图象的对称性之间的关系;同步练习2.7 函数的周期性【选择题】1.f(x)是定义在R上的奇函数,它的最小正周期为T,则f(-)的值为A.0B.C.TD.-2.(2004天津)定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,]时,f(x)=sinx,则f()的值为A.-B.C.-D.【填空题】3.设是定义在上,以2为周期的周期函数,且为偶函数,在区间[2,3]上,= ,则=4.已知函数f(x)是偶函数,且等式f(4+x)=f(4-x),对一切实数x成立,写出f(x)的一个最小正周5.对任意x∈R,f(x)=f(x-1)+f(x+1)且f(0)=6,f(4)=3,则f(69)=6.设f(x)定义在R上的偶函数,且,又当x∈(0,3]时,f(x)=2x,则f(2007)= 。