山东省青岛市2020高三数学上学期期末考试试题
山东省青岛市2020届高三上学期期末考试数学试题及答案

A.4
B.3
C.2
D.1
6.在 ABC 中, AB + AC = 2AD, AE + 2DE = 0,若EB = xAB + y AC ,则
A. y = 2x
B. y = −2x
C. x = 2 y
D. x = −2 y
7.已知双曲线
C
:
x2 a2
−
y2 b2
= 1,(a
0, b 0) 的左、右焦点分别为 F1, F2,O 为坐标原点,P
A.将
y
=
sin
2x
+
3
的图象
C2沿x
轴方向向左平移
12
个单位
B.
y
=
sin
2x
+
3
的图象
C2沿x
轴方向向右平移
11 12
个单位
C.先作 C2关于x
轴对称图象 C3 ,再将图象 C3沿x
轴方向向右平移 5 12
个单位
D.先作
C2
关于
x
轴对称图象
C3
,再将图象
是双曲线在第一象限上的点, PF1 =2 PF2 =2m,(m 0), PF1 PF2 = m2 ,则双曲线 C 的渐
1
近线方程为
A. y = 1 x B. y = 2 x
2
2
C. y = x
8.已知奇函数 f ( x) 是 R 上增函数, g ( x) = xf ( x) 则
D. y = 2x
A.
g
log3
1 4
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
山东省青岛市莱西经济开发区中心中学2020-2021学年高三数学理期末试题含解析

山东省青岛市莱西经济开发区中心中学2020-2021学年高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合A={x|x2﹣3x+2=0},B={x|log x4=2},则A∪B=()A.{﹣2,1,2} B.{1,2} C.{﹣2,2} D.{2}参考答案:B【考点】并集及其运算.【分析】先将A,B化简,再计算并集,得出正确选项.【解答】解:∵A={x|x2﹣3x+2=0}={x|(x﹣1)(x﹣2)=0}={1,2}B={x|log x4=2}={2}∴A∪B={1,2}故选B.2. 已知函数f(x)=x2+2a1og2(x2+2)+a2﹣3有且只有一个零点,则实数a的值为()A.1 B.﹣3 C.2 D.1或﹣3参考答案:A考点:函数零点的判定定理.专题:函数的性质及应用.分析:先确定函数f(x)是偶函数,再由函数f(x)的零点个数有且只有一个故只能是f(0)=0,从而得到答案.解答:解:∵函数f(x)=x2+2a1og2(x2+2)+a2﹣3,f(﹣x)=f(x),∴f(x)为偶函数,∴y=f(x)的图象关于y轴对称,由题意知f(x)=0只有x=0这一个零点,把(0,0)代入函数表达式得:a2+2a﹣3=0,解得:a=﹣3(舍),或a=1,令t=x2,则f(x)=g(t)=t+2alog2(t+2)+a2﹣3.当a=1时,g(t)=t+2log2(t+2)﹣2,由于g(t)≥g(0)=0,当且仅当x=0时取等号,符合条件;当a=﹣3时, g(t)=t﹣6log2(t+2)+6,由g(30)=30﹣6×5+6>0,g(14)=14﹣6×4+6<0,知f(x)至少有三个根,不符合.所以,符合条件的实数a的值为1.故答案选:A.点评:本题主要考查函数零点的概念,要注意函数的零点不是点,而是函数f(x)=0时的x的值,属于中档题.3. 已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为()A. B. C.D.参考答案:解析:几何体为一个圆锥和一个半球的组合体,且,故选C4. 若复数z满足(z+1)i=2﹣i,则复数z的共轭复数在复平面上所对应点在()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【专题】数系的扩充和复数.【分析】由(z+1)i=2﹣i,利用复数代数形式的乘除运算求出z,则z的共轭复数可求,进一步求出复数z的共轭复数在复平面上所对应点的坐标,则答案可求.【解答】解:∵(z+1)i=2﹣i,∴.则.∴复数z的共轭复数在复平面上所对应点的坐标为:(﹣2,2),位于第二象限.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.5. 设,且,则()A.B.C.D.参考答案:B6. 将一圆的六个等分点分成两组相间的三点﹐它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星﹐如图所示的正六角星是以原点为中心﹐其中﹐分别为原点到两个顶点的向量﹒若将原点到正六角星12个顶点的向量﹐都写成为的形式﹐则的最大值为()。
2019-2020学年人教A版山东省青岛市胶州市高一第一学期期末数学试卷 含解析

2019-2020学年高一第一学期期末数学试卷一、选择题1.已知扇形的圆心角为30°,半径为6,则该扇形的弧长为()A.πB.C.D.2.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为,其中Q表示鱼的耗氧量的单位数.当一条鲑鱼的游速为m/s时,则它的耗氧量的单位数为()A.900 B.1600 C.2700 D.81003.函数f(x)=+lg(x+2)的定义域是()A.(﹣2,)B.(﹣2,] C.(﹣2,+∞)D.()4.角θ的终边上一点,则=()A.B.C.D.5.已知θ∈(0,π),则“”的必要不充分条件是()A.B.C.D.6.函数f(x)=lgx与g(x)=cos x的图象的交点个数为()A.1 B.2 C.3 D.不确定7.函数f(x)=cos2x+sin x(x∈R)的最大值为()A.﹣1 B.C.1 D.8.已知函数f(x)是定义在R上的奇函数,f(x)=f(x+4),且f(1)=1,则f(2019)+f(2020)=()A.﹣1 B.0 C.1 D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.下列函数是偶函数的是()A.f(x)=tan x B.f(x)=sin x C.f(x)=cos x D.f(x)=lg|x| 10.已知a=30.1,b=log0.93,c=sin(cos1),则下述正确的是()A.a>b B.a>c C.b>c D.b>011.已知函数,若函数g(x)=f(x)﹣m恰有2个零点,则实数m可以是()A.﹣1 B.0 C.1 D.212.已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.D.k+tanα≥4三、填空题13.若tanθ=2,则=.14.已知幂函数f(x)的图象经过点,则f(4)的值为.15.求值:sin220°(tan10°﹣)=.16.已知函数,g(x)=x2﹣2x,对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是.四、解答题17.已知集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.(1)求B∩C;(2)设全集U=R,求(∁U A)∩C;(3)若,证明:a∈A∪B.18.已知函数f(x)=1+log a x(a>0,a≠1)的图象恒过点A,点A在直线y=mx+n(mn >0)上.(1)求的最小值;(2)若a=2,当x∈[2,4]时,求y=[f(x)]2﹣2f(x)+3的值域.19.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在上的最小值.20.函数f(x)=A sin(ωx+φ)在R上的最大值为,f(0)=1.(1)若点在f(x)的图象上,求函数f(x)图象的对称中心;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,若y=g(x)在上为增函数,求ω的最大值.21.如图,长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.(1)求角θ的取值范围;(2)求出△EFG周长l关于角θ的函数解析式f(θ),并求△EFG周长l的取值范围.22.设函数f(x)的定义域为I,对于区间D⊆I,若∃x1,x2∈D(x1<x2)满足f(x1)+f (x2)=1,则称区间D为函数f(x)的V区间.(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知扇形的圆心角为30°,半径为6,则该扇形的弧长为()A.πB.C.D.【分析】根据弧长的公式l=,代入直接求解即可.解:根据弧长的公式l=,得l==π.故选:A.2.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为,其中Q表示鱼的耗氧量的单位数.当一条鲑鱼的游速为m/s时,则它的耗氧量的单位数为()A.900 B.1600 C.2700 D.8100【分析】令v=得,,解出Q即可.解:令v=得,,∴,∴,∴Q=2700,故选:C.3.函数f(x)=+lg(x+2)的定义域是()A.(﹣2,)B.(﹣2,] C.(﹣2,+∞)D.()【分析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解.解:由,解得﹣2<x<.∴函数f(x)=+lg(x+2)的定义域是(﹣2,).故选:A.4.角θ的终边上一点,则=()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得所给式子的值.解:角θ的终边上一点,则=sinα==,故选:A.5.已知θ∈(0,π),则“”的必要不充分条件是()A.B.C.D.【分析】根据三角函数的特殊值和充分必要条件的定义即可判断.解:θ∈(0,π),则“”,则sinθ=,若sinθ=,则θ=或θ=,故“”的必要不充分条件是sinθ=,故选:B.6.函数f(x)=lgx与g(x)=cos x的图象的交点个数为()A.1 B.2 C.3 D.不确定【分析】画出图象,根据函数的单调性值域即可得出.解:画出图象,lg1=0,lg10=1,cos x∈[﹣1,1],可得f(x)=lgx与g(x)=cos x的图象的交点个数为3.故选:C.7.函数f(x)=cos2x+sin x(x∈R)的最大值为()A.﹣1 B.C.1 D.【分析】配方后得到关于sin x的二次函数,由x取任意实数,得到sin x∈[﹣1,1],利用二次函数的性质即可求出函数的最大值.解:f(x)=cos2x+sin x=1﹣sin2x+sin x=﹣sin2x+sin x+1=﹣(sin x﹣)2+,∵x∈R,∴sin x∈[﹣1,1],则sin x=时函数的最大值为.故选:D.8.已知函数f(x)是定义在R上的奇函数,f(x)=f(x+4),且f(1)=1,则f(2019)+f(2020)=()A.﹣1 B.0 C.1 D.2【分析】根据题意,由f(x)=f(x+4)可得f(2019)=f(﹣1+505×4)=f(﹣1),f(2020)=f(505×4)=f(0),结合奇函数的性质求出f(0)与f(1)的值,相加即可得答案.解:根据题意,函数f(x)满足f(x)=f(x+4),则f(2019)=f(﹣1+505×4)=f(﹣1),f(2020)=f(505×4)=f(0),又由函数f(x)是定义在R上的奇函数且f(1)=1,则f(0)=0,f(﹣1)=﹣f(1)=﹣1,则f(2019)+f(2020)=f(0)+f(﹣1)=﹣1;二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.下列函数是偶函数的是()A.f(x)=tan x B.f(x)=sin x C.f(x)=cos x D.f(x)=lg|x| 【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.解:根据题意,依次分析选项:对于A,f(x)=tan x,是正切函数,是奇函数,不符合题意;对于B,f(x)=sin x,是正弦函数,是奇函数,不符合题意;对于C,f(x)=cos x,是余弦函数,是偶函数,符合题意;对于D,f(x)=lg|x|,其定义域为{x|x≠0}有f(﹣x)=lg|﹣x|=lg|x|=f(x),是偶函数,符合题意;故选:CD.10.已知a=30.1,b=log0.93,c=sin(cos1),则下述正确的是()A.a>b B.a>c C.b>c D.b>0【分析】利用指数对数函数、三角函数的单调性即可得出.解:a=30.1>1,b=log0.93<0,c=sin(cos1)∈(0,1),则:a>c>b.故选:AB.11.已知函数,若函数g(x)=f(x)﹣m恰有2个零点,则实数m可以是()A.﹣1 B.0 C.1 D.2【分析】画出函数f(x)的图象,进而得出结论.解:画出函数f(x)的图象,x∈[1,+∞)时,f(x)=﹣(x﹣2)2+1.若函数g(x)=f(x)﹣m恰有2个零点,则实数m=1,或m≤0.因此m可以为﹣1,0,1.12.已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.D.k+tanα≥4【分析】由题意利用韦达定理,基本不等式,得出结论.解:∵已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,∴tanα+tanβ=k>0,tanα•tanβ=2,∴k>2=2,故选:BC.三、填空题:本题共4个小题,每小题5分,共20分.13.若tanθ=2,则=.【分析】由已知可得,=,代入即可求解.解:若tanθ=2,则==.故答案为:14.已知幂函数f(x)的图象经过点,则f(4)的值为 2 .【分析】设幂函数f(x)=x a,由f(x)过点(2,),知2a=,由此能求出f (4).解:设幂函数f(x)=x a,∵f(x)过点(2,),∴2a=,a=∴f(4)==2,故答案为:2.15.求值:sin220°(tan10°﹣)= 1 .【分析】由已知结合同角基本关系及两角差的正弦公式,辅助角公式,二倍角公式对已知式子进行化简即可求解.解::sin220°(tan10°﹣)=﹣sin40°(),==﹣sin40°×,===1.故答案为:1.16.已知函数,g(x)=x2﹣2x,对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是[0,1] .【分析】先分别求出f(x)和g(x)的值域,再根据“任意”是“存在”的子集列式解得即可.解:当x∈[,2]时,f(x)=log x+a为递减函数,∴f(x)∈[﹣1+a,2+a];当x∈[﹣1,2]时,g(x)=x2﹣2x∈[﹣1,3],对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2)⇔[﹣1+a,2+a]⊆[﹣1,3],∴,解得0≤a≤1,故答案为[0,1].四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.(1)求B∩C;(2)设全集U=R,求(∁U A)∩C;(3)若,证明:a∈A∪B.【分析】(1)首先确定A、B,C,然后根据交集的定义求解即可;(2)先求出其补集,然后根据交集的定义求解即可;(3)先根据指数和对数的运算性质求出a即可求出结论解:因为集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.∴A=[,4];B=(,e2),C=(﹣∞,﹣2]∪[3,+∞)∴B∩C=[3,e2);(2)全集U=R,∁U A=(﹣∞,∪(4,+∞);∴(∁U A)∩C═(﹣∞,﹣2]∪(4,+∞);(3)∵=lg0.05﹣7+9﹣lg=lg0.1+2=1;∴1∈A,1∈B;∴a∈A∪B.18.已知函数f(x)=1+log a x(a>0,a≠1)的图象恒过点A,点A在直线y=mx+n(mn >0)上.(1)求的最小值;(2)若a=2,当x∈[2,4]时,求y=[f(x)]2﹣2f(x)+3的值域.【分析】(1)先求出函数f(x)过的定点A的坐标,代入直线方程,再利用基本不等式即可求出结果;(2)由x的范围,算出log2x的范围,即可求出y的值域.解:(1)∵log a1=0,∴函数f(x)=1+log a x的图象恒过点A的坐标为(1,1),∵点A(1,1)在直线y=mx+n(mn>0)上,∴m+n=1,∵mn>0,∴∴,当且仅当m=n时,等号成立,∴的最小值为4;(2)当a=2时,f(x)=1+log2x,∴=,∵2≤x≤4,∴1≤log2x≤2,∴3≤y≤6,∴y的值域为:[3,6].19.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在上的最小值.【分析】(1)结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的周期公式及单调性即可分别求解;(2)结合正弦函数的性质即可求解函数的值域,进而可求最小值.解:(1)==2sin(2x+)+3,T=π,令2x+,k∈Z,解可得,,即函数的单调递减区间为(),k∈Z,(2)由0≤x可得,2x+,所以﹣sin(2x+)≤1即函数的最小值2.20.函数f(x)=A sin(ωx+φ)在R上的最大值为,f(0)=1.(1)若点在f(x)的图象上,求函数f(x)图象的对称中心;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,若y=g(x)在上为增函数,求ω的最大值.【分析】(1)由题意,A=,再由f(0)=1,求得φ,结合点在f(x)的图象上求得ω,则函数解析式可求,进一步求得函数的对称中心坐标;(2)由题意求得函数g(x)的解析式,得到函数的增区间,再由y=g(x)在上为增函数列关于ω的不等式组求解.解:(1)由题意,A=,由f(0)=φ=1,得sinφ=,∵0<φ<,∴φ=,则f(x)=.又,∴sin()=1.得=,k∈Z.∴ω=2+16k,k∈Z.∵0<ω<16,∴取k=0,得ω=2.∴f(x)=.由,得x=,k∈Z.∴函数f(x)图象的对称中心为(,0),k∈Z;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,则g(x)=sin(4x).由,k∈Z,,k∈Z,取k=0,得.由y=g(x)在上为增函数,得,解得.∴ω的最大值为2.21.如图,长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.(1)求角θ的取值范围;(2)求出△EFG周长l关于角θ的函数解析式f(θ),并求△EFG周长l的取值范围.【分析】(1)分析出何时最大何时最小即可求出其范围;(2)在三个直角三角形中分别求出三边长,再结合三角函数的取值范围即可求解解:(1)因为长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.∴当点F在点C时,这时角θ最小,求得此时θ=;当点G在D点时,这时角θ最大,求得此时θ=.∴角θ的取值范围:[,];(2)△EFG周长l=EG+EF+FG=++;∴f(θ)=;θ∈[,];设sinθ+cosθ=t,则sinθ•cosθ=;∴f(θ)==由θ∈[,];得≤θ+≤,得≤t≤,∴≤t﹣1≤﹣1,从而+1≤≤+1,当θ=时,f(θ)min=2(+1),当θ=或时,f(θ)max=2(+1),∴△EFG周长l的取值范围:[2(,2(+1)]22.设函数f(x)的定义域为I,对于区间D⊆I,若∃x1,x2∈D(x1<x2)满足f(x1)+f (x2)=1,则称区间D为函数f(x)的V区间.(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间.【分析】(1)由函数f(x)的V区间的定义,结合对数的运算性质,即可得证;(2)由函数f(x)的V区间的定义和指数函数的单调性,结合不等式的性质,可得所求范围;(3)运用函数的零点存在定理和函数f(x)的V区间的定义,证明函数f(x)在[0,π)上至少存在两个零点,即为f(x)在[π,+∞)上不存在零点,可得证明.解:(1)证明:设x1,x2∈(0,2)(x1<x2),若f(x1)+f(x2)=1,则+lgx1++lgx2=1,所以lgx1+lgx2=lg(x1x2)=0,即x1x2=1,取x1=,x2=,满足定义,所以区间(0,2)是函数f(x)=+lgx的V区间;(2)因为区间[0,a]是函数f(x)=()x的V区间,所以∃x1,x2∈[0,a](x1<x2),使得()+()=1,因为f(x)=()x在[0,a]上单调递减,所以()>()a,()≥()a,()+()≥2•()a=()a﹣1,所以()a﹣1<1,即a﹣1>0,即a>1,故所求实数a的取值范围为(1,+∞);(3)证明:因为f()=>0,f(π)=﹣<0,所以f(x)在(,π)上存在零点.又因为f(0)=0,所以函数f(x)在[0,π)上至少存在两个零点.因为函数f(x)在[0,+∞)上仅有2个零点,所以f(x)在[π,+∞)上不存在零点,又因为f(π)<0,所以∀x∈[π,+∞),f(x)<0,所以∀x1,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0,即因此不存在∀x1,x2∈[π,+∞)(x1<x2),满足f(x1)+f(x2)=1,所以区间[π,+∞),不是函数f(x)的V区间.。
2023-2024学年山东省青岛市即墨区高二(上)期末数学试卷【答案版】

2023-2024学年山东省青岛市即墨区高二(上)期末数学试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.抛物线y 2=4x 的焦点坐标为( ) A .(0,1)B .(1,0)C .(0,2)D .(2,0)2.已知四面体OABC 中,OA →=a →,OB →=b →,OC →=c →,OM →=λMA →(λ>0),N 为BC 中点,若MN →=−14a →+12b →+12c →,则λ=( )A .3B .2C .12D .133.正方体ABCD ﹣A 1B 1C 1D 1,E ,G 分别C 1D 1,D 1D 的中点,则直线CE 与直线AG 所成角的余弦值为( )A .13B .12C .25D .354.等差数列{a n }的首项为1,公差为d ,若a 2,a 3,a 6成等比数列,则d =( ) A .0或﹣2B .2或﹣2C .2D .0或25.已知两点A (﹣3,0),B (1,2),以线段AB 为直径的圆截直线x +y +2=0所得弦长为( ) A .2√3 B .√3C .4D .26.已知椭圆C :x 23+y 2=1的左右焦点分别为F 1,F 2,直线y =x −√23与C 交于A ,B 两点,则△F 1AB 的面积与△F 2AB 面积的比值为( ) A .3B .2C .√3D .√27.某公司为激励创新,计划逐年加大研发资金投入,若该公司2020年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2021年B .2022年C .2023年D .2024年8.由曲线x 2+y 2=|x |+|y |围成的图形的面积等于( ) A .π+2B .π﹣2C .2πD .4π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l 1:ax +8y ﹣8=0与直线l 2:2x +ay ﹣a =0,下列说法正确的是( ) A .当a =8时,直线l 1的倾斜角为45° B .直线l 2恒过(0,1)点C .若a =4,则l 1∥l 2D .若a =0,则l 1⊥l 210.关于等差数列和等比数列,下列说法正确的是( ) A .若数列{a n }的前n 项和S n =2−2n+1,则数列{a n }为等比数列 B .若{b n }的前n 项和S n =n 2+n +2,则数列{b n }为等差数列C .若数列{a n }为等比数列,S n 为前n 项和,则S n ,S 2n ﹣S n ,S 3n ﹣S 2n ,…成等比数列D .若数列{b n }为等差数列,S n 为前n 项和,则S n ,S 2n ﹣S n ,S 3n ﹣S 2n ,…成等差数列 11.下列说法正确的是( )A .已知a →=(0,1,1),b →=(0,0,−1),则a →在b →上的投影向量为(0,−12,−12)B .若G 是四面体OABC 的底面△ABC 的重心,则OG →=13(OA →+OB →+OC →)C .若OG →=25OA →+35OB →+35OC →,则A ,B ,C ,G 四点共面D .若向量p →=mx →+ny →+kz →,则称(m ,n ,k )为p →在基底{x →,y →,z →}下的坐标,已知p →在单位正交基底{a →,b →,c →}下的坐标为(1,2,3),则p →在基底{a →−b →,a →+b →,c →}下的坐标为(−12,32,3)12.已知点A (0,﹣2),AM ,AN 为圆C :x 2+y 2﹣4x ﹣1=0的两条切线,切点分别为M ,N ,则下列说法正确的是( )A .圆C 的圆心坐标为(2,0),半径为√5B .切线|AM|=√7C .直线MN 的方程为2x +2y +1=0D .sin ∠MAN =√158三、填空题:本题共4小题,每小题5分,共20分.13.直线l 在x 轴、y 轴上的截距分别是32和﹣3,则直线l 的一般式直线方程为 .14.若双曲线y 2m 2−x 2=1(m >0)的渐近线与圆x 2+y 2﹣4y +3=0相切,则m = .15.如图,两条异面直线a ,b 所成的角为60°,在直线a ,b 上分别取点A 1,E 和点A ,F ,使A 1A ⊥a ,A 1A ⊥b ,已知A 1E =1,AF =2,EF =3,则|AA 1|= .16.如图所示,已知椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,|BF 2|=4|AF 2|,则C 的离心率为 .四、解答题:本题共6小题,共70分。
山东省日照市2022级高三上学期期末校级联考数学含答案

参照秘密级管理★启用前试卷类型:A2020级高三上学期期末校际联合考试数学试题2023.1考生注意:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,将试题卷和答题卡一并交回。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}|1216xA x =<<,{}2,3,4,5B =,则A B =A .{}2,3B .{}3,4C .{}2,3,4D .{}2,3,45,2.设a b ,为实数,若复数12i1i ia b +=++,则A .3122a b ==B .31a b ==,C .1322a b ==,D .13a b ==,3.设x ∈R ,则“112x <-”是“3x >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,则下列结论正确的是A .若α⊥m ,α//n ,则n m //B .若α//m ,βα//,则β//mC .若α⊥m ,,,n m n ⊥⊥β则βα⊥D .若βα⊥,α//m ,则β⊥m5.若曲线y =(0,1)-处的切线与曲线ln y x =在点P 处的切线垂直,则点P 的坐标为A .(e,1)B .(1,0)C .(2,ln 2)D .1(,ln 2)2-6.我们要检测视力时会发现对数视力表中有两列数据,分别是小数记录与五分记录,如图所示(已隐去数据),其部分数据如表:小数记录x 0.10.120.150.2…?…1.01.21.52.0五分记录y4.0 4.1 4.2 4.3… 4.7…5.0 5.1 5.2 5.3现有如下函数模型:①5lg y x =+,②115lg 10y x=+,x 表示小数记录数据,y 表示五分记录数据,请选择最合适的模型解决如下问题:小明同学检测视力时,医生告诉他的视力为4.7,则小明同学的小数记录数据为(附:0.30.220.1100.550.7100.8---===,,)A .0.3B .0.5C .0.7D .0.87.安排4名中学生参与社区志愿服务活动,有4项工作可以参与,每人参与1项工作,每项工作至多安排2名中学生,则不同的安排方式有A .168种B .180种C .192种D .204种8.已知12F F ,分别为双曲线22221(00)y x a b a b-=>>,的两个焦点,双曲线上的点P 到原点的距离为b ,且2112sin3sin PF F PF F ∠=∠,则该双曲线的渐近线方程为A.22y x =±B .32y x =±C .y =D .y =二、多项选择题:本大题共4小题,每小题5分,共20分。
山东省青岛市2023-2024学年高三上学期期末学业水平检测数学试题

2023-2024学年度第一学期期末学业水平检测高三数学试题本试卷共4页,22题.全卷满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,请将答题卡上交。
一、单项选择题:本大题共8小题。
每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合()1,3A =-,}0{|B x x a =+≥,若{}1|A B x x =>-,则实数a 的取值范围是( )A .[]3,1-B .(]3,1-C .[)3,1-D .()3,1-2.复数z a i =+(a R ∈,i 为虚数单位),z 是z 的共轭复数,若()()111z z ++=,则a =( ) A .2-B .1-C .1D .23.在四边形ABCD 中,四个顶点A ,B ,C ,D 的坐标分别是()2,0-,()1,3-,()3,4,()2,3,E ,F 分别为AB ,CD 的中点,则EF AB ⋅=( ) A .10B .12C .14D .164.2023年是共建“一带一路”倡议提出十周年.而今“一带一路”已成为当今世界最受欢迎的国际公共产晶和最大规模的国际合作平台。
树人中学历史学科组近期开展了“回望丝路”系列主题活动,组织“一带一路”知识竞赛,并对学生成绩进行了汇总整理,形成以下直方图。
该校学生“一带一路”知识竞赛成绩的第60百分位数大约为( )A .72B .76C .78D .855.已知等差数列{}n a 各项均为正整数,11123a a a a =++,210a <,则其公差d 为( )A .0B .1C .2D .46.已知点F 是抛物线()2:20E y px p =>的焦点,过点()的直线l 与曲线E 交于点A ,B ,若2AF BF +的最小值为14,则E 的准线方程为( )A .4y =-B .2y =-C .4x =-D .2x =-7.已知正方体1111ABCD A B C D -,E ,F 是线段AC 上的点,且1AE EF FC ==,分别过点E ,F 作与直线1AC 垂直的平面α、β,则正方体夹在平面α与β之间的部分的体积占整个正方体体积的( ) A .13B .12C .23D .348.已知O 为坐标原点,双曲线2222:1(0,0)x y E a b a b-=>>的左,右焦点依次为12,F F ,过点1F 的直线与E在第一象限交于点P ,若122PF PF =,OP =,则E 的渐近线方程为( )A .y =B .y =C .y x =±D .2y x =±二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x2﹣x﹣2≤0},B={x|y=ln(x﹣1)},则A∩B=()A.(1,2]B.(0,2]C.(2,+∞)D.[2,+∞)2.若复数(i为虚数单位)为纯虚数,则实数a的值为()A.﹣B.﹣C.D.3.若tanα=2,则=()A.B.C.D.14.“a=1”是“直线ax+(2a﹣1)y+3=0与直线(a﹣2)x+ay﹣1=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.2020年11月,中国国际进口博览会在上海举行,本次进博会设置了“云采访”区域,通过视频连线,帮助中外记者采访因疫情影响无法来沪参加进博会的跨国企业CEO或海外负责人.某新闻机构安排4名记者和3名摄影师对本次进博会进行采访,其中2名记者和1名摄影师负责“云采访”区域的采访,另外2名记者和2名摄影师分两组(每组记者和摄影师各1人),分别负责“汽车展区”和“技术装备展区”的现场采访.如果所有记者、摄影师都能承担三个采访区域的相应工作,则所有不同的安排方案有()A.36种B.48种C.72种D.144种6.函数f(x)=x﹣ln|e2x﹣1|的部分图象可能是()A.B.C.D.7.已知抛物线C:y2=2px(p>0)的焦点为F,过F作斜率为的直线l交抛物线C于A、B两点,若线段AB中点的纵坐标为,则抛物线C的方程是()A.y2=3x B.y2=4x C.y2=6x D.y2=8x8.已知函数f(x)(x∈R)的导函数是f′(x),且满足∀x∈R,f(1+x)=﹣f(1﹣x),当x>1时,f(x)+ln(x﹣1)•f′(x)>0,则使得(x﹣2)f(x)>0成立的x 的取值范围是()A.(0,1)⋃(2,+∞)B.(﹣∞,﹣2)⋃(2,+∞)C.(﹣2,﹣1)⋃(1,2)D.(﹣∞,1)⋃(2,+∞)二、选择题(共4小题).9.已知a,b,c,d均为实数,下列说法正确的是()A.若a>b>0,则>B.若a>b,c>d,则a﹣d>b﹣cC.若a>b,c>d,则ac>bd D.若a+b=1,则4a+4b≥410.直线l过点P(1,2)且与直线x+ay﹣3=0平行,若直线l被圆x2+y2=4截得的弦长为2,则实数a的值可以是()A.0B.C.D.﹣11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象12.如图,在菱形ABCD中,AB=2,∠ABC=60°,M为BC的中点,将△ABM沿直线AM翻折成△AB1M,连接B1C和B1D,N为B1D的中点,则在翻折过程中,下列说法中正确的是()A.AM⊥B1CB.CN的长为定值C.AB1与CN的夹角为D.当三棱锥B1﹣AMD的体积最大时,三棱锥B1﹣AMD的外接球的表面积是8π三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省青岛市2020届高三数学上学期期末考试试题2020.01本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是 A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r,则双曲线C 的渐近线方程为 A .12y x =±B .2y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
在每小题给出的四个选项中,有多项是符合题目要求,全部选对的得5分,部分选对的得3分,有选错的0分。
9.如图,正方体1111ABCD A B C D -的棱长为1,则下列四个命题正确的是: A .直线BC 与平面11ABC D 所成的角等于4πB .点C 到面11ABCD 的距离为22C .两条异面直线11D C BC 和所成的角为4π D .三棱柱1111AA D BB C -外接球半径为3210.要得到cos 2y x =的图象1C ,只要将sin 23y x π⎛⎫=+⎪⎝⎭图象2C 怎样变化得到? A .将sin 23y x π⎛⎫=+⎪⎝⎭的图象2C x 沿轴方向向左平移12π个单位 B .sin 23y x π⎛⎫=+⎪⎝⎭的图象2C x 沿轴方向向右平移1112π个单位C .先作2C x 关于轴对称图象3C ,再将图象3C x 沿轴方向向右平移512π个单位 D .先作2C 关于x 轴对称图象3C ,再将图象3C x 沿轴方向向左平移12π个单位 11.已知集合()(){}=,M x y y f x =,若对于()()1122,,,x y M x y M ∀∈∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为A .1MB .2MC .3MD .4M12.德国著名数学家狄利克雷(Dirichlet ,1805~l859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题: A .函数()f x 是偶函数B .()()()121212,,R x xC Q f x x f x f x ∀∈+=+恒成立C .任取一个不为零的有理数T ,()()f x T f x +=对任意的x R ∈恒成立D .不存在三个点()()()()()()112233,,,A x f x B x f x C x f x ,,,使得△ABC 为等腰直角三角形其中真命题的个数是__________________.第II 卷(非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分。
13.已知直线2202x y a y -+=+=与圆O :x 相交于A ,B 两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为__________;14.已知直线2y x =+与曲线()ln y x a =+相切,则a 的值为_________;l5.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t(单位:年)的衰变规律满足573002TN N -=⋅ (0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的__________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的3172至,据此推测良渚古城存在的时期距今约在5730年到__________年之间.(参考数据:lg2≈0.3,lg 7≈0.84,lg 3≈0.48)(本题第一空2分,第二空3分)16.已知ABC ∆的顶点A ∈平面α,点B ,C 在平面α异侧,且2AB AC ==,若AB ,AC 与α所成的角分别为36ππ,,则线段BC 长度的取值范围为___________. 四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
l7.(本小题满分10分)已知()()2cos sin f x x x x =+(I)求函数()f x 的最小正周期及单调递减区间; (II)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦的取值范围.18.(本小题满分12分)在ABC ∆,,,a b c 分别为内角A ,B ,C 的对边,且()2228sin 3ab C b c a =+-,若5a c ==.(I)求cosA(Ⅱ)求ABC ∆的面积S .19.(本小题满分l2分)设数列{}n a 的前n 项和为n S ,已知111,21,n n a S S n N *+=-=∈.(I)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (Ⅱ)若n nnb a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.20.(本小题满分12分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥. (I)求证:四棱锥11B A ACC -为阳马;(Ⅱ)若12C C BC ==,当鳖膈1C ABC -体积最大时,求锐二面角11C A B C --的余弦值.21.(本小题满分12分)给定椭圆()2222:10x y C a b a b+=>>,称圆心在原点O ,的圆是椭圆C 的“卫星圆”.若椭圆C ,点(在C 上. (I)求椭圆C 的方程和其“卫星圆”方程;(Ⅱ)点P 是椭圆C 的“卫星圆”上的一个动点,过点P 作直线12,l l ,使得12,l l , 与椭圆C 与椭圆C 都只有一个交点,且12,l l ,分别交其“卫星圆”于点M ,N ,证明:弦长MN 为定值.22.(本小题满分12分)已知函数()()()ln 2sin ,f x x x x f x f x '=-+为的导函数. (I)求证:()()0f x π'在,上存在唯一零点; (Ⅱ)求证:()f x 有且仅有两个不同的零点高三数学试题参考答案2020.01一、选择题题号1 2 3 4 5 6 7 8 9111 12 答案 D C C C A D D B A BDA BCBDCD二、填空题13. 3 15. 12,687616. 三、解答题17.解: (Ⅰ) 由题意,化简得2()2cos sin 1)f x x x x =-sin 2x x =2sin(2)3x π=-所以 函数()f x 的最小正周期π. ………………………………………3分sin y x =Q 的减区间为32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦由3222232k x k πππππ+≤-≤+得5111212k x k ππππ+≤≤+ 所以 函数()f x 的单调递增区间为511,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. ······················6分 (Ⅱ)因为,02x π⎡⎤∈-⎢⎥⎣⎦Q ,所以42,333x πππ⎡⎤-∈--⎢⎥⎣⎦.所以22sin(2)3x π-≤-. 所以 函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的取值范围是⎡-⎣.····························10分 18. 解:由题意得2228sin 3()22ab C b c a bc bc+-= 由余弦定理得:4sin 3cos a CA c=由正弦定理得4sin 3cos A A = 所以3tan 4A = ABC∴∆中,4cos 5A =············································································6分(Ⅱ)由余弦定理2222cos a b c bc A =+-得28150b b -+= 解得3b =或5b =····················································································9分3tan 4A =Q ,3sin 5A ∴=由1sin 2S bc A=⋅得152S =或92S =······················································12分 19. 解: (Ⅰ) 121n n S S +-=Q112(1)n n S S +∴+=+*n N ∈{}1n S ∴+为等比数列··················································2分112S +=Q ,公比为212n n S ∴+=,21n n S =-1121n n S --∴=-,当2n ≥时,112n n n n a S S --=-=,11a =也满足此式12n n a -∴=···························································5分(Ⅱ) 12n n n n n b a -== 01112222n n n T -=++⋅⋅⋅+ 121122222n n n T =++⋅⋅⋅+两式相减得:011111122222222n n n n n n T -+=++⋅⋅⋅+-=- 1242n n n T -+=-··························································9分 代入1250n n T n -⋅=+得2260n n --=·····································10分令()226x f x x =--(1)x ≥,()2ln 210x f x '=->在[)1,x ∈+∞成立,()226x f x x ∴=--(1,)x ∈+∞为增函数;·····························································11分 有(5)(4)0f f ⋅<,所以不在正整数n 使得1250n n T n -⋅=+成立.················12分20. 解:(Ⅰ) 1A A ⊥Q 底面ABC ,AB ⊂面ABC 1A A AB∴⊥ (2)分又AB AC ⊥,1A A AC A =IAB ∴⊥面11ACC A , (4)分又四边形11ACC A 为矩形∴四棱锥11B A ACC -为阳马······················5分(Ⅱ) AB AC ⊥Q ,2BC =,224AB AC ∴+= 又1A A ⊥Q 底面ABC ,111132C ABC V C C AB AC -∴=⋅⋅⋅221123323AB AC AB AC +=⋅⋅≤⋅= 当且仅当AB AC ==时,113C ABC V AB AC-=⋅⋅取最大值···················7分AB AC ⊥Q ,1A A ⊥底面ABC∴以A 为原点,建立如图所示空间直角坐标系·····8分B,C ,1(0,0,2)A12)A B =-uuu r,(BC =uu u r,11A C =uuu u r设面1A BC 的一个法向量1111(,,)n x y z =u r由11100n A B n BC ⎧⋅=⎪⎨⋅=⎪⎩u r uuu ru r uu u r得1n =u r····························9分同理得2n =u u r······································10分121212cos ,||||n n n n n n ⋅∴<>=⋅u r u u ru r u u r u r u u r 二面角11C A B C --的余弦值为·······················12分 21. 解:(Ⅰ)由条件可得: 22421c a a b ⎧=⎪⎪⎨⎪+=⎪⎩解得2a b == 所以椭圆的方程为22184x y +=,··············································3分卫星圆的方程为2212x y += ················································4分 (II )①当12,l l 中有一条无斜率时,不妨设1l 无斜率,因为1l与椭圆只有一个公共点,则其方程为x =x =-当1l方程为x =1l与“卫星圆”交于点和2)-,此时经过点2)-且与椭圆只有一个公共点的直线是2y =或2y =-,即2l 为2y =或2y =-,12l l ∴⊥∴线段MN 应为“卫星圆”的直径,∴||MN =分 ② 当12,l l 都有斜率时,设点),(00y x P ,其中220012x y +=,设经过点),(00y x P 与椭圆只有一个公共点的直线为00)(y x x t y +-=,则,0022()184y tx y tx x y =+-⎧⎪⎨+=⎪⎩消去y 得到2220000(12)4()2()80t x t y tx x y tx ++-+--=,·····9分2220000(648)163280x t x y t y ∴∆=-++-=····································10分2200122200328328(12)1648648y x t t x x ---∴⋅===---·································11分所以121-=⋅t t ,满足条件的两直线12,l l 垂直.∴线段MN 应为“卫星圆”的直径,∴||MN =综合①②知:因为12,l l 经过点),(00y x P ,又分别交其准圆于点MN ,且12,l l 垂直,所以线段MN 准圆220012x y +=的直径,|MN ∴为定值················12分22. 解:(1)设x xx f x g cos 211)()(+-='=, 当),0(π∈x 时,01sin 2)(2<--='x x x g ················ 2分 所以)(x g 在),0(π上单调递减, ····················· 3分 又因为012)2(,0113)3(<-=>+-=ππππg g 所以)(x g 在(,)32ππ上有唯一的零点α,所以命题得证 ··········· 6分 (2)1°由(1)知:当),0(α∈x 时,0)(>'x f ,)(x f 在),0(α上单调递增;当),(πα∈x 时,0)(<'x f ,)(x f 在),(πα上单调递减; ········· 7分 所以)(x f 在(0,)π上存在唯一的极大值点()32ππαα<< 所以022222ln )2()(>->+-=>ππππαf f··············· 8分 又因为22221111()22sin 220f e e e e =--+<--+< 所以)(x f 在(0,)α上恰有一个零点 ···················· 9分 又因为02ln )(<-<-=ππππf所以)(x f 在(,)απ上也恰有一个零点 ·················· 9分 2°当[,2)x ππ∈时,sin 0x ≤,()ln f x x x ≤-设()ln h x x x =-,011)(<-='xx h 所以)(x h 在[,2)ππ上单调递减,所以0)()(<≤πh x h所以当[,2)x ππ∈时,()()()0f x h x h π≤≤<恒成立所以)(x f 在[,2)ππ上没有零点. ···················· 10分3°当[2,)x π∈+∞时,2ln )(+-≤x x x f设()ln 2x x x ϕ=-+,1()10x xϕ'=-< 所以()x ϕ在[2,)π+∞上单调递减,所以()(2)0x ϕϕπ≤<所以当[2,)x π∈+∞时,()()(2)0f x x ϕϕπ≤≤<恒成立所以)(x f 在[2,)π+∞上没有零点.综上,)(x f 有且仅有两个零点. ···················· 12分。