有限元发展概况
有限元的发展历史和趋势

有限元的发展历史和趋势
一、发展历史
1、古代初期
从古代存在已久的古典有限元法源于单元方程理论,其发展溯源可见其有权威。
已有古典有限元技术,曾经是一个古典概率分析方法,并在一系列经典课本中展现出来,如古典电磁学、经典水力学等。
其在结构力学及电磁学等科学领域的应用,极大地推进了科研发展。
2、20世纪初
在20世纪初,有许多科学家把它应用于结构力学及建筑结构设计等方面,如J.H.Argyris在1918年提出的形式框架有限元法,C. Taylor 於1926年提出基于单元分析的结构有限元法,R. Clough在1960年发明的有限元法等。
在此时期,有许多研究者为改善古典有限元技术而努力,提出了许多新的有限元理论,如Galerkin形式有限元法,Ritz形式有限元法,Rayleigh-Ritz有限元法,几何与元素相结合的有限元法等。
3、20世纪60年代
在20世纪60年代,美国工程师B. A. Szabo首先把有限元法用于电磁场的研究,他在1963年出版了第一本专门介绍有限元法的著作《有限元法在电磁场理论中的应用》,在此后又出版了《有限元法的数学原理》(1969年)、《有限元法及其应用》(1972年)等。
20世纪70年代,许多科学家又着手开发新的有限元技术,从而把有限元法应用到各种工程。
有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望
一、简介
有限元分析是一种应用于结构分析和设计的计算机化方法,它是利用
变分原理计算工程结构的有限元分析程序。
它是结构设计的一种重要手段,在结构设计中,它可以帮助工程师更好地了解受力状况,更好地优化设计。
在结构分析过程中,有限元分析可以精确地模拟出复杂的结构问题,并有
效地估算出结构的受力性能。
本文将从发展现状和展望两方面对有限元分
析系统进行详细介绍。
二、发展现状
1、算法及程序的发展。
有限元分析的主要发展方向之一就是算法和
程序的发展。
在这方面,目前发展非常迅速,具有显著的改进。
例如,在
有限元分析算法方面,目前已经发展出了各种适用于不同工程问题的算法,如结构本构分析算法、局部应变算法、有限元空间算法等。
在有限元分析
程序方面,目前已经开发出稳定可靠、功能强大的程序,以解决复杂结构
分析问题。
2、计算机硬件的发展。
在近年来,计算机硬件得到了极大的发展,
大大提高了计算速度和计算精度。
在有限元分析中,计算机硬件的发展对
数值解决复杂工程问题具有重要意义,在解决实际工程问题方面带来了重
大改进。
有限元法的概况和发展

有限元法的概况和发展
有限元(Finite Element Method,FEM)是一种综合了等距几何模型和
数值计算技术的数学方法,用于求解各类复杂的有限面积的物理或数学模型
问题。
最初由Rayleigh公司的几何师几何林登·高斯(R.J.Gaunt)在20
世纪30年代提出有限元法,用于解决由结构力学、声学、振动控制等研究
领域的复杂的非线性问题。
1970年,P.K.Pai和L.R.Johnson将有限元法引入结构力学,及从控制、分析和设计等方面中开展应用,这使得有限元法从学术应用方面迈向了实际
应用方面。
从那时起,有限元法的研究就成了国际上的热点,大量的数值方
法及理论模型的研究逐步拓展了有限元法的应用领域,并得到了广泛应用。
随着高性能计算、计算流体动力学、并行计算及网络化等技术的发展,
有限元法也取得了许多新的进展。
它现在已经用于结构力学、材料力学、热
传导、振动控制、热物理、物理电子学、生物物理学、流体力学等诸多领域,形式上也从二维到三维,从欧拉方程到非线性微分方程等也有了一定的发展。
现代有限元法的研究已经发展到了计算机辅助设计(CAD)、计算机辅助分
析(CAE)、虚拟工厂、虚拟机械设计、通用有限元分析软件及多物理场耦
合的研究。
总的来说,有限元法已经被广泛应用于工程设计中,越来越多的应用被
发掘出来,而它所具有的优越特点也被越来越多的工程师所了解,有限元法
在今后的研究将会朝着前所未有的新高度迈进。
有限元的发展历史和趋势

有限元的发展历史和趋势
有限元法(Finite-Element Method,以下简称FEM)是现代工程和
科学研究中一种常用的方法,它可以大大提高计算的效率,减轻计算工作,帮助计算者迅速解决复杂的数学问题。
1960年,Timoshenko和Gere在《力学原理》一书中首次提出了有限
元分析的概念,这成为有限元技术的开端。
他们认为,由许多有限尺寸的
单元组成的实体可以被视为由有限多边形尺寸的单元组成,这就被称为有
限元分析,成为20世纪70年代结构力学计算的基础。
随着计算资源的发展,解决复杂结构和场问题的能力也发生了巨大变化。
尤其是在80年代,由于计算的速度和计算量的大幅度增加,有限元
法被广泛应用于航空航天、电力、原子能、汽车等领域,扮演着越来越重
要的角色。
此外,它还用于求解许多复杂的场问题,从而获得了巨大进展。
随着信息技术的发展,芯片技术和并行计算的应用使有限元法取得了
新的发展,目前已经应用于许多领域,比如:土木工程、流体力学、医学
工程、声学、生物工程、材料科学等领域。
有限元的发展历史和趋势

有限元的发展历史和趋势摘要1965年,“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。
有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。
有限元法起源于固体力学,并逐步扩展到热传导、计算流体力学、电磁学等不同领域,已经成为数学物理中很重要的数值计算方法。
关键词有限元数值发展趋势前言有限元方法在数值计算方法中具有极为重要的地位,有限元方法在应用中不仅本身具有很大的潜力,而且,结合其它理论和方法还有广阔的发展前景。
1有限元的发展历程有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。
有限元法是受内外动力的综合作用而产生的。
1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。
有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。
1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。
有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。
在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。
在国内,我国数学家冯康在特定的环境中独立于西方提出了有限元法。
1965年,他发表论文《基于变分原理的差分格式》,标志着有限元法在我国的诞生。
冯康的这篇文章不但提出了有限元法,而且初步发展了有限元法。
他得出了有限元法在特定条件下的表达式,独创了“冯氏大定理”并且初步证明了有限元法解的收敛性。
有限元的发展历史现状及应用前景

有限元的发展历史现状及应用前景有限元方法是一种数值计算方法,主要用于求解连续介质的力学问题。
它通过将连续介质离散成有限数量的元素,并基于一定的数学方法和力学理论,将问题转化为求解代数方程组的问题。
有限元方法在解决复杂工程问题、优化设计和预测结构性能等方面具有广泛的应用。
有限元方法的历史可以追溯到19世纪末的工程力学中。
当时,许多工程问题的解决都要依赖于解析方法,但对于复杂的几何形状和边界条件来说,解析方法无法有效地求解。
1956年,美国工程师D.R. Courtney提出了有限元方法的一般形式。
此后,有限元方法得到了快速发展,成为计算力学领域的重要工具。
有限元方法的原理是将连续介质离散成有限数量的元素,如三角形单元或四边形单元,并将元素之间的关系用数学公式表达出来。
通过构建系统方程组,根据边界条件,可以求解出未知变量的数值解。
有限元方法通过近似处理和插值方法,能够在不同的几何形状和边界条件下求解力学问题。
有限元方法的应用非常广泛。
在工程领域中,有限元方法在结构力学、热传导、流体力学等方面得到了广泛应用。
在建筑工程中,有限元方法可以用于分析建筑结构的强度和刚度,评估结构的安全性。
在航空航天领域,有限元方法可以用于分析飞机部件的应力分布和疲劳寿命,优化结构设计。
在汽车工业中,有限元方法可用于分析汽车部件的刚度和强度,提高车辆的安全性和性能。
此外,在地震工程、电力工程、化工工程等领域,有限元方法也发挥着重要的作用。
未来,有限元方法的应用前景非常广阔。
随着计算机技术和数值算法的不断发展,有限元方法的计算效率将进一步提高,可以求解更加复杂和大规模的问题。
有限元方法在模拟和解决多物理场耦合问题方面也将得到更多的应用。
例如,结构-流体耦合问题、热-结构耦合问题等。
此外,随着材料科学和生物医学工程的发展,有限元方法还将应用于材料力学、生物力学等领域。
总之,有限元方法作为一种求解力学问题的数值计算方法,在工程领域具有重要的地位和广泛的应用。
医学有限元的发展历程

医学有限元的发展历程一、有限元方法的起源与基础理论有限元方法(Finite Element Method,简称FEM)起源于20世纪40年代,由Courant首次提出用于解决流体力学问题。
这种方法的核心思想是将连续的求解域离散化为有限个小的、互连的子域(即有限元),从而将复杂的偏微分方程简化为每个小单元上的代数方程。
二、医学领域有限元的早期应用在医学领域,有限元方法的应用起步较晚,但发展迅速。
早期主要应用于生物力学和生物医学工程领域,如骨骼生物力学、心脏模型等。
随着计算机技术的进步,特别是X射线CT技术的出现,医学影像数据可用于生成详细的人体组织结构模型,从而为有限元分析提供了更精确的物理模型。
三、医学有限元在生物力学研究中的应用生物力学是医学有限元应用的重要领域。
通过有限元分析,可以模拟人体各种生理和病理状态下的生物力学行为,如骨骼应力分布、关节运动、血流动力学等。
这些研究有助于深入理解疾病的发病机制,并为疾病的诊断和治疗提供依据。
四、医学有限元在组织工程和再生医学中的应用组织工程和再生医学是近年来发展迅速的领域,有限元方法在模拟和预测组织或器官的生长、发育和功能方面具有重要价值。
例如,通过建立有限元模型来模拟软骨、骨骼、肌肉等组织的生长和修复过程,有助于优化组织工程的设计和实验方案。
五、医学有限元在药物研发和个性化治疗中的应用随着个性化医疗的发展,有限元方法在药物研发和个性化治疗中的应用逐渐增多。
例如,利用有限元模拟药物在人体内的分布和扩散过程,可以预测药物的疗效和副作用,为新药研发提供有力支持。
此外,通过建立患者的个体化有限元模型,可以制定个性化的治疗方案,提高治疗效果。
六、医学有限元技术的进步和挑战随着计算技术的不断进步,医学有限元分析的规模和精度也在不断提高。
例如,高精度算法的发展使得模型的计算更加精确和快速;大规模并行计算技术的应用使得可以对更大规模的人体组织结构进行模拟和分析。
然而,医学有限元技术的发展仍面临一些挑战,如建立更精确的生物材料模型、处理复杂的边界条件和多物理场耦合问题等。
有限元方法的发展史

有限元方法的发展史有限元方法是一种数学计算方法,用于解决连续介质力学问题。
它的发展历史可以追溯到20世纪50年代,经过几十年的发展和完善,如今已成为工程和科学领域中最常用的数值计算方法之一。
有限元方法的发展始于20世纪50年代,当时工程师和科学家们面临着处理复杂结构和材料行为的问题。
传统的解析方法往往无法应用于这些问题,因此需要一种新的计算方法来模拟和分析实际情况。
有限元方法的出现正好满足了这一需求。
最早的有限元方法是由地球物理学家Turner等人在20世纪50年代末提出的。
他们使用有限差分法来近似计算连续介质的力学行为。
随着计算机技术的进步,有限元方法得以快速发展。
1960年代,有限元方法开始在工程领域得到广泛应用,特别是在结构力学和固体力学领域。
有限元方法的发展受益于计算机硬件和软件技术的进步。
计算机的出现大大提高了计算能力和效率,使得有限元方法可以应用于更加复杂的问题。
同时,有限元方法的软件也逐渐得到了完善和发展,使得用户能够更加方便地进行模拟和分析。
在有限元方法的发展过程中,还出现了许多改进和扩展的方法。
例如,有限元方法可以用于处理非线性材料行为、动力学问题、热传导问题等。
不断的改进和扩展使得有限元方法的应用领域越来越广泛,已经涉及到了各个工程和科学领域。
近年来,随着计算机技术的不断进步,有限元方法也在不断发展。
高性能计算机和并行计算技术的出现,使得有限元方法可以应用于更加复杂和大规模的问题。
同时,有限元方法的优化和自适应技术也得到了广泛研究和应用,进一步提高了计算效率和准确性。
有限元方法的发展经历了几十年的演变和完善,从最初的简单近似到如今的复杂应用,它已经成为工程和科学领域中不可或缺的数值计算方法。
随着计算机技术的不断进步和应用需求的不断增加,有限元方法将继续发展,并为解决更加复杂和真实的问题提供有效的数值计算手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元发展概况
一、有限元法介绍
有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,FiniteElementMethod)。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二、有限元法的孕育过程及诞生和发展
大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。
虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。
在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。
这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。
在18世纪,另一位数学家拉格郎日提出泛函分析。
泛函分析是将偏微分方程改写为积分表达式的另一途经。
在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。
1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。
1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。
这实际上就是有限元的做法。
所以,到这时为止,实现有限元技术的第二个理论基础也已确立。
20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。
波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。
20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。
1960年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。
此后,这样的叫法被大家接受,有限元技术从此正式诞生,并很快风靡世界。
三、FEM的计算方法:
FEM方法作为一种技术更多的与FEM软件的发展紧密的结合起来。
某种主流软件的FEM方法必然会一直朝该FEM方法的方向发展,只有当新的FEM方法比现有的FEM方法更加优越时才会放弃现有的FEM方法,从而使FEM方法有较大的发展。
因此目前的FEM方法仍然将统治现在的FEM 世界。
当今主流的FEM软件有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、Simulation、ELAS、MARC和STARDYNE等公司的产品。
这些软件所代表的方法有:
Simulation软件使用的快速有限元算法(FFE)。
在传统有限元分析的数值计算方法之中,有直接计算法(DirectSolver)与迭代法(Iterative)两种。
由于在过去的经验中,迭代法一直无法直接而有效的保证数值计算的收敛性,快速有限元法是一种可以保证收敛性的迭代法,该方法计算速度也很快。
MARC软件以Lagrange算法为主,兼有ALE和Euler算法;以显式求解为主,兼有隐式求解功能。
ANSYS软件有直接求解器,如波前求解器,可计算出线性联立方程组的精确解。
ANSYS程序还提供了一个有效的稀疏矩阵求解器,它既可用于线性分析,也可用于非线性分析。
即要求求解精度又要求求解时间的静态及瞬态分析中,该求解器可代替迭代求解器。
稀疏矩阵求解器只能用于真正的对称矩阵,与波前及其它直接求解器相比,稀疏矩阵求解器能显著加速求解速度。
四、其他求解方法:
1 显式/隐式有限元法:
无需对刚度矩阵求逆,只需对质量矩阵求逆,而质量矩阵往往可以简化为对角阵;没有增量步内迭代收敛问题,可以一直计算下去。
隐式计算具有时间步长增量较大、每个荷载步都能控制收敛,避免误差累积、存在迭代不收敛的问题、计算量随计算规模增大而成超线性增长的特点。
相对与隐式计算显示计算具有时间步长很小、误差累积、不存在迭代不收敛的问题、计算量随计算规模基本为线性增长的特点。
这种计算方法的代表软件有ABQUS。
2 离散单元法:
离散单元法也被称为散体单元法,最早是1971年由Cundall提出的一种不连续数值方法模型,这种方法的优点是适用于模拟节理系统或离散颗粒组合体在准静态或动态条件下的变形过程。
离散单元法不是建立在最小势能变分原理上,而是建立在最基本的牛顿第二运动定律上。
它以每个刚体的运动方程为基础,建立描述整个破坏过程的显式方程组后,通过动力松弛迭代求解。
3 接触判断法:
离散元通过块体之间的相互接触判断得到相互之间的作用力,进而形成运动方程。
因此,快速而准确的接触算法对离散元方法非常重要。
由于离散元计算过程中块体往往会发生较大位移,使得原有的块体间的空间拓扑关系发生变化,使接触判断变得更加复杂。
目前离散元对二维问题的接触分析已经比较成熟,但对于三维问题则应用比较有限,其中的重要原因就是三维接触判断过于复杂,特别是允许出现大位移的三维接触,目前还是一个有待进一步研究的问题。
五、当今国际上有限元法的发展趋势:
1.从单纯的结构力学计算发展到求解许多物理场问题
有限元分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值分析方法。
而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。
所以近年来有限元方法已发展到流体力学、温度场、电传导、磁场、渗流和声场等问题的求解计算,最近又发展到求解几个交叉学科的问题。
例如当气流流过一个很高的铁塔时就会使铁塔产生变形,而塔的变形又反过来影响到气流的流动……这就需要用固体力学和流体动力学的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。
2.由求解线性工程问题进展到分析非线性问题
随着科学技术的发展,线性理论已经远远不能满足设计的要求。
例如建筑行业中的高层建筑和大跨度悬索桥的出现,就要求考虑结构的大位移和大应变等几何非线性问题;航天和动力工程的高温部件存在热变形和热应力,也要考虑材料的非线性问题;诸如塑料、橡胶和复合材料等各种新材料的出现,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性有限元算法才能解决。
众所周知,非线性的数值计算是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。
为此近年来国外一些公司花费了大量的人力和投资开发诸如MARC、ABQUS和ADINA等专长于求解非线性问题的有限元分析软件,并广泛应用于工程实践。
这些软件的共同特点是具有高效的非线性求解器以及丰富和实用的非线性材料库。