激光干涉仪功能与应用

合集下载

激光干涉仪的设计与应用

激光干涉仪的设计与应用

激光干涉仪的设计与应用激光干涉仪是一种利用激光干涉原理测量物体长度的仪器。

它的特点是测量精度高,可达到亚微米级别,适用于各种长度的测量。

在制造、工程、科学等领域都有重要的应用,下面将介绍其设计和应用。

一、激光干涉仪的原理激光干涉仪基于干涉原理,即利用激光的相干性,将两束激光光束分别照射到测量物体的两个不同位置上,然后让光束反射回来,经过干涉产生干涉条纹,通过分析干涉条纹的移动和变化,可以测量物体的长度、形状和表面质量等。

二、激光干涉仪的构造激光干涉仪主要由光源、分光器、反射镜、光电探测器、转换电路等组成。

其中光源是激光器,应具有单色、长寿命、高光强度、小发散角度等特点。

分光器和反射镜将激光分成两束并反射回到测量物体上,然后经过干涉、反射等过程,形成干涉条纹。

光电探测器可以将光电信号转换成电信号,然后经过转换电路放大、滤波、解调等处理,最终得到测量结果。

三、激光干涉仪的应用1.表面形貌测量激光干涉仪可以用于表面形貌测量,例如测量机械零件的平整度、光学元件的表面形状、生物医学材料的表面粗糙度等。

利用干涉技术可以获得高精度的表面高程和表面形状信息。

2.形变测量激光干涉仪也可用于测量物理量的变形,如应力、形变、位移等。

例如在建筑工程中可以利用激光干涉技术测量混凝土梁的挠度和伸缩变形,从而评估结构的安全性。

3.纳米测量激光干涉仪可用于纳米尺度测量,例如测量纳米材料的形貌、纳米粒子的大小等。

利用干涉技术可以获得高分辨率的纳米级别表征。

4.光学元件测试激光干涉仪还可以用于光学元件测试,例如测量透镜、反射镜、光栅等的曲率半径、折射率、相位等。

利用干涉技术可以获得高精度的光学参数信息。

四、其他需要注意的事项使用激光干涉仪时需要注意安全,避免对人眼造成伤害。

此外激光干涉仪的精度和灵敏度都较高,需要进行科学的校准和校验,避免因仪器误差而产生误报。

总之,激光干涉仪作为一种高精度的测量工具,可以在制造、科学、工程等领域有着广泛的应用。

激光干涉仪原理及应用概述

激光干涉仪原理及应用概述

激光干涉仪原理及应用概述激光干涉仪的原理可以简单介绍为以下几个步骤:首先,激光器产生激光光束,通过光学系统使光束变得平行。

然后,光束被分成两束,一束作为参考光束,另一束作为测量光束。

参考光束被发送到一个参考反射镜上反射回来,而测量光束则被发送到被测物体上,然后反射回来。

参考光束和测量光束在一个光学平台上交汇,形成干涉条纹。

通过观察、记录和分析干涉条纹的形态变化,可以得到被测物体的表面形貌或者其他参数。

1.工业制造:激光干涉仪可以用于测量工件的平面度、圆度、直线度等形貌参数,用于质量控制和优化生产过程。

2.精密测量:激光干涉仪可以进行亚微米级的位移测量,被用于精密仪器的研发和生产。

3.表面形貌测量:激光干涉仪可以测量微观表面的凹凸及表面光滑度,广泛应用于材料科学、纳米科技等领域。

4.生物医学:激光干涉仪可以测量生物组织的变形、变量等参数,用于医学研究和医疗诊断。

5.振动分析:激光干涉仪可以对机械部件或振动体进行振动频率、幅度等参数的测量,用于机械工程的研究和调试。

激光干涉仪的应用还在不断拓展和发展,不仅可以实现高精度的测量,还可以配合其他技术如像散斑技术、数码图像处理等进行更精确的测量和分析。

此外,随着激光技术的发展,激光干涉仪的体积和成本也在不断降低,有助于其在各个领域的广泛应用。

总之,激光干涉仪作为一种高精度测量仪器,具有广泛的应用前景。

它可以实现精确测量、快速响应和非接触测量等特点,被用于各个领域的研究和应用。

随着技术的进一步发展,激光干涉仪将会在更多领域得到应用,为科学研究和工业生产提供更多的支持和解决方案。

激光干涉仪的原理和应用

激光干涉仪的原理和应用

激光干涉仪的原理和应用1. 引言激光干涉仪是一种利用激光的干涉现象测量物体形状、表面粗糙度等参数的高精度仪器。

本文将介绍激光干涉仪的原理和应用,并深入探讨其工作原理和常见的应用领域。

2. 原理激光干涉仪的原理基于激光的干涉现象。

当两束光波相遇时,若其光程差为整数倍的波长,两束光波会发生干涉。

激光干涉仪利用这个原理,通过测量干涉条纹的位置和形态来进行各种参数的测量。

3. 工作原理激光干涉仪的工作原理可以分为两个步骤:光路干涉和信号处理。

3.1 光路干涉激光干涉仪的光路干涉部分包含分束器、反射镜和待测物体。

激光通过分束器被分为两束光,一束经过反射镜反射后再次汇聚,另一束直接照射到待测物体上。

两束光再次汇聚形成干涉条纹,这些条纹可以用来测量待测物体的形状和表面特性。

3.2 信号处理激光干涉仪的信号处理部分主要包括光电探测器和信号分析处理装置。

光电探测器负责将干涉条纹转换为电信号,信号分析处理装置则对这些电信号进行处理和分析,提取出有用的信息。

4. 应用激光干涉仪具有高精度、非接触、快速测量等特点,在各个领域都有着广泛的应用。

4.1 表面形状测量激光干涉仪可以通过测量干涉条纹的位置和形态来获取物体的表面形状信息。

例如,在机械制造中,可以利用激光干涉仪来检测零件的平整度、平行度等参数;在地质勘探中,可以用激光干涉仪来测量地表起伏、地壳变形等。

4.2 表面粗糙度测量激光干涉仪还可以用于表面粗糙度的测量。

通过测量干涉条纹的密度和间距,可以确定物体表面的粗糙度。

这在材料科学、电子工程等领域都有着重要的应用。

4.3 精密测量激光干涉仪的高精度使得其在精密测量领域有着广泛应用。

例如,在光学制造过程中,可以利用激光干涉仪来测量光学元件的表面形状,保证其质量和精度;在纳米技术中,激光干涉仪可以用于测量微小尺寸的构造。

4.4 光学与激光实验研究在光学与激光实验研究中,激光干涉仪也扮演着重要角色。

利用激光干涉仪,可以研究光的干涉、衍射等现象,对光学原理进行深入理解。

激光干涉仪原理及应用

激光干涉仪原理及应用

激光干涉仪原理及应用
激光干涉仪是一种利用激光光束干涉现象进行测量和检测的仪器。

它利用激光的单色性、相干性和定向性等特点,通过激光光束的干涉现象来测量光线的相位和波前差,从而达到测量目的。

激光干涉仪的原理和应用都具有重要的科学研究价值和实际应用意义。

激光干涉仪的原理可以简单描述为:两束激光光束通过分束器分开,分别在一边经过样品(或目标物)后再次合并在一起,然后通过干涉物后进入光电探测器进行信号采集。

当两束光经过样品后的相位有差异时,就会产生干涉,形成干涉条纹。

通过观察和分析干涉条纹的变化,可以得到样品的相关信息,如形状、厚度、折射率等。

激光干涉仪的原理中,常见的有两种干涉方式,即自由空间干涉和光纤干涉。

自由空间干涉指的是激光光束在空气中进行干涉,可用于测量样品的曲率、平面度、倾斜度等参数。

而光纤干涉则是将激光光束传输到光纤中进行干涉,可用于对光纤的插入损耗、光纤传输的延迟等进行测量。

激光干涉仪的应用非常广泛。

首先,在科学研究中,激光干涉仪可用于测量光学元件的表面形貌,如透镜、棱镜等,以及光学薄膜的厚度和折射率。

其次,激光干涉仪在工业领域中也得到广泛应用,如测量金属工件的平面度、光滑度等,以及检测半导体器件的曲率、形状等。

此外,激光干涉仪还可用于测量纳米颗粒、生物细胞和薄膜等微小尺度的物体,应用于生物医学领域,如细胞生长的监测、精确测量等。

总之,激光干涉仪作为一种精密测量和检测仪器,在科学研究和工业应用中具有重要意义。

其原理的理解和应用的熟练掌握可推动光学测量和微纳技术的发展,为实现精确测量和控制提供基础和技术支持。

激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度

激光干涉仪测量距离和表面精度激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。

通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。

本文将介绍激光干涉仪的原理、测量距离和表面精度的方法,以及激光干涉仪在不同领域中的应用。

激光干涉仪是基于光波的干涉现象进行测量的仪器。

光波的干涉是指两束或多束光波相遇时发生的波的叠加现象。

激光干涉仪通过将激光分成两束,一束作为参考光束,一束照射到待测物体上反射回来作为待测光束,再将两束光波进行干涉,通过测量干涉条纹的变化来获得距离和表面精度的信息。

激光干涉仪的测量距离的原理基于光波的干涉,利用干涉条纹的变化来获得物体到仪器的距离。

当两束光波相遇时,它们会发生干涉,干涉条纹的间距和形态会随着物体到仪器的距离的变化而改变。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离。

这种测量方法具有高精度和高分辨率的特点,适用于微小距离的测量。

激光干涉仪的测量表面精度的方法基于光波的干涉,利用干涉条纹的形态和间距来获得表面精度的信息。

当光波照射到物体表面时,由于表面的形态和光的反射特性的影响,干涉条纹的形态和间距会发生变化。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体表面的精度。

这种测量方法具有高精度和高分辨率的特点,适用于表面平整度和粗糙度的测量。

激光干涉仪广泛应用于多个领域,如制造业、科学研究和地质勘探等。

在制造业中,激光干涉仪可用于检测零件的尺寸和形状,以及测量零件表面的精度。

在科学研究中,激光干涉仪可用于研究光学现象、材料的性质和微小物体的运动。

在地质勘探中,激光干涉仪可用于测量地表的高程和形态,以及探测地下的岩层和地下水位。

总结一下,激光干涉仪是一种常用的精密测量仪器,可用于测量距离和表面精度。

通过利用光波的干涉现象,激光干涉仪能够实现高精度的测量。

通过测量干涉条纹的形态和间距的变化,激光干涉仪可以计算出物体到仪器的距离和物体表面的精度。

激光干涉仪分类及应用

激光干涉仪分类及应用

激光干涉仪分类及应用一、概述激光干涉仪是一种光学仪器,利用激光干涉的原理来测量长度、角度、形状等物理量。

它被广泛应用于科学研究、工业制造、医学诊断等领域。

根据其原理和使用方式的不同,可以将激光干涉仪分为多种类型。

二、分类1. 干涉仪原理分类激光干涉仪可以根据其采用的干涉原理来进行分类:•束干涉仪:利用两个互相干扰的激光束,当两束光相遇时,产生干涉条纹,用于测量物体之间的形状、位置和尺寸。

•显微干涉仪:利用显微镜将被测物体分成若干区域,利用激光的光程差形成干涉条纹,可用于测量胶膜厚度、半导体芯片等微小尺寸物体的形状和表面粗糙度。

•波前干涉仪:利用激光周波变化的特性,测量光学元件透过光束的波前变化情况,用于测量光学元件精度和光学系统的成像质量。

•全息干涉仪:利用全息记录技术,将干涉条纹记录下来,并在还原光下投影出来,测量物体形状、表面形貌、变形、位移等。

2. 应用分类激光干涉仪可以根据其应用范围来进行分类:•光学加工:用于激光焊接、切割、打孔、表面处理等光学加工工艺。

•材料表征:用于测量材料的表面形貌、变形、膨胀系数、热膨胀系数等参数。

•基础研究:用于准确测量物理量,如长度、角度、形状等,尤其是在量子光学、非线性光学、太赫兹光学等领域有广泛应用。

•医学诊断:用于测量人体的视力、血流速度、角膜厚度等生物医学参数。

三、激光干涉仪在工业制造中的应用1. 光学加工激光干涉仪可以准确测量材料的表面形状和位置,可广泛应用于光学加工行业中。

例如,它可以用于激光切割机上的切割控制、钣金加工、电路板打孔、精密加工和微加工等。

2. 精密测量激光干涉仪可以实现高精度的测量,可广泛应用于工业制造行业中的质量检测、自动化控制、生产线监控等方面。

例如,它可以用于测量汽车车轮的径向跳动、轮毂的偏心度、液体流量、材料的热膨胀系数等等。

3. 热处理激光干涉仪可以用来监测温度,特别是在热处理过程中,它可以实时测量温度并做出相应的调整,从而确保制造出高质量的产品。

激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用

激光干涉仪在机床精度检测中的应用激光干涉仪是一种高精度、高灵敏度的测量设备,可以用于机床精度检测中。

激光干涉仪可以测量机床运动的平行度、垂直度、角度误差等各种参数,是机床精度检测中不可或缺的工具之一。

一、激光干涉仪的原理激光干涉仪是一种利用激光光束进行干涉研究的设备。

它的基本原理是:利用激光束的干涉现象进行测量。

干涉是指两束光线相遇,在一定条件下,它们会发生干涉现象,形成干涉条纹。

这些干涉条纹的形态和数量可以反映出被测量的物体的形态、尺寸等信息。

激光干涉仪通常被用于测量机床加工的平行度、垂直度、角度误差等参数。

具体应用如下:1. 测量机床的平行度利用激光干涉仪可以测量机床导轨的平行度。

将激光干涉仪放置在一条导轨上,再让激光束照射在另一条导轨上,此时读取干涉条纹,便可判断导轨是否平行。

利用激光干涉仪可以测量机床主轴的角度误差。

将激光束照射到主轴上,读取干涉条纹,便可判断主轴是否与机床的加工平面保持垂直。

1. 高精度激光干涉仪具有高精度、高灵敏度的特点,可以测量微小的误差和变化。

2. 非接触式测量激光干涉仪是一种非接触式测量设备,不会对机床造成任何影响,保证了机床的精度和稳定性。

3. 测量快速相比传统的测量方法,激光干涉仪具有快速、方便的优点,可以快速地获得精度检测结果,提高了生产效率。

总之,激光干涉仪是一种高精度、非接触式的测量设备,广泛应用于机床精度检测中。

它可以快速、准确地检测出机床的各项参数,保证了机床的精度和稳定性,为加工生产提供了重要的保障。

简述激光干涉仪的基本原理及应用

简述激光干涉仪的基本原理及应用

简述激光干涉仪的基本原理及应用激光干涉仪的基本原理激光干涉仪是一种利用干涉现象测量物体形状、表面粗糙度和位移等参数的仪器。

它基于光的干涉原理,通过将激光分成两束,使得它们在空间中相互干涉产生干涉条纹。

根据干涉条纹的变化,可以获取物体表面的形状和位移信息。

以下是激光干涉仪的工作原理:1.激光发射:激光干涉仪使用一台激光器产生单一频率、单色性好的激光束。

2.光分束:激光束被一个分束器分成两束,分别称为参考光和测量光。

3.光路径的差异:参考光和测量光沿着不同路径到达物体表面,然后反射回来。

4.光的重合:参考光和测量光在空间中重合形成干涉条纹,这些条纹会展现出光程差的变化。

5.干涉条纹的检测:通过使用光电二极管或相机等光学检测器,可以观察和记录干涉条纹的变化。

6.数据处理:通过对记录的干涉条纹进行分析和处理,可以得到物体表面的形状、位移等参数。

激光干涉仪的应用激光干涉仪广泛应用于科学研究、工程技术和工业领域。

以下是一些常见的应用领域:1.表面形貌测量:激光干涉仪可以用来测量物体的表面形状和轮廓。

通过分析干涉条纹的密度和形态,可以获取物体表面的高程数据,从而实现对物体形貌的准确测量。

2.镜面反射测试:激光干涉仪可以用来测试镜面的反射质量。

通过分析镜面反射的干涉条纹,可以评估镜面的平整度、平行度等参数,从而判断镜面的质量。

3.光学元件定位:激光干涉仪可以用来定位光学元件,例如透镜、光栅等。

通过测量光学元件的位置和位移,可以实现准确的光学装配和校正。

4.振动分析:激光干涉仪可以用来分析物体的振动状态。

通过测量物体在不同时间点的位移,可以获得物体的振动频率、振幅等信息,从而进行振动分析和优化设计。

5.材料应力测试:激光干涉仪可以用来测试材料的应力分布。

通过测量材料表面的形变量,可以推断材料内部的应力分布状况,从而实现对材料力学性能的评估。

综上所述,激光干涉仪是一种重要的光学测量仪器,具有广泛的应用前景。

它通过利用激光的干涉现象,实现对物体形状、表面粗糙度和位移等参数的测量和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。

通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。

在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。

SJ6000基本线性测量配置:图1-基本线性配置SJ6000全套镜组:图2-SJ6000全套镜组镜组附件:图3-SJ6000 镜组附件镜组安装配件:图4-SJ6000 镜组安装配件1.1. 线性测量1.1.1. 线性测量构建要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。

线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。

如下图所示。

图5-线性测量构建图图6-水平轴线性测量样图图7-垂直轴线性测量样图1.1.2. 线性测量的应用1.1.2.1. 线性轴测量与分析激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。

测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准图9-激光干涉仪应用于三坐标机校准SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

图8-数据采集界面图9-数据处理界面图10-数据分析曲线界面1.1.2.2. 高精度传感器校准利用激光干涉仪对位移传感器检定成为发展趋势,其特点是反应速度快、测量精度高。

图10-激光干涉仪应用于传感器校准1.1.2.3. 实验室标准器激光干涉仪是当今精度最高的测长仪器,因光波具有可以直接对米进行定义且容易溯源的特点,因此国家实验室多用激光干涉仪做实验室标准器进行量值传递。

图11-激光干涉仪应用于实验室1.1.2.4. 轻型线性附件的应用对于光学镜重量或尺寸可能影响机器动态性能或光学镜安装遇到困难的应用场合,中图仪器提供的轻型线性附件,其小角锥反射镜重量在8g以内,可直接吸附在测量设备上,以此降低镜组附件重量对机器测量的影响。

详见下图:图12-轻型线性附件图13-轻型线性附件应用于测长机实例图14-轻型线性附件应用于螺纹机测量实例1.1.2.5. 可调转向镜的使用可调转向镜可以把水平光线倾斜20°以上的角度,用于倾斜机床、三坐标机的测量。

图15 倾斜机床的定位精度检测1.1.2.6. 测头夹具的使用测头夹具能固定在φ32mm的三坐标探头上,方便固定线性反射镜。

1.2. 角度测量1.2.1. 角度测量构建与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,测试时角度反射镜和角度干涉镜必须有一个相对旋转,相对旋转后两束光的光程差就会发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。

图16-角度测量原理及测量构建图17水平轴俯仰角度测量样图图18-2水平轴偏摆角度测量样图1.2.2. 角度测量的应用1.2.2.1. 小角度精密测量激光干涉仪角度镜能实现±10°以内的角度精密测量。

图19-小角度测量实例1.2.2.2. 准直平台/倾斜工作台的测量由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。

您可以结合实际需要进行安装、测量。

图20-水平方向角度测量图21-垂直方向角度测量在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析出导轨的直线度信息,实现角度镜组测量直线度功能。

1.3. 直线度测量1.3.1. 直线度测量构建SJ6000激光头射出后的激光由直线度干涉镜以一定的小角度分为两束,并入射到直线度反射镜中。

经直线度反射镜反射后,沿着新光路返回到直线度干涉镜中,经直线度干涉镜合束后返回激光头的进光口,当直线度干涉镜偏离光线,则两光束产生光束差,由激光干涉仪探测器探测出来,由软件计算显示出来。

图22-直线度测量原理在直线度测量过程中,一般尽可能的采用直线度干涉镜相对于直线度反射的运动,这样操作有利于提高测量的准确性和精度。

图23-直线度测量构建1.3.2. 直线度干涉镜的连接SJ6000直线度干涉镜提供两种连接方式。

除通过夹紧块连接外,还可以通过直线度附件中的M8连接头连接。

图24直线度附件-M8连接头以及应用1.3.3. 直线度测量应用由于导轨磨损、事故造成的导轨损坏以及地基不牢导致的导轨弯曲等,会对机器的定位、加工精度带来直接的影响。

直线度测量可以显示出机器导轨的弯曲的情况,并可由生成的直线度误差对机器的性能做出评价和补偿。

直线度测量可以对水平面和垂直面进行测量,这取决于直线度干涉镜和反射镜安装的方法。

1.3.3.1. 机器轴、直线导轨测量当需要测量导轨较长时,传统的直接测量方法无法提供这样的测量长度和精度。

测量建议将质量较轻的直线度干涉镜作为移动部件,因为较重的反射镜的移动可能会对测量的准确性产生影响。

图25-直线导轨左右方向直线度测量图26-直线导轨上下方向直线度测量1.3.3.2. 机床工作台直线度测量测量时,直线度反射镜固定,直线度干涉镜安装在移动的工作台上,通过直线度干涉镜的移就可以测量工作台的直线度。

图27-机床平台左右方向直线度测量图28-机床平台上下方向直线度测量图29-小型工作台直线度测量1.4. 垂直度测量1.4.1. 垂直度测量构建垂直度的测量是直线度测量在二维方向上的延伸,进行垂直度测量就是在同一基准上对两个标称正交轴分别进行直线度的测量。

然后对两个轴的直线度进行比较,得出两个轴的垂直度。

共同的参考基准通常指的是两次测量时反射镜的光学准直轴,在两次测量过程中既不移动、也不调整,光学直角尺用于至少一次测量中,允许调整激光束与直线度的准直,而不动直线度反射镜。

垂直度误差= 棱镜误差-(倾斜度1 + 倾斜度2)图30-垂直图测量构建1.4.2. 垂直度测量应用1.4.2.1. 机器轴垂直度误差测量(数控机床、坐标测量机等)垂直度测量通过比较直线度值从而确定两个标称正交坐标轴的垂直度。

垂直度误差可能是导轨磨损、机器地基差或双驱动机器上的两原点传感器未准直造成的。

垂直度误差将对机器的定位精度及插补能力产生直接影响。

一般情况下对于超过1.5米长的机器轴,使用激光干涉仪这样的光学方法是唯一的选择,因为传统的实物基准,如直角尺(金属或大理石等) 的长度一般局限于1米的范围内。

1.4.2.2. X,Y轴垂直度对准X,Y工作台和水平面垂直度测量:不管是什么类型的XY平台,包括龙门型或者混合型或者其他类型的XY平台,无论是大型或者小型平台,重要的是有一个共同的参考基准,如图31所示的直线度反射镜,测量过程中直线度反射始终镜保持不动。

图31-机床垂直度测量1.4.2.3. 带Z轴的垂直度测量对于涉及带Z轴的垂直度测量,需要额外的增加直线度的附件,主要包括一个大角锥反射镜、一个垂直转向镜、一个直线度底座。

图32-直线度附件-大角锥反射镜、垂直转向镜、直线度底座图33-机床垂直度测量1.5. 平面度测量1.5.1. 平面度测量原理平面测量是在角度测量的基础上做的延伸,利用角度测量的附件记录下一系列平面位置角度,再转化为高度的变化。

一般按照对角线的方法测量出平台上不同位置的高度变化值,提供软件计算得到整个平台的平面度。

图34-平面度测量原理图35-平面度测量分析1.5.2. 平面度应用及方法测量一个平面的平面度,需要在平面上采集若干条测量直线,平面度测量有常用的方法为:对角线法,又称米字法图36-平面度测量方法对角线法测量平面度时,若激光头位于G点出,光线射向E点时,建议按照EA、CA、DH、EG、AG、BF、CE、GC的次序进行测量。

图37-大理石平台平面度测量实例1.6. 回转轴测量利用高精密转台与角度测量镜组中的角度干涉镜,即可对回转轴进行任意角度测量和校准。

高精密转台小巧轻便、单手可握,可多种方式安装在被测机床上;高精密转台内置准直角度反射镜,提高操作效率;使用时采用锂电池供电、无线蓝牙传输数据,避免了绕线、线拖拽。

图38-高精密转台高度:165mm直径:125mm角度测量范围:(0-360)°测量精度:±1角秒最高转速:10rpm图39-高精密转台应用回转轴校准原理:1、将转台定位在被测轴上并调整激光系统的准直(转台可以自动调整与光轴的垂直)。

2、在轴的起始位置将激光装置置零,在计算机上开始采集数据并运行数控程序。

3、完成越程后,轴到达起始目标位置(激光读数为零),记录激光读数。

4、被测轴以5°步距移至第二个目标,转台内置的反射镜反向旋转5°。

5、系统结合激光干涉仪与转台的读数,记录被测轴在5°的位置误差。

6、通过使回转轴依次到达一系列测量点,可测量并绘出轴的总体误差图。

2. 动态测量动态测量包含基于时间的动态测量和基于距离的动态测量。

其中通过基于时间或位移的两种方式采集到大量的数据,对这些数据进行动态分析和FFT分析。

其中动态测量与分析包括:位移-时间曲线、速度-时间曲线、加速度-时间曲线、振幅与频率。

软件可与线性、角度或直线度光学镜组配合使用,用于线性振动、角度振动、动态直线度等切削或切割应用场合。

可以“实时”监控数据(如调试机器参数),并可保存最终结果用动态分析软件进行进一步分析。

2.1. 基于时间的动态测量基于时间的采集使动态软件能够提供相对位移数据,动态软件通常在用户设定的时间范围内采集并保存这些数据。

2.1.1. 机器位置控制●运动控制器PID参数设置。

●高速运动后机器的稳定性和稳定所需时间。

●用于高性能运动控制的微小步幅(亚微米) 运动测试。

2.1.2. 振动监视●扫描应用:用于定位精度不重要、但恒速对实现高质量成像非常关键的场合。

●机床应用:典型应用包括要求刀具慢速、平稳轮廓运动的高质量表面精加工。

2.1.3. 振动分析●分析被测对象的振动频率●通过快速傅立叶变换(FFT) 分离振动频率2.2. 基于距离的动态测量运动轴在不停顿的情况下以用户指定的间隔采集数据。

2.3. 动态测量分析测量软件主界面:图40-测量软件主界面测量完成实现多种结果分析图41-目标位置的过冲和稳定时间分析可以用于分析机器位置控制特性,测试,优化机器稳定所需时间振动分析用于分析被测对象的振动频率,通过快速傅立叶变换(FFT)分离振动频率图43-速度分析图44-加速度分析。

相关文档
最新文档