激光干涉仪用途【详细】
激光干涉仪的设计与应用

激光干涉仪的设计与应用激光干涉仪是一种利用激光干涉原理测量物体长度的仪器。
它的特点是测量精度高,可达到亚微米级别,适用于各种长度的测量。
在制造、工程、科学等领域都有重要的应用,下面将介绍其设计和应用。
一、激光干涉仪的原理激光干涉仪基于干涉原理,即利用激光的相干性,将两束激光光束分别照射到测量物体的两个不同位置上,然后让光束反射回来,经过干涉产生干涉条纹,通过分析干涉条纹的移动和变化,可以测量物体的长度、形状和表面质量等。
二、激光干涉仪的构造激光干涉仪主要由光源、分光器、反射镜、光电探测器、转换电路等组成。
其中光源是激光器,应具有单色、长寿命、高光强度、小发散角度等特点。
分光器和反射镜将激光分成两束并反射回到测量物体上,然后经过干涉、反射等过程,形成干涉条纹。
光电探测器可以将光电信号转换成电信号,然后经过转换电路放大、滤波、解调等处理,最终得到测量结果。
三、激光干涉仪的应用1.表面形貌测量激光干涉仪可以用于表面形貌测量,例如测量机械零件的平整度、光学元件的表面形状、生物医学材料的表面粗糙度等。
利用干涉技术可以获得高精度的表面高程和表面形状信息。
2.形变测量激光干涉仪也可用于测量物理量的变形,如应力、形变、位移等。
例如在建筑工程中可以利用激光干涉技术测量混凝土梁的挠度和伸缩变形,从而评估结构的安全性。
3.纳米测量激光干涉仪可用于纳米尺度测量,例如测量纳米材料的形貌、纳米粒子的大小等。
利用干涉技术可以获得高分辨率的纳米级别表征。
4.光学元件测试激光干涉仪还可以用于光学元件测试,例如测量透镜、反射镜、光栅等的曲率半径、折射率、相位等。
利用干涉技术可以获得高精度的光学参数信息。
四、其他需要注意的事项使用激光干涉仪时需要注意安全,避免对人眼造成伤害。
此外激光干涉仪的精度和灵敏度都较高,需要进行科学的校准和校验,避免因仪器误差而产生误报。
总之,激光干涉仪作为一种高精度的测量工具,可以在制造、科学、工程等领域有着广泛的应用。
激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用
激光干涉仪通过测量光的干涉现象来实现精密测量。
它利用激光的特性,通过将激光
分成两束,一束作为参考光束,另一束经过机床的运动系统后作为测量光束。
当两束光重
新合成时,会产生干涉现象,干涉条纹的变化可以反映出机床运动系统的变化。
1. 机床运动误差的检测:激光干涉仪可以实时测量机床的运动误差,例如位置误差、直线度、圆度等。
通过与已知精度的参考标准进行比对,可以评估机床的运动系统是否达
到要求,并及时发现和纠正问题。
2. 机床加工误差的检测:机床在加工过程中,由于刀具磨损、工件变形等原因,会
产生加工误差。
激光干涉仪可以实时监测和记录加工过程中的加工误差,通过分析和比对
测量数据,可以评估机床的加工精度,提高加工质量。
3. 机床刚度的检测:机床的刚度是衡量其抗变形性能的重要指标。
激光干涉仪可以
通过测量机床的刚度进行评估,例如测量机床在不同负载下的变形量,从而评估机床的刚
度性能,为优化机床结构提供参考。
4. 机床热变形的检测:机床在工作过程中会受到热变形的影响,影响其加工精度和
稳定性。
激光干涉仪可以通过测量机床的热变形量,了解机床的热稳定性,并配合温度传
感器等设备,实时监测和控制机床的温度变化,提高机床的热稳定性。
激光干涉仪在机床精度检测中具有重要的应用价值。
通过实时监测和测量,可以提供
高精度和可靠的数据,帮助机床生产厂家和用户评估机床的精度和稳定性,优化机床结构
和加工过程,提高机床的加工质量和生产效率。
激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用
激光干涉仪是一种高精度、高分辨率的测量设备,广泛应用于机床精度检测中。
机床是制造业中非常重要的加工设备,其精度对产品质量起到决定性的作用。
激光干涉仪通过测量机床加工过程中的振动和变形,可以快速准确地评估机床的精度,并进行相应的调整和修正。
激光干涉仪的工作原理是利用激光的干涉现象来实现测量。
其基本构造包括激光器、分束器、反射镜和探测器等部件。
在实际应用中,激光干涉仪通常需要固定在机床的工作台或主轴上,通过测量激光在加工过程中的干涉信号,来了解机床的精度情况。
1. 测量机床的静态误差:静态误差是指机床在不同位置和方向上的加工精度偏差。
激光干涉仪可以通过测量加工台或主轴在各个位置上的干涉信号来评估机床的静态误差,并得出相应的补偿值。
这样可以及时纠正机床的误差,提高加工的精度和质量。
2. 测量机床的动态响应:动态响应是指机床在加工过程中的振动情况。
激光干涉仪可以实时测量加工台或主轴的振动信号,并将其转化为干涉条纹,通过分析干涉条纹的频率和振幅等参数,评估机床的动态响应。
这样可以及时发现机床的振动问题,并采取相应的措施进行修复和调整。
3. 监测机床的变形情况:机床在加工过程中会因为受到力的作用而发生变形,从而影响加工精度。
激光干涉仪可以通过测量加工台或主轴的变形情况,提供实时准确的变形数据。
这样可以帮助操作人员及时发现机床的变形问题,并采取相应的措施来避免或减少变形对加工精度的影响。
激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用【摘要】激光干涉仪在机床精度检测领域具有重要应用,本文首先简要介绍了激光干涉仪的原理。
然后分别探讨了激光干涉仪在机床定位、加工精度、重点部件和整机精度检测中的具体应用。
通过激光干涉仪可以实现对机床精度的全面检测,为机床的精度提升和故障排查提供重要手段。
最后总结指出,激光干涉仪在机床精度检测领域具有广泛的应用前景,为提高机床加工精度和降低故障率提供了有效的技术支持。
激光干涉仪的应用将进一步推动机床行业的发展,提高机床加工质量,提升整体生产效率。
【关键词】关键词:激光干涉仪、机床、精度检测、定位、加工、重点部件、整机、领域、应用前景、精度提升、故障排查。
1. 引言1.1 激光干涉仪在机床精度检测中的应用激光干涉仪是一种高精度、非接触式测量仪器,广泛应用于机床精度检测领域。
通过测量光波的干涉现象,激光干涉仪能够实现对机床定位、加工精度、重点部件和整机精度等方面的精准检测。
在现代制造业中,机床的精度直接影响到产品的质量和市场竞争力,因此利用激光干涉仪进行精度检测具有重要意义。
激光干涉仪基于激光光束的叠加干涉原理,能够精确测量不同部位的表面平整度、平行度、垂直度等参数,为机床的精度提升提供了重要依据。
激光干涉仪还可以实时监测机床加工过程中的变形和振动情况,帮助工程师及时调整工艺,保证加工精度。
激光干涉仪在机床精度检测中的应用具有广泛前景,为提高机床加工精度和故障排查提供了重要手段。
随着制造业的不断发展和进步,激光干涉技术将在机床领域发挥更加重要的作用,推动行业向着更高精度、更高效率的方向发展。
2. 正文2.1 激光干涉仪原理简介激光干涉仪是一种通过激光光束的干涉现象来测量物体形状、表面轮廓或者位置的精密仪器。
其原理基于光的干涉现象,即光波的叠加。
激光干涉仪通常由激光光源、分光镜、合并镜、待测物体、反射镜、干涉条纹图像采集器等部件组成。
激光干涉仪的工作原理是利用激光器产生的单色平行光束,经分束镜拆分成两束光,分别经过不同路径到达合并镜反射后汇聚在待测物体表面,然后再经待测物体表面反射回来,通过合并镜再次汇聚到干涉条纹图像采集器上。
激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用一、激光干涉仪的原理及特点激光干涉仪是一种通过激光光束的干涉现象来测量长度、角度、位移等物理量的仪器。
其原理是利用激光器发射出的一束平行光束,经分束器分成两束光,分别射向被测量的表面,当两束光线并行射向被测表面时,其中一束光线通过反射或透射产生光程差,再经干涉,使两束光合成发生干涉条纹。
通过干涉条纹的形成和移动来测量被测量器件的长度、角度、位移等信息。
激光干涉仪具有高精度、非接触、快速测量、适用于不同材料和形状的表面等优点。
激光干涉仪在机床精度检测中得到了广泛的应用。
1. 几何误差检测在机床的使用过程中,由于零部件的磨损、变形以及装配误差等原因,会导致机床发生几何误差,进而影响加工精度。
激光干涉仪可以通过测量机床各部位的位移和形态变化,实时监测机床的几何误差,准确地识别机床的变形情况,以及对机床进行实时调整和修正,保证机床的加工精度。
2. 运动精度检测机床在加工过程中是需要进行各种轴向或者回转的运动,而这些运动需要保证其稳定性和精度。
激光干涉仪可以通过测量机床各轴的运动轨迹和变换,提供准确的运动精度数据,及时发现运动中的误差和振动,帮助调整机床的运动参数,保证加工的精准度。
3. 工件加工精度检测除了机床本身的精度,工件的加工也是影响加工精度的重要因素。
激光干涉仪可以通过测量工件的表面形态、平整度等参数,判断工件的加工质量,为机床运行参数的优化提供准确的数据支持。
1. 高精度激光干涉仪可以实现亚微米级别的精度,远高于传统的测量方法,可以满足精密加工对精度的要求。
2. 非接触激光干涉仪的测量过程是无需接触被测物体的,可以保证被测物体的表面不受干扰,避免了因接触而带来的误差。
3. 高效率激光干涉仪的测量速度快,可以实现实时监测和测量,提高了机床精度的调整效率。
4. 适用性广激光干涉仪适用于各种不同材质和形状的表面,可以满足不同机床和工件的精度检测需求。
四、激光干涉仪在机床精度检测中的发展前景随着人工智能和大数据技术的发展,激光干涉仪将更加智能化、自动化,可以通过数据分析和处理,实现机床的智能维护和优化,进一步提高机床的稳定性和精度。
激光干涉仪原理及应用概述

激光干涉仪原理及应用概述激光干涉仪的原理可以简单介绍为以下几个步骤:首先,激光器产生激光光束,通过光学系统使光束变得平行。
然后,光束被分成两束,一束作为参考光束,另一束作为测量光束。
参考光束被发送到一个参考反射镜上反射回来,而测量光束则被发送到被测物体上,然后反射回来。
参考光束和测量光束在一个光学平台上交汇,形成干涉条纹。
通过观察、记录和分析干涉条纹的形态变化,可以得到被测物体的表面形貌或者其他参数。
1.工业制造:激光干涉仪可以用于测量工件的平面度、圆度、直线度等形貌参数,用于质量控制和优化生产过程。
2.精密测量:激光干涉仪可以进行亚微米级的位移测量,被用于精密仪器的研发和生产。
3.表面形貌测量:激光干涉仪可以测量微观表面的凹凸及表面光滑度,广泛应用于材料科学、纳米科技等领域。
4.生物医学:激光干涉仪可以测量生物组织的变形、变量等参数,用于医学研究和医疗诊断。
5.振动分析:激光干涉仪可以对机械部件或振动体进行振动频率、幅度等参数的测量,用于机械工程的研究和调试。
激光干涉仪的应用还在不断拓展和发展,不仅可以实现高精度的测量,还可以配合其他技术如像散斑技术、数码图像处理等进行更精确的测量和分析。
此外,随着激光技术的发展,激光干涉仪的体积和成本也在不断降低,有助于其在各个领域的广泛应用。
总之,激光干涉仪作为一种高精度测量仪器,具有广泛的应用前景。
它可以实现精确测量、快速响应和非接触测量等特点,被用于各个领域的研究和应用。
随着技术的进一步发展,激光干涉仪将会在更多领域得到应用,为科学研究和工业生产提供更多的支持和解决方案。
激光干涉仪在物理研究中的应用

激光干涉仪在物理研究中的应用激光干涉仪是一种基于激光的精密测量仪器,具有高精度、高分辨率、高灵敏度、高稳定性等特点。
它可以用于测量光程差、位移、形貌、波前畸变等物理量,在物理学、光学、材料科学、生物医学、机械制造等领域得到了广泛应用。
一、激光干涉仪的基本原理激光干涉仪基于光干涉原理,比较两个光程差的相位差来测量物理量。
其基本结构由激光源、分束器、样品、合束器、检测器等组成。
当激光束照射到分束器上时,会被分成两个光束,一个经过参考光路反射出来,一个经过样品光路或待测光路后反射出来,两个光束再经过合束器合成,形成干涉光。
当待测光路与参考光路的光程差发生改变时,由于光的相干性,干涉光的相位也会发生变化,通过检测器测量干涉光的相位差变化,就可以得到待测光路与参考光路的光程差。
二、激光干涉仪的应用1.表面形貌测量激光干涉仪可以准确地测量物体表面的高度、形状、表面粗糙度等物理量,广泛应用于工业制造、材料科学、光学成像、地质勘探等领域。
例如,研究人员可以利用激光干涉仪测量人类牙齿表面的微小变形,以研究牙齿结构和功能。
2.液体流速测量激光干涉仪可以利用激光束对流体进行横向扫描,通过测量传播到检测器上的干涉光的相位差变化,可以计算出流体的速度分布和流量。
这种方法广泛用于船舶液体流场测试、水利工程流量监测、工业制造过程流体流动分析等领域。
3.纳米位移测量激光干涉仪可以测量物体的纳米位移量,精度可以达到亚纳米级别。
利用这种方法,可以研究纤维、微电子器件、纳米材料等体系的变形、扭转、压缩等运动和变化量。
4.物体加工质量监测激光加工通常需要在线检测来保证工艺质量。
激光干涉仪可以实时、在线监测激光加工过程中物体表面的形貌、位置、尺寸等物理量,避免加工缺陷和误差的出现,提高加工产品的质量和精度。
5.光学元件测试激光干涉仪可以用于测试和监测光学元件的表面粗糙度、形状误差、面内波前畸变等物理量,以确定光学元件的质量和性能。
三、激光干涉仪的发展趋势随着科学技术的不断进步和发展,激光干涉仪将会越来越广泛地应用于科学研究和工业制造等领域。
激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
本文将介绍激光干涉仪的原理、测量距离和表面精度的方法,以及激光干涉仪在不同领域中的应用。
激光干涉仪是基于光波的干涉现象进行测量的仪器。
光波的干涉是指两束或多束光波相遇时发生的波的叠加现象。
激光干涉仪通过将激光分成两束,一束作为参考光束,一束照射到待测物体上反射回来作为待测光束,再将两束光波进行干涉,通过测量干涉条纹的变化来获得距离和表面精度的信息。
激光干涉仪的测量距离的原理基于光波的干涉,利用干涉条纹的变化来获得物体到仪器的距离。
当两束光波相遇时,它们会发生干涉,干涉条纹的间距和形态会随着物体到仪器的距离的变化而改变。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离。
这种测量方法具有高精度和高分辨率的特点,适用于微小距离的测量。
激光干涉仪的测量表面精度的方法基于光波的干涉,利用干涉条纹的形态和间距来获得表面精度的信息。
当光波照射到物体表面时,由于表面的形态和光的反射特性的影响,干涉条纹的形态和间距会发生变化。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体表面的精度。
这种测量方法具有高精度和高分辨率的特点,适用于表面平整度和粗糙度的测量。
激光干涉仪广泛应用于多个领域,如制造业、科学研究和地质勘探等。
在制造业中,激光干涉仪可用于检测零件的尺寸和形状,以及测量零件表面的精度。
在科学研究中,激光干涉仪可用于研究光学现象、材料的性质和微小物体的运动。
在地质勘探中,激光干涉仪可用于测量地表的高程和形态,以及探测地下的岩层和地下水位。
总结一下,激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。
通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。
通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离和物体表面的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光干涉仪的作用
内容来源网络,由深圳机械展收集整理
更多激光设备,就在深圳机械展
(1)CO2激光干涉仪
CO2激光器是一种非常适合无导轨激光测量的光源,它在10.6μm波段具有丰富的谱线,相邻谱线的波长差分布也比较均匀,构成的“合成波长链”的波长可从10.6μm到25m,因此,CO2激光干涉仪一直是无导轨激光干涉仪的研究重点。
从1979年开始,由直流干涉系统到各种形式的光外差系统,CO2激光干涉仪历经多次改进,其中一种典型方案是上世纪九十年代澳大利亚研制的外差干涉仪,它通过激光器的腔长控制,顺序输出6种波长,用声光调制器的零级衍射作为本振光,构成外差系统,测量精度可达4×10-8。
(2)Ne-Xe激光干涉仪
Ne-Xe激光器可以输出3.53μm和3.37μm两个波长,合成波长为84.2μm。
从“合成波长链”的角度考虑,波长过短难以保证测量结果的唯一性,为此,系统加入了He-Ne激光器的3.39μm谱线,将“合成波长链”延伸到464μm。
Ne-Xe激光干涉仪的最大优点是结构简单,测量精度可达1.8×10-7。
(3)He-Ne激光干涉仪
中国计量科学研究院研制的纵向塞曼He-Ne激光干涉仪,与成都工具研究所开发的双频激光干涉仪不同,其稳频点选在两条激光增益曲线之间,产生一对频差为1080MHz的左、右旋偏振光(这两个偏振光不在同一增益曲线上),合成波长为278mm。
利用光栅测量干涉的剩余相位。
系统测量长度可达100m,测量精度为±(40+1.5×10-6)。
He-Ne激光器在3.39μm处谱线丰富,但其中3.3922μm谱线的自发辐射系数比其它谱线大很多,抑制了其它谱线的发射。
清华大学利用甲烷在3.3922μm附近的一条吸收谱线,抑制了He-Ne激光这条谱线的强度,成功研制出了3.39μm波段双波长激光干涉仪,其“合成波长链”从3.39μm到1m,单波稳定性为1×10-8。
(4)变波长激光干涉仪
变波长激光干涉仪采用两个激光器,利用谐振腔长与输出频率的关系,构成“无级”的波长
系列,在理想的环境下,13m长度范围的测量精度为70μm。
(5)线性调频半导体激光干涉仪
近年来,半导体激光器线性调频技术的发展,为无导轨激光干涉仪提供了一个理想的光源,成为无导轨激光干涉技术研究的热点。
1995年,德国采用了外腔可调谐式半导体激光器,其外腔由全息光栅组成,通过改变光栅的角度进行频率选择,相干长度可达100m,40m 长度范围的分辨率可达40μm。
无导轨激光干涉仪技术的发展仅有二十多年的历史,由于它在大尺寸测量中具有无可替代的重要性,因此各国学者倾注了大量精力进行研究开发,目前这项技术逐步走向实用化阶段。
随着科技的发展,相信在不久的将来,无导轨激光干涉仪技术必将成为大尺寸测量领域中的一朵艳丽的奇葩。
双频激光/激光干涉仪编辑
双频激光干涉仪图册
双频激光干涉仪图册
1、双频激光干涉仪原理
双频激光干涉仪的原理是建立在塞曼效应、牵引效应和多普勒效应的基础之上的。
其原理如图2所示,在全内腔He-Ne激光器上加约0.03T的轴向磁场,由于塞曼效应和牵引效应,发出一束含有两个不同频率的左旋和右旋圆偏振光,它们的频率差大约是1.5MHz左右。
这束光经1/4波片之后成为两个互相垂直的线偏振光,再经平行光管准直和扩束。
从平行光管出来的这束光经过析光镜反射出一小部分作为参考光束通过45°放置的检偏器。
并由马吕斯定律可知,两个垂直方向的线偏振光在45°方向上投影,形成新的线偏振光并产生拍频。
这个拍频频率恰好等于激光器所发出的两个光频的差值即(f1-f2),约为1.5MHz。
经光电元件接受进入前置放大器和计算机。
另一部分透过析光镜沿院方向射向偏振分光棱镜。
互相垂直的线偏振光f1和f2被分开。
f2射向参考立体直角锥棱镜后返回,f1透过偏振分光棱镜到立体直角锥棱镜——测量棱镜,这时如果它以速度v运动,那么f1的返回光便有了变化成为(f1±Δf)。
这束光返回后重新通过偏振分光棱镜并与f2的返回光会合,然后到45°放置的检偏器上产生拍频被光电元件接收,进入前置放大器和计算机。
计算机对两路信号进行比较,计算它们之间的差值±Δf(即多普勒频差)。
进而可以根据立体直角棱镜移动度数和时间求得被测长度。
双频激光干涉仪中,双频起到了调频的作用,被测信号只是叠加在这一调频副载波上,这副载波与被测信号一起均被接收并转换成电信号。
2、双频激光干涉仪在大尺寸测量中的应用
双频激光干涉仪是精度最高、可靠性非常好的仪器,是高精度大尺寸测量中优先考虑的测量手段。
(1)双频激光干涉仪测量大尺寸轴径
双频激光干涉仪是一种增量式测长仪。
在时间t内,被测长度对应的多普勒频差为计数器记得的脉冲数K。
计数器计脉冲数时,需要有信号控制计数器开始计数和停止计数,此信号由准直系统提供。
当准直系统对准被测轴径的测量起点时,发出一个开始计数信号;当准直系统对准被测的测量终点时,发出一个停止计数信号,计数器停止计数。
所以准直系统对准的精度直接影响测量系统准确度。
激光准直的工作原理为,由氦氖激光器发射出激光,经过前端望远镜系统后,发射是出一束激光束作为系统准直的基准,光电目标靶为准直系统的接收装置,常用的是硅光电探测器。
3、双频激光干涉仪在数控车床检定中的应用
双频激光干涉仪与不同光学附件结合,可以测量距离、直线度、垂直度、平行度、平面度。
由于仪器为模块化结构,安装位置灵活,便于分析机床误差来源;而且测量时可以在工作部件运动过程中自动采集数据,更接近机床的实际使用状态。
与传统的检定方法相比,激光干涉仪具有较高的精度和效率,并能及时处理数据,为机床误差修正提供依据。
因此,用双频激光干涉仪检测机床各项误差是一种用传统测量手段难以实现的的技术。
位置精度是机床的重要指标,目前世界各国机床检定标准中都推荐使用激光干涉仪进行该项精度的检定。
用双频激光干涉仪检定位置精度使用长度干涉仪和测量反射镜,测量时将长度干涉仪置于不动位置,反射器安装在运动部件上(也可相反) 。
更多相关内容,就在深圳机械展!。