单模光纤中的色散及色散补偿技术
单模光纤中的色散及色散补偿技术

单模光纤中的色散及其色散补偿姓名:__刘珺__ 学号:_2009700206 专业班级:_2009级物理学二班_摘要:本文叙述了光通信系统中一个重要的参数——色散,详细介绍了各种色散补偿技术的原理,以及色散补偿光纤和啁啾光纤光栅色散补偿等多种解决方案的特点。
关键词:色散效应,色散补偿1.引言色散是由于光纤中所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。
在光纤中,脉冲色散越小,它所携带的信息容量就越大。
其链路的色散累积直接影响系统的传输性能,自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。
所以,对高速率长距离的系统必须要考虑色散补偿问题,研究宽带多波长色散补偿具有重要意义。
光纤色散产生的因素有:材料色散、波导色散、模式色散等等。
但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。
解决光信号色散引起群时延差的方法就是色散补偿技术。
2.色散补偿原理2.1 光纤色散述语一、色散及其表示:由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。
光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。
从机理上说,光纤色散分为材料色散,波导色散和模式色散。
前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。
当一束电磁波与电介质的束缚电子相互作用的时候,介质的响应通常与光波的频率ω有关,这种特性称为色散,它表明折射率n(ω)对频率的依附关系。
光纤的色散效应可以用波矢k或传播常数β与频率的关系来表示,即β(ω)。
在中心频率ωo处将β(ω)展开得到:式中是介质在中心频率ωo处的传播常数;等于群速度的倒数;表示群速度色散,和脉冲的展宽有关;β3为三阶色散参量。
单模光纤传输色散的主要原因

单模光纤传输色散的主要原因单模光纤是一种用于光通信的传输介质,它具有传输带宽大、传输损耗小的优势,因此被广泛应用于长距离的光通信系统中。
然而,在光纤传输过程中,会出现一种现象称为色散,它会影响信号的传输质量和距离。
本文将介绍色散的主要原因以及对光纤传输的影响。
色散是指光信号在传输过程中不同波长的光的传播速度不同,从而导致光信号发生扩散现象。
色散的主要原因可以归结为两点:色散介质的折射率对波长的依赖性以及光纤的结构特性。
色散介质的折射率对波长的依赖性是导致色散的主要原因之一。
在光纤中,光信号是通过光的全反射来进行传输的。
而光在光纤中的传播速度与介质的折射率有关。
不同波长的光在同一介质中的折射率是不同的,这就导致了不同波长的光在传输过程中会出现不同的传播速度。
当光信号中包含多个波长的光同时传输时,由于波长的差异,它们会以不同的速度传播,从而导致光信号的扩散现象,即色散。
光纤的结构特性也会影响光信号的传输质量和距离。
光纤是由芯和包层构成的,芯是光信号传输的核心部分,而包层则用于保护和引导光信号。
而光纤的结构特性主要体现在芯的直径和包层的折射率上。
当光纤的芯直径较大时,光信号在传输过程中会发生多次反射,从而导致不同路径的光信号传播时间不同,进而引起色散现象。
此外,包层的折射率也会影响光信号的传输速度,当包层的折射率不均匀或与芯的折射率存在差异时,也会导致光信号的色散。
色散对光纤传输的影响主要体现在两个方面:信号失真和传输距离的限制。
由于不同波长的光在传输过程中会以不同的速度传播,当光信号中包含多个波长的光同时传输时,它们会在一定距离后发生扩散,导致信号失真。
这会降低光信号的传输质量,使得接收端无法正确解读信号。
此外,色散还会限制光信号的传输距离。
由于光纤中不同波长的光在传输过程中会以不同的速度传播,当传输距离较长时,不同波长的光会逐渐分离,使得信号质量下降,传输距离受到限制。
为了克服色散对光纤传输的影响,人们采用了一系列的补偿措施。
光纤通信系统中的信号传输失真与补偿方法

光纤通信系统中的信号传输失真与补偿方法随着信息技术的飞速发展,光纤通信系统作为一种高速、大容量、低损耗的通信方式,得到了广泛的应用。
然而,在光纤通信系统中,信号传输过程中会受到多种因素的影响而产生失真,从而降低了通信系统的性能和可靠性。
因此,研究和采用有效的信号传输失真补偿方法,对于提高光纤通信系统的性能至关重要。
一、信号传输失真的原因1. 色散效应:色散是指光信号在光纤中传输过程中,由于不同波长的光的传播速度不同而引起的传输延迟差异。
这种传输延迟差异导致光信号脉冲宽度扩展,从而影响光信号的解调和识别。
2. 线性损耗:光信号在光纤中传输时会受到光纤弯曲、扭曲等因素的影响而产生线性损耗。
线性损耗会导致光信号的能量衰减,从而降低信号的强度和质量。
3. 非线性效应:非线性效应主要包括自相位调制(XPM)、互相位调制(FWM)和自发光(ASE)等。
这些效应会导致光信号的频谱扩展、相位畸变和增加噪声等,从而使信号失真。
二、信号传输失真补偿方法为了解决光纤通信系统中信号传输失真的问题,科学家们提出了多种信号传输失真补偿方法,可以有效地提高光纤通信系统的性能和可靠性。
1. 光纤衍射补偿方法光纤衍射是由于光信号的传输过程中受到了光的波动性的影响而产生的失真。
为了减少光纤衍射引起的传输失真,可以采用预加权、均衡和衍射抑制等技术。
其中,预加权技术可以在发送端对光信号进行预处理,减少光纤衍射的影响;均衡技术可以在接收端对光信号进行均衡处理,使信号的频率响应变得平坦;衍射抑制技术可以通过设计光纤的结构参数来抑制光纤衍射效应。
2. 色散补偿方法色散是光纤通信系统中主要的信号传输失真因素之一。
为了解决色散引起的信号传输失真问题,可以采用主动或被动补偿方法。
主动补偿方法主要包括光纤光栅衍射、电调制与光调制的联合补偿等技术;被动补偿方法主要包括单模与多模光纤的混合传输、多中心光纤的设计等。
3. 光纤放大器补偿方法光纤放大器是光纤通信系统中放大光信号的重要设备,但它也会引起信号传输失真。
光纤通信系统中的色散补偿问题综述

光纤通信系统中的色散赔偿问题综述1.Introduction光纤通信含有高速率、大容量、长距离以及抗干扰性强等特点。
但损耗和色散是长久妨碍光纤通信向前发展的重要因素。
随着着损耗问题的解决,色散成为决定光纤通信系统性能优劣的重要因素。
如何控制色散方便提高光纤通信系统的性能,成为光纤通信研究的热门课题之一。
现在对于光纤的色散已经提出了诸多赔偿办法,重要有色散赔偿光纤(DCF),啁啾光纤光栅,均匀光纤光栅,相位共轭(中点谱反转),全通滤波器、预啁啾等。
随着以上各办法缺点的暴露,学者们提出了光孤子色散赔偿技术,又相继提出了色散管理孤子,密集色散管理孤子等技术。
色散管理成为近年来光纤通信前沿研究的重要热点。
2.Concept of Dispersion由于信号在光纤中是由不同的波长成分和不同的模式成分来携带的,这些不同的波长成分和模式成分有不同的传输速率,从而引发色散。
也能够从波形在时间上展宽的角度去理解,也就是说光脉冲在通过光纤传输期间,其波形随时间发生展宽,这种现象称为光纤的色散。
3.Dispersion Causes普通把光纤中的色散分为三种类型:模式色散、模内色散和偏振色散。
a)模式色散模式色散是多模光纤才有的。
多模光纤中,即使是同一波长,模式不同传输速度也不同,它所引发的色散称为模式色散。
不同模式的光在光纤中传输时的传输常数不同,从而使传输同样长的距离后,不同模式的光波之间产生了群时延差,假设光纤能够传输多个模式,其中高次模达成输出端所需的时间较长,成果使入射到光纤的脉冲,由于不同模式达成的时间不同,或者说群时延不同,在输出端发生了脉冲展宽。
b)模内色散模内色散亦称颜色色散或多色色散。
重要是由于光源有一定带宽,信号在光纤中会有不同的波长成分,信号的不同波长分量含有不同的群速度,成果造成光脉冲的展宽。
模内色散涉及材料色散和波导色散。
c)偏振色散普通的轴对称单模光纤是违反“单模”名称的。
事实上有可能传输着两个模,即在光纤横截面上的两个正交方向(设为x 方向与y 方向)上偏振的(即在这些方向上含有场分量的)偏振模,同时由于实际的光纤中必然存在着某些轴不对称,那么,光纤会存在双折射,模传输常数β对于x,y 方向偏振模稍有不同,就会使这两个模式的传输速度不同,由此引发的色散叫偏振色散。
光纤的色散特性

2.5Gb/s系统色度色散受限距离约600km
10Gb/s系统色度色散受限距离约34km
G.652+DCF方案升级扩容成本高
结论:
不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。
光纤的色散特性
色散位移光纤
单模光纤的工作波长在1.3μm时,模场直径约 9μm,其传输损耗约0.3dB/km。此时,零色散波 长恰好在1.3μm处。
色散位移光纤
G.655单模光纤(NZ-DSF) 常规G.655
非零色散位移光纤
大有效面积G.655
光纤的色散特性
G.652单模光纤(NDSF)
大多数已安装的光纤
(1)在1310nm 波长处的色散为零。 (2)在波长为1550nm附近衰减系数最小,约为0.22dB/km,但在1550nm 附近其具有较大色散系数,为17ps/(nm·km)。 (3) 工作波长即可选在1310nm波长区域,又可选在1550nm波长区域,它 的最佳工作波长在1310nm区域。G.652 光纤是当前使用最为广泛的光纤。
8
9
10
光纤的色散特性
二、色散的种类
模式色散 材料色散 波导色散
光纤的色散特性
模式色散
模式色散是由于光纤不同模式在同 一波长下传播速度不同,使传播时 延不同而产生的色散。只有多模光 纤才存在模式色散,它主要取决于 光纤的折射率分布。
光纤的色散特性
多模光纤中的每一个模式的能量都 以略有差别的速度传播(模间色 散),因此导致光脉冲在长距离光 纤中传播时被展宽(脉冲 展宽)
波导色散和材料色散都是模式的本身色散,也 称模内色散。对于多模光纤,既有模式色散,又 有模内色散,但主要以模式色散为主。而单模光 纤不存在模式色散,只有材料色散和波导色散, 由于波导色散比材料色散小很多,通常可以忽略。
1-5_光纤色散

2.5Gb/s系统色度色散受限距离约600km
10Gb/s系统色度色散受限距离约34km
G.652+DCF方案升级扩容成本高
结论:
不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。
色散位移光纤
单模光纤的工作波长在1.3μm时,模场直径约 9μm,其传输损耗约0.3dB/km。此时,零色散波 长恰好在1.3μm处。
Polarisation Mode Dispersion (PMD)
There is usually a very slight difference in RI for each polarization. It can be a source of dispersion, usually less than 0.5 ps/nm/km.
对色散有4种表示方法:
1.单位长度上的群延时差,即在单位长度上 模式最先到达终点和最后到达终点的时间差。
2. 用输出与输入脉冲宽度均方根之比表示。
3.用光纤的冲激响应经傅氏变换得到的频率 响应的3dB带宽表示。
4.用单位长度的单位波长间隔内的平均群延 时差来表示。
光纤的色散
随着脉冲在光纤中传输,脉冲的宽度被展宽
Group Velocity Dispersion (GVD)
Normal Dispersion Regime :the long wavelengths travel faster than the short ones! Thus after travelling on a fibre wavelengths at the red end of the pulse spectrum will arrive first. This is called a positive chirp!
第八讲光纤的色散特性ppt课件

带宽(B)
色散描述方式
光纤的带宽(f为调制信号频率)
7
通常把调制信号经过光纤传播后,光功率下降一 半 ( 即 3dB) 时 的 频 率 (fc) 的 大 小 , 定 义 为 光 纤 的 带 宽 (B)。由于它是光功率下降3dB对应的频率,故也称为 3dB光带宽。可用下式表示。
8
二、色散的起因
材料色散
材料色散是材料的折射率n是波长λ的函数,从 而使光的传播速度随波长而变。由此引起的色散 叫材料色散。
引起材料色散的原因,是因为光源器件不是 工作于单一频率,即光源器件所发出的光都有一 定的谱线宽度△λ;而光纤材料的折射率并非固 定不变的,它会随传输的光波波长(或光波频率) 发生变化。
二、色散的种类
紫顺序排列的彩色光谱。 这是由于棱镜材料对不同波长(不同颜色)的光
呈现的折射率不同,使光的传播速度不同和折射角度 不同,最终使不同颜色的光在空间上散开。
一、色散的定义
光纤色散的概念 光脉冲中的不同频率或模式在光纤中的速
度不同,到达光纤终端有先有后,使光脉冲发生 展宽,这就是光纤的色散。
色散引起的脉冲展宽示意图
为了了解光纤色散,需知道送进光纤中 的信号结构。
首先,送进光纤的并不是单色光。这由 两方面的原因引起: 一是光源发出的并不是单色光; 二是光信号有一定的带宽。
9
二、色散的起因
1
相
实际光源发
对 输
出的光不是单色 出
的(或单频的),
功 率
而是在一定的波 0.5
长范围。这个范
围常是光源的线
宽或谱宽。
光源的谱宽 f f
材料色散
掺GeO2石英玻璃的折射率-波长特性曲线的关系
二、色散的种类
单模光纤的色散

光纤色散在光纤中传输的光信号(脉冲)的不同频率成份或不同的模式分量以不同的速度传播,到达一定距离后必然产生信号失真(脉冲展宽),这种现象称为光纤的色散或弥散。
光纤中传输的光信号具有一定的频谱宽度,也就是说光信号具有许多不同的频率成分。
同时,在多模光纤中,光信号还可能由若干个模式叠加而成,也就是说上述每一个频率成份还可能由若干个模式分量来构成。
光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。
其中,模间色散是多模光纤所特有的。
这四种色散作用还相互影响,由于材料折射率n是波长λ(或频率w)的非线性函数,d2n/d2λ≠0,于是不同频率的光波传输的群速度不同,所导致的色散成为材料色散。
由于导引模的传播常数β是波长λ(或频率w)的非线性函数,使得该导引模的群速度随着光波长的变化而变化,所产生的色散成为波导色散(或结构色散)。
偏振模色散指光纤中偏振色散,简称PMD(polarization modedispersion),它是由于实际的光纤中基模含有两个相互垂直的偏振模,沿光纤传播过程中,由于光纤难免受到外部的作用,如温度和压力等因素变化或扰动,使得两模式发生耦合,并且它们的传播速度也不尽相同,从而导致光脉冲展宽,引起信号失真。
不同的导引模的群速度不同引起的色散成为模间色散,模间色散只存在与多模光纤中。
色散限制了光纤的带宽—距离乘积值。
色散越大,光纤中的带宽—距离乘积越小,在传输距离一定(距离由光纤衰减确定)时,带宽就越小,带宽的大小决定传输信息容量的大小。
光纤色散可以使脉冲展宽,而导致误码。
这是在通信网中必须避免的一个问题,也是长距离传输系统中需要解决的一个课题。
一般来说,光纤色散包括材料色散和波导结构色散两部分,材料色散取决于制造光纤的二氧化硅母料和掺杂剂的分散性,而波导色散通常是一种模式的有效折射率随波长而改变的倾向。
材料色散与波导色散都与波长有关,所以又统称为波长色散。
材料色散:是由光纤材料自身特性造成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单模光纤中的色散及色散补偿技术This manuscript was revised on November 28, 2020光通信光纤中的色散补偿技术(原理、优点、缺点)姓名:__彭坚大_ 学号:_ 专业班级:_电04摘要:本文叙述了光通信系统中一个重要的参数——色散,详细介绍了各种色散补偿技术的原理,以及色散补偿光纤和啁啾光纤光栅色散补偿等多种解决方案的特点。
Abstract: This paper describes an important parameter dispersion in optical communication systems. The principles of various dispersion compensation techniques and the characteristics of dispersion compensation fiber and chirped fiber grating dispersion compensation are introduced in detail.关键词:色散效应,色散补偿1.引言色散是由于光纤中所传送信号的不同频率成分或不同模式成分的群速度不同,而引起传输信号畸变的一种物理现象。
在光纤中,脉冲色散越小,它所携带的信息容量就越大。
其链路的色散累积直接影响系统的传输性能,自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。
所以,对高速率长距离的系统必须要考虑色散补偿问题,研究宽带多波长色散补偿具有重要意义。
光纤色散产生的因素有:材料色散、波导色散、模式色散等等。
但主要是前面两项因素引起不同波长的光在光纤中传播造成群时延差。
解决光信号色散引起群时延差的方法就是色散补偿技术。
2.色散补偿原理光纤色散述语一、色散及其表示:由于光纤中所传信号的不同频率成分,或信号能量的各种模式成分,在传输过程中,因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散。
光纤色散的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。
从机理上说,光纤色散分为材料色散,波导色散和模式色散。
前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。
当一束电磁波与电介质的束缚电子相互作用的时候,介质的响应通常与光波的频率ω有关,这种特性称为色散,它表明折射率 n(ω)对频率的依附关系。
光纤的色散效应可以用波矢k或传播常数β与频率的关系来表示,即β(ω)。
在中心频率ωo处将β(ω)展开得到:式中是介质在中心频率ωo 处的传播常数;等于群速度的倒数;表示群速度色散,和脉冲的展宽有关;β3为三阶色散参量。
二、色散补偿的基本原理1 在光纤中,不同频率的信号传输速率不同,传输同距离后会有不同的时延τ, 从而产生时延差(Δτ) 。
时延差越大,表示色散越严重,具体表现为光脉冲在沿光纤传输过程中被展宽的程度愈大。
因此色散的度量,通常都是采用每单位长度的群时延差来表示。
脉冲在单模光纤中的传输基本方程为式中, A为光信号的缓变振幅;z 为传输距离; T为时间;β2 为群速度色散(GVD) 或称二阶色散系数,它是脉冲展宽的主要因素;β3 为高阶色散(又称三阶色散)系数。
与二阶色散相比,三阶色散对脉冲的影响通常较小。
当|β2 | >1ps2/ km时,β3 可以忽略不计。
求解方程得:式中, A(0,ω) 为A(0, T) 的傅里叶变换。
可见,色散引起的光信号畸变是由相位系数决定的。
单模光纤单位长度的色散量可以由下式得出:式中, c为光速;V为光纤传输的归一化频率;b为归一化传输常数。
式(3)等号右边第1项决定于材料折射率,称之为材料色散;第2项由于与光纤波导性能有关, 称之为波导色散。
普通单模光纤在1550nm 窗口的色度色散系数约为16ps/ (nm·km) , 传输100 km后色散可达到1600ps/ nm。
而对于10Gbit/ s系统,它的最大色散容限是1000ps/ nm。
可见,要使系统正常运转,必须进行色散补偿。
2.色散补偿技术方案色散补偿的基本原理是使用一个或多个大负色散的器件对光纤的正色散实施抵消,对光纤中的色散累积进行补偿,从而使系统的总色散量减小。
目前,色散补偿的方法有:色散补偿光纤(DCF) 、啁啾光纤光栅和电子色散补偿技术等。
3. 常规DCF技术方案采用常规DCF进行通信系统链路色散补偿的技术是现在通用的技术,其发展较为成熟。
由于DCF是一种无源器件,安装灵活方便,能实现宽带色散补偿和一阶色散、二阶色散全补偿,还可与1310nm零色散标准单模光纤兼容,适当控制DCF的模场直径、改善熔接技术,能得到较小的插入损耗,因此受到普遍重视,成为当今研究的热点。
DCF的概念最早在1980年提出, EDFA在通信系统的成功应用加速了DCF的发展,DCF已从最初的匹配包层型到多包层折射率剖面型。
多包层结构一方面可以得到很高的负色散和负色散斜率,另一方面又可以降低弯曲损耗.DCF的品质因素(品质因素=色散系数绝对值/ 衰减系数)越来越高。
为了得到具有较大负色散系数的DCF,必须控制波导色散。
现在已经有大量的商用DCF用于补偿G. 652光纤在C波段和L波段传输时的色散[。
采用常规DCF进行通信系统链路色散补偿的技术是现在通用的技术,其发展较为成熟。
由于DCF是一种无源器件,安装灵活方便,能实现宽带色散补偿和一阶色散、二阶色散全补偿,还可与1310nm零色散标准单模光纤兼容,适当控制DCF的模场直径、改善熔接技术,能得到较小的插入损耗,因此受到普遍重视,成为当今研究的热点。
DCF的概念最早在1980年提出, EDFA在通信系统的成功应用加速了DCF的发展,DCF已从最初的匹配包层型到多包层折射率剖面型。
多包层结构一方面可以得到很高的负色散和负色散斜率,另一方面又可以降低弯曲损耗。
DCF的品质因素(品质因素=色散系数绝对值/ 衰减系数)越来越高。
为了得到具有较大负色散系数的DCF,必须控制波导色散。
现在已经有大量的商用DCF用于补偿G. 652光纤在C波段和L波段传输时的色散。
缺点:非线性效应较明显,输入光功率不能过高,插入损耗较大,此外DCF制成的DCM色散量不可调,而且不同类型的光纤需要不同的DCM .优点:效果显着,系统工作稳定,实施简便色散补偿量可控外,还能实现宽带补偿从而实现高密度波分复用 .4. 光纤光栅色散补偿技术光纤光栅(均匀光纤光栅)的另一个特性,就是在禁带(Photonic band gap)附近的极强的传输色散特性(一般要比普通光纤介质大出几个数量级倍),可以利用光纤光栅的这一特性在传输中〔而非反射中)进行色散补偿。
尽管这一强色散区域存在的频带很窄,但其独特的性质还是引起了人们的关注。
由于F-P效应所造成的反射带隙外振荡的影响,这种方法一直未受到人们的重视。
最近,随着光纤光栅切趾技术的成熟,人们已经可以消除反射带隙几乎所有振荡,这使得利用均匀光纤光栅进行色散补偿再现生命力。
在国外,对光纤光栅的传输色散性质的理论探讨和实验研究已经取得了很大成果。
有人提出利用这种强色散特性进行色散补偿,较其它色散补偿方案更易实现,且具有更高的补偿效率。
实验上已成功实现了在72km的光纤中利用光纤光栅在10Gbit/s信号无误传输时的色散补偿。
最近,人们又提出级联光纤光栅的构思,利用它可以在密集波分复用系统中实现多信道色散的同时补偿。
如图4所示:通过改变外部条件来改变均匀光纤光栅的结构参数,可以实现色散的可调谐。
文献[3]利用压电陶瓷使得光纤光栅的中心波长移动了,这对于均匀光纤光栅的色散调谐已足够。
如果把两个或两个以上不同周期的光纤光栅“连接”起来组成“级联光纤光栅”,可以实现对不同波长的多路脉冲同时进行色散补偿,还可以对整个级联光纤光栅进行调谐,也可以对其中某些光纤光栅进行调谐,以达到我们所期望的色散补偿效果。
优点;不受电磁干扰,灵敏度高缺点:不能完全消除高阶色散,制造非线性啁啾的相位掩膜非常困难且价格昂贵5. 碉啾光栅技术在光纤上制成折射率非周期性变化的惆啾光栅,就形成一个宽带滤波器,它的不同位置对应于不同的Bragg反射波长。
当光脉冲信号通过这种啁啾光栅(周期从大到小,长度为Lg)时,其长、短波长分量分别在光栅的头、尾部反射,这样短波长分量比长波长分量多走2Lg距离,两波长分量之间产生时延差Δt=2Lg/Vg。
从而补偿了由于群速度不同导致的色散,起到压缩光脉冲的作用。
如图5所示。
利用严格的耦合波理论分析啁啾光栅色散补偿机制,求出其Bragg波长、带宽、时延率等,并利用Rungc-Kutta数值方法求解啁啾光栅的反射谱特性。
啁啾光栅的长度、啁啾量、Bragg带宽、反射谱特性等参量决定了它的色散补偿能力。
设计、研制高质量的啁啾光栅是实现这种色散补偿技术的关键。
英国、美国、加拿大等国家对啁啾光栅色散补偿开展了广泛的研究,利用单个或多个啁啾光栅进行色散补偿,已在10 Gb/s常规光纤通信网上传输数百公里。
国内也研制了10 cm 长的惆啾光纤光栅,并已完成了10 Gb/s光信号在G652光纤上传输104公里的色散补偿实验。
优点:采用无源光纤光栅进行色散补偿,具有体积小、插人损耗低、与光纤兼容性好、波长选择性好、易于集成等优点,利用多个光纤光栅级联可提高补偿能力,光纤光栅法还便于系统使用和维护,其成本低、可升级性好、可靠性高、受非线性效应影响小、极化不敏感,具有很好的实用性。
6.观点,色散补偿技术的发展方向随着高速率宽带光传输系统的发展,色散及其斜率的管理越来越重要。
成熟的色散补偿技术不断推出新的功能,新的色散补偿技术不断涌现。
纵观目前国际上的色散补偿技术,可以得出色散补偿技术的发展趋势:传统的DCF因其光纤技术成熟度好,生产方便,在近几年内仍然是主流产品;多通道光纤光栅色散补偿技术的研究逐渐成为热点,多通道色散补偿器已经具备了一定的市场竞争力,大量商用产品已经推向市场,有逐步取代传统DCF之势;EDC有其独特优点,前景可观,但是技术不成熟,有待完善,比如较长距离传输时,器件的补偿范围受到信号传输距离的限制,需要增加固定补偿量等;色散补偿PCF代表着未来高效补偿的发展方向,它具有广阔的发展空间和应用前景,虽然现已开始获得初步应用,但受到诸多因素的制约,因此要实现大量商用还有很长的路要走。
参考文献:[1] 戈稳编. 雷达接收机技术[M]. 北京:电子工业出版社,2005.[2] 李嗣范.微波元件原理与设计[M].北京:人民邮电出版社,1982.[3] ReinholdLudwig,PavelBretchko(着) . 射频电路设计- 理论与应用[M].北京:电子工业出版社, 2002.[4] Behzad R. RF microelectronics [ M]. Upper SaddleRiver , NJ:Prentice HallInc. , 1998.[5] Gonzalez Guillermo(着) ,白晓东(译) .微波晶体管放大器分析与设计[M].北京:清华大学出版社,2003.。