岩石的基本物理力学性质

合集下载

岩石力学

岩石力学

岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。

沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。

变质岩:不含油气。

二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。

1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。

有效孔隙度: φ有效 =V 连通/V 孔总。

2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。

其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。

达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。

则渗透率为1达西(D )。

3、 岩石中的油、气、水饱和度。

…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。

通过粒度得孔隙度。

比表面积:单位体积岩石内颗粒的总表面积。

通过粒度组成估算比面。

孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。

2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。

4、 脆性:受力后变形很小就发生破裂的性质。

(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。

岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。

其本构关系略。

6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩石物理、化学性质及其分类

岩石物理、化学性质及其分类
第一章
主要内容
岩石性质及其分类
1.1 岩石的物理性质 1.2 岩
1 岩石的孔隙度η
岩石的物理性质
η为岩石中孔隙总体积V0与岩石的总体积V之比,
用百分率表示。
V0 V 100%
2 密度ρ和容重γ
密度ρ:不包括孔隙在内的岩石密度。(g/cm3)
M V V0
坚固的石灰岩、砂岩、大理岩、不坚固的花岗 岩、黄铁矿 一般的砂岩、铁矿 砂质页岩、页岩质砂岩

中等
坚固的粘土质岩石、不坚固的砂岩和石灰岩
4
Ⅴa
Ⅵ Ⅵa Ⅶ Ⅶa Ⅷ Ⅸ Ⅹ
中等
较软弱 较软弱 软弱 软弱 土质岩石
各种不坚固的页岩、致密的泥灰岩
软弱的页岩,很软的石灰岩,白垩、岩盐、石 膏、冻土 碎石质土壤,破碎页岩、坚固的煤等
3)磨蚀性
岩石对工具的磨蚀能力,主要与岩石的成分有关。
4)凿岩性
岩石被凿碎的难易程度:用每米炮眼所消耗
的钎头数,纯凿速,比能三指标表示
5)爆破性 表示岩石被爆碎的难易程度:用单位原岩的
炸药消耗量和所需炮眼长度表示。
第三节
1 普氏分级法
岩石的分级
1)基本观点 是岩石的坚固性所综合上述各特性趋于一 致,即硬度、强度、凿岩性、爆破性是一致的。 2)分级方法 用坚固性系数f来大致概括,作为分级的根 据。f=R/10,或 共分10级。
图1-2 冲击载荷与时间的关系
②岩石变形不均匀,质点运动速度不一致
即岩石中各质点不是以一致速度运动,岩石不是均匀地 变形,这是与静载作用根本区别所在。如图1-3。 运动与变形首先开始
于受冲击的端面,端面处
质点受到扰动后,产生变 形和应力,由于质点间的

第3讲 岩石的力学性质-强度性质

第3讲 岩石的力学性质-强度性质

11
3.实验原理
消除方法: ①润滑试件端部(如垫云 母片;涂黄油在端部)机)
12
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸 形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;L/D≥(2.5-3)较合理 (3)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高强度 越小。
34



2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加 压铁板所引起的摩擦力,对试验结果有很大影响,因而实 用意义不大。故极少有人做这样的三轴试验。

b.伪三轴试验:,试件为圆柱体,试件直径25~150mm,长 度与直径之比为2:1或3:1。轴向压力的加载方式与单 轴压缩试验相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加 载时要轻微得多。 应力状态:
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。

1.5岩石的工程地质性质

1.5岩石的工程地质性质
软化系数表示。 软化系数kd:等于岩石在饱和状态下的极限抗压强度与
在风干状态下极限抗压强度的比。用小数表示。其值越小, 表明岩石在水作用下的强度和稳定性越差。
岩石的软化性决定于岩石的矿物成分、结构和构造特征。 岩浆岩和变质岩的软化系数大都接近于1.0;粘土矿物含量 高、孔隙度大、吸水率高的岩石,软化系数越小,如泥灰 岩和页岩。
降低岩石的强度。在工程中应当重视岩石中这些低强度 矿物含量的增长对岩石强度的降低作用。
但也不能简单地认为,含有高强度矿物的岩石,其强度一定就 高。因为岩石受力作用后,内部应力是通过矿物颗粒的直接接 触来传递的,如果强度较高的矿物在岩石中互不接触,则应力 的传递必然会受中间低强度矿物的影响,岩石不一定就能显示 出高的强度。
180~300
岩石名称 辉绿岩
抗压强度 (MPa)
200~350
岩石名称 页岩
抗压强度 (MPa)
10~100
100~250
玄武岩
150~300
砂岩
20~200
180~300
石英岩
150~350
砾岩
10~150
100~250 100~250 80~250
大理岩 片麻岩 灰岩
100~250 50~200 20~200
岩体 = 结构面 + 结构体
岩块的强度高,岩体的强度不一定高。
结构面的发育程度、性质、充填情况以 及连通程度等,对岩体的工程性质有很 大的影响。
29/35
1. 结构面
结构面:存在于岩体中的各种地质界面。
(1)结构面类型: 原生结构面:成岩时形成
沉积结构面:层面、层理、夹层等 火成结构面:原生节理、流纹面、接触面等等 变质结构面:片麻理、片理等等

2-2岩石力学性质-强度性质

2-2岩石力学性质-强度性质

2.5 岩块强度
2.5.1 岩石的单轴抗压强度
所谓岩石的单轴抗压强度是指岩石在单轴压缩载 荷作用下,达到破坏前所能承受的最大压应力。 亦即岩石受轴向力作用破坏时单位面积上所承受 的荷载。即: P c (2-18)
c
式中:
A
c —单轴抗压强度;
P—只有轴向载荷时的破坏荷载; A—试件的截面面积。
图2-4 在刚性承压板之间压缩时岩石端面的应力分布 图2-5 粗面岩的抗压强度与h/d的关系
(4)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (5)环境 含水量:含水量越大强度越低;岩石越软越明显, 对泥岩、粘土等软弱岩体,干燥强度是饱和强度 的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高 强度越小。
由于试件端面与承压板之间的摩擦力,使试件端 面部分形成了约束作用,而这一作用随远离承压 板而减弱,使其表现为拉应力。 在无侧限的条件下,由于侧向的部分岩石可自由 地向外变形、剥离,最终形成圆锥形破坏的形态。 因此,在试验时一般要求在试件的端面与承压板 之间加润滑剂,以减少试验时的端部效应。
c
c
c d 0.788 0.22 h
(2-19)
由图2—5可见,当 试验结果
h / d 2.0 3.0
时, 曲线趋于稳定,
c

c
值不随
h/d
的变化而明显变化。
国际岩石力学学会实验室和现场试验标准化委员 会制定的《岩石力学试验建议方法》中,建议岩
石单轴抗压强度试验试件的高径比为2.5~3.0。
(1)单轴抗压强度的试验方法 在岩石力学中,岩石的单轴抗压强度是研究 最早、最完善的特性之一。按中华人民共 和国岩石试验方法标准的要求,单轴抗压 强度的试验是在带有上、下块承压板的试 验机上进行,按一定的加载速度单向加压 直至试件破坏。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 岩石的基本物理力学性质
主讲内容:
第一节 第二节 第三节 第四节 第五节
岩石的物理性质 岩石的强度性质 岩石的变形特征 岩石的流变特性 岩石的强度理论
第一节 岩石的基本物理性质
一、岩石的容重 二、岩石的比重 三、岩石的孔隙性 四、岩石的水理性质
含水性 吸水性 透水性 软化性 抗冻性 膨胀性 崩解性
破坏力的一部分用来克服与正应力无关的粘结力,
使材料颗粒间脱离联系;另一部分剪切破坏力用
来克服与正应力成正比的摩摩力,使面内错动而
最终破坏。
一、库伦准则:
数学表达式: c tan
参数 意义
f tan ——内摩擦系数
表示在破坏面上的正应力与剪应力的组合关系满足上式.
库仑准则的应用: 解决在压力(应力)作用下的破
第一节 岩石的基本物理性质
一、岩石的容重:
岩石单位体积(包括岩石内孔隙体积)的重量称为 岩石的容重,容重的表达式为:
W /V
岩石的容重取决于组成岩石的矿物成分、孔隙 发育程度及其含水量。岩石容重的大小,在一定程 度上反映出岩石力学性质的优劣。根据岩石的含水 状况,将容重分为天然容重、干容重、和饱和容重。
坏判推,不适应于拉破坏。
破坏判断2个方面:一个是判断材料在何种应力环
境下破坏,二是判断破坏面的方位角。当然,这种判 断是在材料特征常数[ f,(), c ]为已知的条件下去判断。
C tg c f
库仑准则 主要公式:
2c cos 1 1 sin c 2c cos 45 / 2
即有蠕变现象
力与应变速率一一对 应,受力瞬间不变形, 随时间流逝变形趋于
无限的特点
描述流变性质的三个基本元件
(3)粘性元件 本构方程 d
牛顿体的性能:
dt
b.无瞬变
o
t
Q 1 t, 应变与时间有关系不能瞬时完成
(b应)应 变变 -时-间时曲间 线曲线
c.无松弛
当=0=const时,ddt 0, 代入本构方程
3
/(1
1 sin 1 sin sin )
注意:
1
c
3
tg2
使用上述公式求解库仑准则判断的岩石破坏 问题时,可以有(a)- (e)公式的变异以供解决问 题使用,一定要注意公式中的已知与未知参数的 意义。
岩石的强度理论
二、莫尔强度理论(Mohr 1900年提出,莫尔强度准则) (一)基本思想
①以(脆性材料、铸铁) 试验数据统计分析为基础;
第二章 岩石的基本物理力学性质
岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩石力学学科中研究最早、 最完善的内容之一。
基本要求:
➢ 掌握岩石的基本物理性质,理解岩石的变形性质 ➢ 掌握岩石的强度性质; ➢ 理解岩石的流变特性及分类,理解岩石介质模型 ➢ 理解岩石的破坏机理,了解格里菲斯理论 ➢ 掌握莫尔强度理论,掌握库仑—莫尔强度理论
得=0,应力与时间无关,无松弛现象Q
d.无弹性后效
当=0时,代入本构方程,得 d 0,即
&积分 1
c初ons始t 条件:t==00
tC C 0
dt 应变与时间无关,无弹性后效
当 0 const时,与t成比例关
组合模型及其性质
(1)串联和并联的性质
串联性质
=1 1
2 2
岩石的强度理论
一、库伦准则:
τθ
由库仑(C·A·Coulomb)1773年提出,最简单、
最重要的准则, 应用简便
认为: 岩石的破坏主要是剪切破坏,岩石的
强度等于岩石本身抗剪切摩擦的粘结力和剪切面
上法向力产生的摩擦力。
实验基础: 岩土材料压剪或三轴试验和纯剪。
破坏机理:(基本思想)材料属压剪破坏,剪切
②不考虑中间主应力对岩石强度的影响;
③由正应力和剪应力组合 作用使岩石产生破坏 (受拉破坏、拉剪破 坏,压剪破坏)
三. 格里菲斯强度理论 (1920、1921)
1)基本假设(观点):
①物体内随机分布许多裂隙;
②所有裂隙都张开、贯通、独立;
③裂隙断面呈扁平椭圆状态;
④在任何应力状态下,裂隙尖端产生拉应力集
材料性质:物体受应力达到屈服极限0时便开始产生 塑性变形,即使应力不再增加,变形仍不 断增长,其变形符合库仑摩擦定律,称其 为库仑(Coulomb)体。是理想的塑性体。
力学模型:
本构方程: ε=0 , (当 <0时)
ε→∞, (当0时)
描述流变性质的三个基本元件
(2)塑性元件
应力-应变曲线
0
o
模型符号:Y
k
k
流变的概念
流变现象:材料应力-应变关系与时间因素
有关的性质,称为流变性。材料变 形过程中具有时间效应的现象,称 为流变现象。
流变的种类:蠕变
松弛 弹性后效
应力不变,应变随 时间增加而增长
流变的概念
流变现象:材料应力-应变关系与时间因素
有关的性质,称为流变性。材料变 形过程中具有时间效应的现象,称 为流变现象。
中,导致裂隙沿某个有利方向进一步扩展。
⑤最终在本质上都是拉应力引起岩石破坏。
σ1
σ 1 1
σ 1 1
σ 1 1
σ 1
1
σ1
σ 1 1 1
σ1 1
σ2
σ2
σ1 1
σ 1 1
单向抗拉强度
P

P

剪切强度
真三轴
三轴压缩
假三轴
一、 岩石的单轴抗压强度
1.定义:岩石在单轴压缩荷载作用下达到破坏前 所能承受的最大压应力称为岩石的单轴抗压强度
σc=P/A P
A 式中:P——无侧限的条件下的轴向破坏荷载
A——试件截面积
P
二、 岩石的抗拉强度 1. 定义:岩石在单轴拉伸荷载作用下达到破
割线的斜率就是割线模量, 选强度为50%的应力点
Es / 一般
第四节 岩石的流变理论
流变现象:材料应力-应变关系与时间因素有关的性
质,称为流变性。材料变形过程中具有时间效 应的现象,称为流变现象。
蠕变 流变的种类:松弛
弹性后效
弹性元件(H)
流变学中的基本元件: 塑性元件(Y)
粘性元件(N)
应力-应变速率曲线(见右图)
模型符号:N
o
d
dt
描述流变性质的三个基本元件
(3)粘性元件 本构方程 d
牛顿体的性能:
dt
a.有蠕变
Q
&积分 1
初始条件:t==00
tC C 0
o
1t
t
(b应)应 变-变 时间-时 曲线间曲线
应力与应变无关,应
当 0 const时,与t成比例关系
L L
并联性质 ==1=1+2=2+LL
k
k
组合模型及其性质
(2)马克斯威尔(Maxwell)体
模型符号:M=H-N
① 本构方程:
由串联性质:
σ=σ1=σ2
1 2
• ••
1 2
四、组合模型及其性质
(3)开尔文(kelvin)体
模型符号:K=H|N
第五节 岩石的强度理论
1 强度理论概述 2 Coulomb强度准则 3 Mohr强度理论 4 Griffith强度理论
第三节 岩石的变形性质
岩石的变形有弹性变形、塑性变形和粘性变形三种. 弹性:物体在受外力作用的瞬间即产生全部变形,而去除
外力后又能 立即恢复其原有形状和尺寸的性质。
塑性:物体受力后变形,在外力去除后变形不能完全恢复. 粘性:物体受力后变形不能在瞬时完成,且应变速率随应力
增加而增加的性质
弹性
塑性
粘性
(1)弹性元件
力学模型:
材料性质:物体在荷载作用下,其变形完全符合虎克
(Hooke)定律。称其为虎克体,是理想的
线性弹性体。
本构方:H
o
虎克体的性能:a.瞬变性 b.无弹性应力 后-应 效变曲线
c.无应力松弛 d.无蠕变流动
描述流变性质的三个基本元件
(2)塑性元件
岩石变形指标及其确定
1.弹性模量E 的定义为
E
,由于单向受压情况下岩石的应
力应变关系是非线性的,因此变形模量不是常数,常用的变形
模量有以下几种:
1)初始模量,用应力应变曲线坐标 原点的切线斜率表示
E0
d d
0
2)切线模量,用应力应变曲线任一点的切线斜率表示:
Et d / d
3)割线模量,由应力应变曲线的起始点与曲线上另一点作割线,
剪切强度试验分为非限制性剪切强度试 验(Unconfined shear strength test)和限 制性剪切强度试验(Confined shear strength test)二类。
非限制性剪切试验在剪切面上只有剪应力 存在,没有正应力存在;限制性剪切试验在剪 切面上除了存在剪应力外,还存在正应力。
流变的种类:蠕变
松弛
弹性后效
应变不变,应力随 时间增加而减小
流变的概念
流变现象:材料应力-应变关系与时间因素
有关的性质,称为流变性。材料变 形过程中具有时间效应的现象,称 为流变现象。
流变的种类:蠕变 松弛
弹性后效
加载或卸载时, 弹性应变滞后于 应力的现象
流变学中的基本元件
(1)弹性元件(N)
本构方程:
四. 三轴抗压强度
1)定义:岩石在三向压缩荷 载作用下,达到破坏时所能 承受的最大压应力称为岩石的三轴抗压强度 (Triaxial compressive strength)。
与单轴压缩试验相比,试件除受轴向压力外, 还受侧向压力。侧向压力限制试件的横向变 形,因而三轴试验是限制性抗压强度 (confined compressive strength)试验。
相关文档
最新文档