光电传感器基础知识及术语
光电传感器使用说明

光电传感器使用说明一、光电传感器的工作原理和分类1. 光电二极管(Photodiode):它是一种常见的光电传感器,可将光信号转化为电流信号。
光电二极管通过感光面积的调整,可实现对不同光强的测量。
2. 光敏电阻(Light-dependent resistor,LDR):它是一种依靠光线照射而改变电阻值的传感器。
光敏电阻的电阻值与光线强度成反比关系,因此可以用来测量光线的亮度。
3. 光电三极管(Phototransistor):它结构上类似于普通的晶体管,但在基区和发射区之间加上了一个光敏区。
当光照射到光电三极管时,会产生电流放大效应,从而可以将光信号转化为电流信号。
4. 光电耦合器(Optocoupler):它是将光电二极管和晶体管封装到一个封装内,用光绝缘的方式实现输入与输出之间的电气隔离。
光电耦合器在电气隔离和信号传输方面有重要的应用,可以用于电路隔离、信号转换等。
二、光电传感器的安装和调试在安装和调试光电传感器时,需要注意以下几点:1.安装位置的选择:根据具体的应用需求,选择合适的安装位置。
要确保光线能够正常照射到传感器的感光面,避免遮挡和干扰。
2.供电电压的选择:根据传感器的额定电压和工作电压范围,选择适当的供电电源。
要确保供电电压的稳定性,以免对传感器的工作产生影响。
3.输出信号的接收和处理:根据传感器的输出信号类型和电平,选择合适的接收和处理电路。
可以通过模拟电路或数字电路来处理传感器的输出信号。
4.灵敏度的调节:根据具体的应用需求,调节传感器的灵敏度。
对于光电二极管和光敏电阻等传感器,可以通过调节外部电阻来实现。
三、光电传感器的应用领域1.自动控制:光电传感器可以用于自动控制系统,如照明控制、清晰度检测、颜色识别等。
通过检测环境光照的变化,实现对设备的自动控制。
2.测量仪器:光电传感器可以用于测量仪器中,如光谱仪、测量器等。
通过测量光线的强弱、波长等,实现对物理量的测量。
3.光通信:光电传感器可以用于光通信系统中,如光纤通信、光模块等。
光电传感器的测量内容

光电传感器的测量内容
光电传感器是一种将光信号转换为电信号的传感器,它可以测量多种物理量和参数,以下是一些常见的测量内容:
1. 光强度:光电传感器可以测量光的强度,通常用于光照度计、光度计等仪器中,用于测量环境中的光强。
2. 光通量:光通量是指单位时间内通过某一面积的光能量,光电传感器可以测量光通量,常用于光功率计等仪器中。
3. 光波长:一些光电传感器可以测量光的波长,常用于光谱仪等仪器中,用于分析光的成分和特性。
4. 距离和位置:通过测量光的传播时间或相位差,光电传感器可以测量物体的距离和位置,常用于工业自动化、机器人、汽车等领域。
5. 运动和速度:利用光的反射或遮挡原理,光电传感器可以检测物体的运动和速度,常用于安防监控、工业检测等领域。
6. 颜色和色彩:一些光电传感器可以识别光的颜色和色彩,常用于颜色分选机、色度计等仪器中。
7. 气体和液体成分:利用光的吸收或散射特性,光电传感器可以检测气体和液体中的成分,常用于环境监测、化学分析等领域。
这只是一些常见的光电传感器测量内容,实际上,根据具体的应用和传感器类型,还可以测量其他物理量和参数。
光电传感器具有高精度、快速响应、非接触测量等优点,在各个领域得到广泛应用。
光电感应器

光电传感器光电传感器的定义「光电传感器」是利用光的各种性质,检测物体的有无和表面状态的变化等的传感器。
光电传感器主要由发光的投光部和接受光线的受光部构成。
如果投射的光线因检测物体不同而被遮掩或反射,到达受光部的量将会发生变化。
受光部将检测出这种变化,并转换为电气信号,进行输出。
大多使用可视光(主要为红色,也用绿色、蓝色来判断颜色)和红外光。
光电传感器如下图所示主要分为3类。
(详细内容请参见「分类」)对射型回归反射型扩散反射型光电传感器特长①检测距离长如果在对射型中保留10m以上的检测距离等,便能实现其他检测手段(磁性、超声波等)无法离检测。
达到的长距②对检测物体的限制少由于以检测物体引起的遮光和反射为检测原理,所以不象接近传感器等将检测物体限定在金属,它可对玻璃.塑料.木材.液体等几乎所有物体进行检测。
③响应时间短光本身为高速,并且传感器的电路都由电子零件构成,所以不包含机械性工作时间,响应时间非常短。
④分辨率高能通过高级设计技术使投光光束集中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。
也可进行微小物体的检测和高精度的位置检测。
⑤可实现非接触的检测可以无须机械性地接触检测物体实现检测,因此不会对检测物体和传感器造成损伤。
因此,传感器能长期使用。
⑥可实现颜色判别通过检测物体形成的光的反射率和吸收率根据被投光的光线波长和检测物体的颜色组合而有所差异。
利用这种性质,可对检测物体的颜色进行检测。
⑦便于调整在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。
光电传感器原理①光的性质直射光在空气中和水中时,总是直线传播。
使用对射型传感器外置的开叉来检测微小物体的示例便是运用了这种原理。
曲折是指光射入到曲折率不同的界面上时,通过该界面后,改变行进方向的现象。
反射(正反射、回归反射、扩散反射)在镜面和玻璃平面上,光会以与入射角相同的角度反射,称为正反射。
3个平面互相直角般组合的形状称为三面直角棱镜。
光电传感器介绍

光电式传感器1.概述2.物理特性2.1外光电效应2.1.1光子假设2.2 内光电效应2.2.1光电导效应2.2.2光电转换元件3.光电式传感器3.1工作原理3.2光电传感器分类4.光电传感器应用4.1光电传感器优点4.1.1光电式带材跑偏检测器4.1.2包装充填物高度检测4.1.3光电色质检测4.1.4烟尘浊度监测仪4.1.5其他方面的应用5.光纤传感器5.1基本工作原理5.2光纤的种类与特性5.3光纤传感器的应用6.常用光电传感器及生产厂家和参数光电式传感器1.概述光电传感器是采用光电元件作为检测元件的传感器。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电传感器一般由光源、光学通路和光电元件三部分组成。
光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。
光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。
光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。
光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。
近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。
2.物理特性2.1外光电效应2.1.1光子假设1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。
爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。
爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。
光电传感器的基本原理及分类

光电传感器的基本原理及分类一、引言光电传感器是一种能够将光信号转化为电信号的设备,广泛应用于工业自动化、机器人技术、医疗仪器等领域。
本文将从基本原理和分类两个方面介绍光电传感器的知识。
二、光电传感器的基本原理1. 光电效应原理光电效应是指当金属或半导体表面受到光照射时,会产生电子的现象。
这种现象可以用经典物理学或量子力学来解释,但无论采用哪种解释方式,都不能完全符合实验结果。
根据实验结果,可以得出以下结论:当光子能量大于物质表面材料的束缚能时,就会发生外逸电子现象。
利用这个原理,可以制作出具有灵敏度高、响应速度快等优点的光电传感器。
2. 光敏元件原理在光电传感器中,最重要的部分就是光敏元件。
常见的光敏元件有四种:硅太阳能电池、硒太阳能电池、气体放大管和半导体二极管。
其中最常见的是半导体二极管,其工作原理是基于PN结的光电效应。
当光照射到PN结上时,会产生电子和空穴对,从而导致PN结区域的电流变化。
这种变化可以被检测到,并通过信号处理器转化为数字信号输出。
3. 光电传感器的工作原理光电传感器的工作原理是将光信号转化为电信号。
当物体进入传感器检测范围内时,会反射出一定程度的光线,这些光线被接收器接收后经过放大和滤波处理后转化为数字信号输出。
根据不同的应用需求,可以选择不同类型的光电传感器来实现不同功能。
三、光电传感器的分类1. 按照检测目标分类根据检测目标的不同,可以将光电传感器分为接近式、距离式和透明式三种类型。
(1)接近式:主要用于检测物体是否在一定距离范围内,并且可以识别物体是否有金属或非金属等特殊属性。
(2)距离式:主要用于测量物体与传感器之间的距离,并且可以精确地计算出物体与传感器之间的距离。
(3)透明式:主要用于检测透明或半透明物体的存在与否,例如检测玻璃板是否存在。
2. 按照工作原理分类根据工作原理的不同,可以将光电传感器分为反射式、散射式、直接式和光栅式四种类型。
(1)反射式:传感器和物体之间有一定距离,通过物体反射的光信号来检测物体的存在与否。
光电传感器PPT

图像传感器广泛应用于摄像机、数码相机、安防监控等领域,能够捕捉和记录图 像信息,为人们提供视觉感知和数据记录的功能。
04
光电传感器的挑战与未来发 展
提高灵敏度和精度
01
灵敏度和精度是光电传感器的重 要性能指标,提高这两个指标有 助于提高传感器对目标物体的检 测能力和测量精度。
02
可以通过优化光电传感器的结构 设计、改进制造工艺、采用高性 能材料等方法来提高其灵敏度和 精度。
05 结论
光电传感器的重要性和发展前景
光电传感器在自动化生产、智能家居、 环境监测等领域具有广泛的应用,能够 实现非接触、高精度、快速响应的测量 和检测,对提高生产效率和产品质量具
有重要意义。
随着科技的不断进步,光电传感器技术 也在不断发展,未来将会有更多的新型 光电传感器出现,如红外传感器、光纤 传感器等,其应用领域也将不断拓展。
详细描述
光电开关通过将光信号转换为电信号 ,实现物体的位置、速度、距离等参 数的检测和控制。广泛应用于自动化 生产线、机器人、安防系统等领域。
红外传感器
总结词
红外传感器是一种利用红外线进 行检测的传感器,具有非接触、 高精度和快速响应的特点。
详细描述
红外传感器能够检测物体的温度 、辐射能量等参数,常用于温度 测量、热成像、气体分析等领域 。
光纤传感器
总结词
光纤传感器是一种利用光纤传输光信号进行检测的传感器,具有抗电磁干扰、 耐腐蚀、高灵敏度的特点。
详细描述
光纤传感器能够检测物体的位移、压力、温度、折射率等参数,广泛应用于石 油化工、航空航天、医疗等领域。
图像传感器
总结词
图像传感器是一种能够将光学图像转换为数字信号的传感器,具有高分辨率、低 噪声、动态范围广的特点。
光电开关介绍及术语解释

(1)、分类
①漫反射式光电开关:它是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,物体将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。
②镜反射式光电开关:它亦集发射器与接收器于一体,光电开关发射器发出的光线经过反射镜反射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。
③对射式光电开关:它包含了在结构上相互分离且光轴相对放置的发射器和接收器,发射器发出的光线直接进入接收器,当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。当检测物体为不透明时,对射式光电开关是最可*的检测装置。
④槽式光电开关:它通常采用标准的U字型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了开关量信号。槽式光电开关比较适合检测高速运动的物体,并且它能分辨透明与半透明物体,使用安全可*。
光电开关介绍及术语解释
光电开关是传感器大家族中的成员,它把发射端和接收端之间光的强弱变化转化为电流的变化以达到探测的目的。由于光电开关输出回路和输入回路是电隔离的(即电缘绝),所以它可以在许多场合得到应用。
1、பைடு நூலகம்作原理
光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。物体不限于金属,所有能反射光线的物体均可被检测。光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。多数光电开关选用的是波长接近可见光的红外线光波型。
光电式传感器 光电传感器 光电传感器基础知识

课程内容
1 . 概述 2. 光电传感器的组成 3. 光电传感器的分类
2 . 光电传感器的组成
通常由三部分构成,它们分别为:发送器、接收器和检测电路。 发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、 激光二极管及红外发射二极管等。接收器则由光电二极管、光电三极管、光电池等组成。 在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效 信号和应用该信号。
课程内容
1 . 概述 2. 光电传感器的组成 3. 光电传感器的分类
3. 光电传感器的分类
(1 )按探测机理分类
光子传感器:利用某些半导体材料在入射光的照射下产生光电效应,使材料 的电学性能发生变化。按照光子传感器的工作原理,又可分为内光电传感器 和外光电传感器。
热传感器:在吸收了红外辐射后,会引起温度的变化,并伴随产生一些物理 性能的变化。这类传感器又可分为:热电堆光传感器、辐射热计传感器、热 释电传感器等。
遮光式:当光源发出的光通量经被测物遮住其中一部分光之后,使投射到光 电元件上的光通量改变,改变的程度与被测物体在光路中的位置有关。
3.光栅传感器 光电式传感器 光纤传感器 固态图像传感器
3. 光电传感器的分类 (2 )按传输方式分类 辐射式:被测物体本身就是光辐射源。被测物发射的光通量射向光电元件, 也可经一定的光路后作用到光电元件上。
吸收式:被测物体放在光路中,恒光源发出的光能量穿过被测物,部分被吸 收后透射到光电元件上。
3. 光电传感器的分类 (2 )按传输方式分类 反射式:恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到 光电元件上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。
早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽
灯做为光源。
这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
LED(发光二极管)
发光二极管最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管做为指示灯来用。
LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光。
由于LED是固态的,所以它能延长传感器的使用寿命。
因而使用LED的光电传感器能被做得更小,且比白炽灯传感器更可靠。
不象白炽灯那样,LED抗震动抗冲击,并且没有灯丝。
另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的
一部分。
(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离)。
LED能发射人眼看不到的红外光,也能发射可见的绿光、黄光、红光、蓝光、蓝绿光或白光。
经调制的LED传感器
1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz。
将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大。
我们可以将光波的调制比喻成无线电波的传送和接收。
将收音机调到某台,就可以忽略其他
的无线电波信号。
经过调制的LED发射器就类似于无线电波发射器,其接收器就相当于收音机。
人们常常有一个误解:认为由于红外光LED发出的红外光是看不到的,那么红外光的能量肯定会很强。
经过调制的光电传感器的能量的大小与LED光波的波长无太大关系。
一个LED 发出的光能很少,经过调制才将其变得能量很高。
一个未经调制的传感器只有通过使用长焦距
镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高。
相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应。
未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作。
如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到。
周围光源接收器也可以用来检测室外光。
但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题。
例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作。
我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃。
设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了。
调制的LED改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束。
到1980年,非调制的光电传感器逐步就退出了历史舞台。
红外光LED是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束。
但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源。
在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可
见光LED。
现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器。
经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数。
未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快。
但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用。
超声波传感器
声波传感器所发射和接收的声波,其振动频率都超过了人耳所能听到的范围。
它是通过计算声波从发射,经被测物反射回到接收器所需要的时间,来判断物体的位置。
对于对射式超声波传感器,如果物体挡住了从发射器到接收器的声波,则传感器就会检测到物体。
与光电传感器不同,超声波传感器不受被测物透明度和反光率的影响,因此在许多使用超声波传感器的场合就不适合使用光电传感器来检测。
光纤
安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤。
光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离。
光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮。
这层金属外皮的密度比光芯要低,因而折射率低。
光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来。
根据光学原理,所有光束都可以由光纤来传输。
两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出。
另一条入射角超出接受角范围的入射光,损失在金属外皮内。
这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射。
光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径)。
大多数光纤是可弯曲的,很容易安装在狭小的空间。
玻璃光纤
玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成。
典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护。
光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂。
检测面经过光学打磨,非常平滑。
这道精心的打磨工艺能显著提高光纤束之间的光耦合效率。
玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置。
紧凑布置的玻璃光纤通常用在医疗设备或管道镜上。
每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像。
由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光。
玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是PVC或其他柔性塑料材料。
有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求。
玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红
外光。
常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤。
塑料光纤
塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有PVC外皮。
它能安装在狭小的空间并且能弯成很小的角度。
多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户
根据使用将其剪短。
邦纳公司的塑料光纤都配有一个光纤刀。
不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上。
塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光。
与玻璃光纤相比,塑料光纤易受高温,化学物质和溶剂的影响。
对射式和直反式光纤玻璃光纤和塑料光纤既有“单根的”-对射式,也有“分叉的”-直反式。
单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器。
分叉式的光纤有两个明显的分支,可分别传输发射光和接收光,使传感器既可以通过一个分支将发射光传输到检测区域,同时又通过另一个分支将反射光传输回接收器。
直反式的玻璃光纤,其检测头处的光纤束是随意布置的。
直反式的塑料光纤,其光纤束是沿光纤长度方向一根挨一根布置。
光纤的特殊应用
由于光纤受使用环境影响小并且抗电磁干扰,因而能被用在一些特殊的场合,如:适用于真空环境下的真空传导光纤(VFT)和适用于爆炸环境下的光纤。
在这两个应用中,特制的光纤安装在特殊的环境中,经一个法兰引出来接到外面的传感器上,光纤和法兰的尺寸多种多样。
本安型传感器,如NAMUR型的传感器,可直接用在特殊或有爆炸性危险的环境中。