晶圆级封装WLP优势
晶圆级封装产业

晶圆级封装产业(WLP)晶圆级封装产业(WLP),晶圆级封装产业(WLP)是什么意思一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。
而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。
WLP一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。
而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。
WLP封装具有较小封装尺寸(CSP)与较佳电性表现的优势,目前多用于低脚数消费性IC的封装应用(轻薄短小)。
晶圆级封装(WLP)简介常见的WLP封装绕线方式如下:1. Redistribution (Thin film), 2. Encapsulated Glass substrate, 3. Goldstud/Copper post, 4. Flex Tape等。
此外,传统的WLP封装多采用Fan-in 型态,但是伴随IC信号输出pin 数目增加,对ball pitch的要求趋于严格,加上部分组件对于封装后尺寸以及信号输出脚位位置的调整需求,因此变化衍生出Fan-out 与Fan-in + Fan-out 等各式新型WLP封装型态,其制程概念甚至跳脱传统WLP封装,目前德商英飞凌与台商育霈均已经发展相关技术。
二、WLP的主要应用领域整体而言,WLP的主要应用范围为Analog IC(累比IC)、PA/RF(手机放大器与前端模块)与CIS(CMOS Ima ge Sensor)等各式半导体产品,其需求主要来自于可携式产品(iPod, iPhone)对轻薄短小的特性需求,而部分NOR Flash/SRAM也采用WLP封装。
Amkor WLCSP晶圆级加工和晶片加工服务说明书

WLCSP晶圆级加工和晶片加工服务 (WLP/DPS)Amkor 提供晶圆级芯片尺寸封装 (WLCSP),在器件和最终产品的母板之间进行直接焊接互连。
WLCSP 包括晶圆凸块(有或无焊盘重分布层,即 RDL)、晶圆级最终测试、器件单切和卷带封装,为完全一站式的解决方案提供支持。
Amkor 的稳固的凸块下金属层位于晶粒有源表面的 PBO 或 PI 电介质层上方, 提供可靠的互连解决方案,能够适应严苛板级条件,并且满足全球消费者市场对可移动电子设备不断高涨的需求。
发展的驱动力� 移动设备内的小封装是将电池尺寸最大化的关键� 被快速增长的市场(即平板电脑和只能手机)广泛接受� 持续拓宽技术平台应用范围� 将高性能功能从处理器中去集成化,变为新的专用器件(如音频)� 减少电测次数� 满足MSL L1标准,降低T&R 到EMS组装的成本�突破原有芯片尺寸限制,提高EMS底部填充工艺的SMT兼容性应用WLCSP 系列适用于各种半导体器件类型,从高端 RF WLAN 组合芯片,到 FPGA、电源管理、闪存/EEPROM、集成无源网络和标准模拟应用。
WLCSP 在最大程度上降低总体拥有成本,它能够提高半导体容量,所利用的解决方案也是当今市面上外观规格最小型、性能最高,而且最可靠的半导体封装产品之一。
WLCSP 完美适用于(但不限于)移动电话、平板电脑、上网本、个人电脑、磁盘驱动器、数码相机和视频摄像机、导航设备、游戏控制器,以及其他便携式/远程产品和部分汽车终端应用。
数据表 | 晶圆级产品WLCSPCSPn3CSP nl 再钝化层凸块 (BoR) 为无需重新布线的器件提供可靠、高成本效率的真正芯片尺寸封装。
BoR 采用具备一流电气/机械特性的再钝化聚合物层。
另外,它还增加了 UBM,而焊接凸块也直接置于晶粒 I/O 焊盘上方。
CSP nl 采用行业标准的表面贴装组装和回流焊技术。
CSP nl 再钝化层凸块CSP nl 重布线层凸块选项增加电镀铜重布线层 (RDL), 将 I/O 焊盘连接至 JEDEC/EIAJ 标准节距,消除了针对 CSP 应用重新设计传统部件的必要性。
晶圆级封装(WLP)方案(一)

晶圆级封装(WLP)方案一、实施背景随着微电子产业的快速发展,封装技术正面临着严峻的挑战。
传统的封装技术由于尺寸大、电性能和热性能较差等问题,已经难以满足高性能集成电路的封装需求。
而晶圆级封装(WLP)技术的出现,为产业结构的改革提供了新的解决方案。
二、工作原理晶圆级封装(WLP)是一种将集成电路直接封装在晶圆片上的技术。
它通过在晶圆片上制造出多个集成电路,然后通过切割和封装,将这些集成电路分别封装在独立的封装体中。
具体来说,WLP技术首先在晶圆片上制造出多个集成电路,这些集成电路可以是数字电路、模拟电路、混合信号电路等。
然后,使用切割机将晶圆片切割成单个集成电路,再将这些集成电路分别封装在独立的封装体中。
三、实施计划步骤1.设备采购:需要采购制造集成电路所需的设备,如光刻机、刻蚀机、薄膜沉积设备等。
2.工艺研发:需要研发适合WLP技术的制造工艺,包括光刻工艺、刻蚀工艺、薄膜沉积工艺等。
3.样品制作:在研发阶段,需要制作样品以验证工艺的可行性。
4.测试与验证:对制作的样品进行测试和验证,确保其性能符合要求。
5.批量生产:当样品测试通过后,可以开始批量生产。
四、适用范围WLP技术适用于各种高性能集成电路的封装,如CPU、GPU、FPGA等。
它具有以下优点:1.体积小:由于WLP技术将集成电路直接封装在晶圆片上,因此可以大大减小封装体积。
2.电性能和热性能优异:WLP技术可以提供更好的电性能和热性能,从而提高集成电路的性能和可靠性。
3.制造成本低:由于WLP技术可以在晶圆片上制造多个集成电路,因此可以分摊制造成本,降低单个集成电路的制造成本。
4.可扩展性强:WLP技术可以轻松扩展到更大的晶圆尺寸和更高的产量。
五、创新要点1.制造工艺的创新:WLP技术需要研发适合其特点的制造工艺,包括光刻工艺、刻蚀工艺、薄膜沉积工艺等。
2.封装技术的创新:WLP技术需要开发新的封装技术,以实现集成电路的高性能、小型化和可靠性。
浅析扇出型晶圆级封装(FOWLP)

总第274期)Feb 援2019问:FOWLP 是一种创新的技术,它有哪些关键优势?答:扇出型晶圆级封装(FOWLP)的一大关键优势在于其高产出流程使得它的拥有成本降低。
通过使用重分布层(RDL)和利用环氧树脂成型化合物的重组晶圆,无需使用中介层或硅通孔(TSV),即可实现外形尺寸更小且更快速的芯片封装的异构集成。
相对于其他传统的封装类型,先进的FOWLP 方案适用于需要更多次输入/输出(I/O)和更短互连的各种设备类型。
问:Brewer Science 的临时晶圆键合系统是专为超薄晶圆处理而设计,临时晶圆键合系统是怎样实现的?答:为了支持超薄晶圆处理,需要设计良好的材料系统。
新型BrewerBOND 双层材料解决的一些关键挑战包括:应力管理(由热循环、热膨胀系数[CTE]不匹配、磨削、沉淀处理等所造成)、耐化学性(即:光刻工艺、金属蚀刻和一般性清洁湿式化学制程)、在需要设备极薄(≤30μm)的下游处理过程中始终不存在材料移动情况。
问:各个代工厂都有其独特的FOWLP 技术:如TSMC 有InFO FOWLP ,而三星致力于研发FOPLP ,这两种技术有何区别?Brewer Science 可对两种封装技术都支持吗?答:该行业不存在标准化的设计和工艺,因为每个客户的个性特征即是他们的竞争优势所在。
台湾积体电路制造股份有限公司(TSMC)的集成扇出型(InFO)设计在传统的晶圆尺寸(300mm)上实现了高密度芯片封装,而三星则利用扇出型面板级加工(FOPLP),在降低成本的基础上实现高密度芯片封装。
TSMC 的InFO 设计由重分布层(RDL)铜金属层、由10nm 晶圆制造(在其路线图中为7nm )加工的菊花链芯片以及2μm L/S 的逻辑和封装I/O 组成。
而三星的FOPLP 则在没有印刷电路板(PCB)的情况下,允许在10μm L/S (在其路线图中为5μm 和2μm )的500mm ×400mm 面板上使用10nm FinFET 技术。
wlp封装晶圆利用率

wlp封装晶圆利用率
WLP(晶圆级封装)的晶圆利用率相对较高。
晶圆级封装的定义是在晶圆上进行大多数或全部的封装测试程序,然后再进行切割(singulation)制成单颗组件。
在重新分配(redistribution)与凸块(bumping)技术的帮助下,I/O 绕线成为一般选择。
这种封装技术有效地缩减了封装尺寸,从而可更好地符合可携式产品轻薄短小的特性需求。
由于没有引线、键合和塑胶工艺,封装无需向芯片外扩展,使得WLP的封装尺寸几乎等于芯片尺寸。
这不仅使得封装尺寸更小,也使得WLP晶圆级封装的晶圆利用率更高。
不过,也有观点认为在晶圆级别进行切割会使得一些有效区域无法利用,特别是在对于异形芯片的处理上。
这些区域因为切割需要保留一些安全边缘,不能被其他芯片利用。
然而,这并不是晶圆级封装独有的问题,而是所有在晶圆级别进行切割的技术都面临的挑战。
如需了解更多关于WLP封装晶圆利用率的信息,建议咨询封装行业专业人士或查阅相关的技术文献。
晶圆级封装

圆片级封装3M 工艺机构图
圆片级封装3M 工艺机构图
不同的WLP 结构
•第一种是ball on I/O 结构,如 图(a)所示。这种工艺和典型的倒 装工艺相类似。焊球通过焊点下 金属层与铝盘直接相连 图(a)或 者通过再布线层 (redistribution layer, RDL) 与Si 芯片直接相连(图(a)2)。 •通常情况下,这种结构限制在焊 球间距为0.5 mm 的6×6 阵列结 构,以满足热循环可靠性的要求。
不同的WLP 结构
第三种WLP 结构如图(c)所示,是在图(b)结构的基础 上,添加了UBM 层。由于添加了这种UBM 层,相应 增加了制造成本。这种UBM 能稍微提高热力学性能。 图(d)所示的第四种WLP 结构,采用了铜柱结构, 首先电镀铜柱,接着用环氧树脂密封。
扩散式WLP(fan-out WLP)
扇出WLP,( 12 × 12)
扇出WLP 截面的SEM 显微照片
扩散式WLP 采用晶圆重构技 术,其工艺过程如图所示: 首先在一块层压载板上布贴 片胶带,载板通常选用人工 晶圆,载板上的胶带则起到 固定芯片位置和保护芯片有 源面的作用;然后将测试良 好的芯片(KGD)面向下重 新粘贴到一块载板上,芯片 之间的距离决定了封装时扩 散面积的大小,可以根据需 要自由控制;接着用模塑料 对芯片以及芯片之间的空隙 进行覆盖填充,再将载板和 胶带从系统中分离,载板可 以重复利用;最后就可以进 行RDL和焊球工艺步骤。
重布线层(RDL)的目的是对芯片的铝焊区 位置进行重新布局,使新焊区满足对焊料球 最小间距的要求,并使新焊区按照阵列排布。 常见的RDL 材料是电镀铜(plated Cu)辅 以打底的钛、铜溅射层(Sputtered Ti/Cu)。
芯片封装在晶圆级的应用

芯片封装在晶圆级的应用芯片封装是现代电子领域中不可或缺的步骤,它将半导体芯片与外部世界连接起来,并提供保护和支持。
在芯片制造的过程中,晶圆级封装(Wafer Level Packaging,WLP)技术尤为重要。
本文将深入探讨芯片封装在晶圆级的应用,从简单到复杂逐步展开,帮助读者更深入地了解这个领域的相关知识。
一、什么是晶圆级封装?晶圆级封装是一种将芯片封装成最小尺寸的工艺技术。
它的核心思想是在芯片制造的过程中,直接在晶圆上完成封装步骤。
相比传统封装技术,晶圆级封装可以实现更紧凑的芯片尺寸,提高集成度和性能。
二、晶圆级封装的应用领域1. 移动设备领域在移动设备领域,如智能手机和平板电脑,尺寸和性能是至关重要的因素。
晶圆级封装技术可以实现更小尺寸和更高性能的芯片,满足消费者对便携性和功能的需求。
2. 汽车电子领域在汽车电子领域,晶圆级封装可以为车载电子系统提供高可靠性和耐用性。
晶圆级封装还可以提高芯片的抗振动和抗高温特性,适应汽车复杂的工作环境。
3. 医疗电子领域在医疗电子领域,晶圆级封装可以实现更小的医疗设备,提高患者的舒适度和可携带性。
晶圆级封装还可以实现高度集成的医疗芯片,提高医疗诊断和治疗的效率。
4. 工业自动化领域在工业自动化领域,晶圆级封装可以为工业设备提供更高性能和更好的可靠性。
晶圆级封装还可以实现工业设备与互联网的连接,为工业智能化提供支持。
三、晶圆级封装的优势和挑战1. 优势(1)尺寸更小:晶圆级封装可以实现更小尺寸的芯片,提高产品的集成度和性能。
(2)成本更低:相比传统封装技术,晶圆级封装可以减少封装材料和加工步骤,从而降低生产成本。
(3)可靠性更高:晶圆级封装可以提供更好的抗振动和抗高温特性,提高芯片的可靠性和耐用性。
(4)工艺更简化:晶圆级封装可以在晶圆制造的过程中完成封装步骤,简化整个制造流程。
2. 挑战(1)封装材料的选择:晶圆级封装需要选择与芯片兼容的封装材料,以确保封装质量和可靠性。
晶圆级芯片级封装(WLCSP)在医疗设备设计的作用

晶圆级芯片级封装(WLCSP)在医疗设备设计的作用在医疗设备设计领域,一个重要趋势是提高这些设备的便携性,使其走近病人,进入诊所或病人家中。
这涉及到设计的方方面面,尤其是尺寸和功耗。
晶圆级芯片级封装(WLCSP)的运用对减小这些设备电子组件的尺寸起到了极大的助推作用。
此类新型应用包括介入性检测、医学植入体和一次性便携式监护仪。
但是为了最大限度地发挥出WLCSP封装在性能和可靠性方面的潜力,设计师必须在印刷电路板(PCB)焊盘图形、焊盘表面和电路板厚度的设计方面贯彻最佳实践做法。
图1. WLCSP封装晶圆级芯片级封装是倒装芯片互联技术的一个变体(图1)。
在WLCSP中,芯片活性面采用反转式设计,通过焊球连接至PCB。
一般地,这些焊球的尺寸足够大(0.5 mm间距,回流前为300 µm,0.4 mm间距,回流前为250 um),无需倒装互联技术所需要的底部填充。
该互联技术有多个优势。
首先,由于消除了第一级封装(塑封材料、引脚架构或有机基板),因而可以节省大幅空间。
例如,一个8引脚WLCSP所占电路板面积仅相当于一个8引脚SOIC的8%。
其次,由于消除了标准塑封中使用的线焊和引脚,因而可以减小电感,提高电气性能。
另外,由于消除了引脚架构和塑封材料,因而可以减轻重量,降低封装厚度。
无需底部填充,因为可以使用标准表贴(SMT)组装设备。
最后,低质芯片在焊锡固化期间具有自动对齐特性,有利于提高装配成品率。
封装结构WLCSP在结构上可分为两类:直接凸点和再分配层(RDL)。
直接凸点WLCSP包括一个可选的有机层(聚酰亚胺),充当芯片活性面的应力缓冲层。
聚酰亚胺覆盖着芯片上除焊盘周围开口之外的所有区域。
该开口上喷涂有或镀有一层凸点下金属(UBM)。
UBM由不同的金属层叠加而成,充当扩散层、阻挡层、浸润层和抗氧化层。
将焊球滴落(这是其称为落球的原因)在UBM上,并经回流形成焊接凸点(图2)。
图2. 直接凸点WLCSP图3. 再分配层(RDL) WLCSP运用RDL技术,可以把针对线焊设计的芯片(焊盘沿外围排列)转换成WLCSP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶圆级封装W L P优势 The Standardization Office was revised on the afternoon of December 13, 2020
晶圆级封装(WLP)优势
晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。
它具有许多独特的优点。
晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。
WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。
晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。
它具有许多独特的优点:
(1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造;
(2)具有倒装芯片封装的优点,即轻、薄、短、小;
图5 WLP的尺寸优势
(3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线;
(4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用;
(5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;
(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。
晶圆级封装是尺寸最小的低成本封装。
晶圆级封装技术是真正意义上的批量生产芯片封装技术。
WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。
由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O 的成本。
此外,采用简化的晶圆级测试程序将会进一步降低成本。
利用晶圆级封装可以在晶圆级实现芯片的封装与测试。