微积分的发展史

合集下载

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1. 运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2. 曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3. 有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4. 当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler )、伽利略(Galileo )、费马(Fermat)、笛卡尔(Descartes )、卡瓦列里(Cavalieri )等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)至V质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

微积分学的发展史

微积分学的发展史

微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。

本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。

微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。

这些研究需要数学工具来分析变化过程,于是微积分学应运而生。

微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。

牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。

他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。

这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。

莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。

他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。

莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。

笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。

该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。

欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。

该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。

现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。

例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。

随着科学技术的发展,微积分学的应用前景将更加广阔。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分概念发展史

微积分概念发展史

微积分概念发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。

着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。

2.建立成型时期。

3.成熟完善时期。

4.现代发展时期。

早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。

公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。

此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。

2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。

”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。

此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。

祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。

建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。

意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。

简述微积分发展史

简述微积分发展史

简述微积分发展史微积分论文:简述微积分发展史一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。

它的主要内容包括两部分:微分学和积分学。

然而早在古代微分和积分的思想就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。

如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

这些都是朴素的极限概念。

到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。

十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。

在创立微积分方面,莱布尼茨与牛顿功绩相当。

这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。

两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。

有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

可以说微积分学的诞生是数学发展的一个里程碑式的事件。

二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。

微积分学是继解析几何产生后的又一个伟大的数学创造。

微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。

它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

论述微积分发展简史

论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。

这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。

在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。

这些都是最早期人类对无穷、极限等概念的原始的描述。

二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。

最后一个阶段是由牛顿、莱布尼茨完成的。

前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。

中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。

中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。

在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。

而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。

这些想法都是积分法的前驱。

在微分方面,十七世纪人类也有很大的突破。

费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。

另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。

由此可见,人类在十七世纪已经掌握了微分的要领。

英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。

微积分的历史与发展

微积分的历史与发展

微积分的历史与发展微积分是数学中的一门重要学科,它研究的是变化和连续性的数学分支。

微积分的历史可以追溯到古希腊时期,而其发展经历了许多重要的里程碑。

本文将介绍微积分的历史与发展,从古代到现代逐步展开,帮助读者了解该学科的演进过程。

古代的微积分先驱们展示了对变化的基本理解。

在古希腊,数学家Zeno of Elea以悖论而闻名,他提出了无限可分割的运动悖论。

这种思想激发了人们对变化和连续性的思考,并为后来微积分的发展奠定了基础。

进入17世纪,微积分的概念正式开始形成。

众所周知的牛顿和莱布尼茨被公认为微积分的创始人。

牛顿以其经典力学和引力定律的发现而著名,而莱布尼茨则发明了微积分符号和符号推导法。

他们的贡献为微积分奠定了坚实的数学基础,并将其应用于物理学和其他学科的发展中。

随着时间的推移,微积分得到了持续的发展和改进。

18世纪和19世纪,欧洲的数学家们继续推动微积分领域的研究。

拉格朗日、欧拉、高斯等数学家们为微积分理论提供了许多重要的贡献。

他们的研究使微积分得以从几何学的观点转向更加抽象和符号化的方法,这为后来微积分的发展提供了重要的基础。

20世纪,微积分进入了现代阶段,特别是与数学分析的发展相结合。

数学家们进一步探索了微积分的基础,发展了更加严格和深入的理论和方法。

对于微分学和积分学的理论基础的巩固和完善,使得微积分在数学和应用领域中的地位更加牢固。

在现代应用中,微积分广泛应用于物理学、工程学、计算机科学、经济学等学科。

例如,在物理学中,微积分被用于描述物体的运动、力学和量子力学等领域。

在工程学中,微积分为电路、信号处理和结构设计等提供了数学工具。

在计算机科学中,微积分为算法和数据分析提供了基础。

在经济学中,微积分被用于经济模型的建立和分析。

总结起来,微积分的历史与发展经历了漫长的过程,从古代的思考和猜测,到牛顿和莱布尼茨的创立,再到现代的深入研究和应用拓展。

微积分不仅是数学领域中的重要学科,也是许多其他学科中的基础和工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聊城大学本科生毕业论文题目:微积分的发展史专业代码:070101作者姓名:学号:单位:指导教师:年月日目录前言 (1)1.古代东西方微积分思想的萌芽 (1)2.微积分的产生 (2)2.1微积分的诞生 (2)2.2柯西与魏尔斯特拉斯的贡献 (3)3.微积分的意义 (5)4.东西方微积分发展差异分析 (5)结论 (6)参考文献 (8)致谢 (9)摘要微积分作为数学的一个重要分支,是许多学科的重要工具.那么它是如何产生的,对于微积分的发展史我们从中能发现什么规律和启示呢?通过研究微积分的历史可以有助于我们的科研与生产,对于理解微积分也有很大的帮助.关键词:微积分;发展史;启示;意义AbstractCalculus as an important branch of mathematics, is an important toolin manydisciplines. So how it is produced, the development history of calculus from which we can find out what rules and Enlightenment Through the study of calculus of history can contribute to the scientific research and production of our calculus, for the understanding is also a great help.Key words:Calculus; development history; inspiration; law微积分的发展史前言微积分学是微分学与积分学的总称,微积分作为现代数学的一个分支,它的触角几乎遍布当今科学的各个角落,更是当今科学的重要基石.微积分堪称是人类智慧最伟大的成就之一.微积分的发展同时推动了天文学和物理学前进的步伐,摧毁了笼罩在天体上的神秘主义、迷信和神学.不仅如此,微积分在数学这一学科中同时又贯穿了多个分支体系,如极限、微分学、积分学、以及导数等.1.古代东西方微积分思想的萌芽微积分作为一门学科是在十七世纪产生的,标志是牛顿——莱布尼兹公式.然而正如牛顿所说:“如果说我比别人看的更远些,那是因为我站在了巨人的肩上”.作为一门学科,它的产生绝不是偶然,那是无数先人的努力与支持.公元前三世纪,古希腊的阿基米德在研究解决“抛物弓形的面积,球和球冠面积,螺旋下面积和旋转双曲体的体积”的问题中,就隐含着近代积分学的思想.再比如古希腊数学家安提丰的“穷竭法”,前四世纪由欧多克斯作了补充和完善,它们用来求平面的面积和立体的体积.而在东方,在中国,前四世纪的春秋战国时代者惠施称:“一尺之棰,日取其半,万世不竭”,引出收敛的数列2111,......222n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭在这里安提丰的“穷竭法”和惠施的“一尺之棰”都是极限思想的滥觞.至公元三世纪,三国魏人刘徽作《九章算术》注,提出“割圆术”——割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.他的数学表述是以圆的内接正()()6211,2...n n ⨯-=边形的面积n A 近似单位圆的面积()n A ππ≈,算的629174⨯=边形,得 3.14π≈,又进一步通过6×29=174边形,得到一个相当于3.14159的分数,即n 愈大,n A π-愈小;,0n n A π→∞-→.剩余面积可以被竭尽.在中国古代此方法用来求圆周率,在刘徽极限思想的影响下,后来者祖冲之进一步求得更精确的圆周率.南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年.北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究.在此可见在古代的东西方微积分的极限思想已普遍产生,并已经能够解决实际问题,并且在我国的一些文学或哲学文献中也有极限的思想.思想家荀子“尽小者大,积微者著”,“不积跬步,无以至千里;不积小流,无以成江海”.沈括在《梦溪笔谈》中也提到了“造微之术”当时沈括已经知道分割的单元愈小,所求得的体积,面积俞精确.尽管中国在古代已有微积分思想的萌芽,但微积分最终还是诞生在了西方.2.微积分的产生在十七世纪,随着人们思想的不断解放,科学研究的不断深入,不少科学问题都以解决,但同样还有新的问题出现,这些问题主要涉及物理学、天文学、军事等,总结起来就是求曲线围成的面积、体积.以及曲线上任意一点的斜率.解决这些迫切需要解决的问题,需要经过长时间的研究、讨论、酝酿,有关知识渐渐积累起来,一些最活跃的人理应称为微积分的先驱.2.1微积分的诞生在微积分被发现之前,求面积只能求规则图形的面积,一些在解析几何中出现的不规则的图形的面积,由于没有公式而无从下手.在十七世纪求不规则面积、体积、曲线长,始于开普勒.他怀疑酒商的酒桶体积,认为旋转体的体积是非常薄的圆盘体积之和,卡瓦列里求积提出不可分量法,认为面积是无数个等距平行线段构成的.线是由点构成的,就像链由珠子穿成一样;面是由直线构成,就像布是由线织成一样;立体是由平面构成,就像书是由页组成一样.卡瓦列里的理论来自“穷竭法”,而费马的方法更接近现代的积分,他用小矩形面积近似小曲边形的面积,最后用相当于和式极限的方法,得到正确的结果,求得一个幂函数曲线下的曲变形的面积.此后还有华里斯、罗贝瓦儿、这些人都已来到微积分的大门口.微积分的研究源于运动学,即对切线极值、运动速度的研究.对于切线,有笛卡尔的早期研究,开普勒用列表法确定了最大体积,他注意到体积接近最大值时,由尺寸的变化引起体积的变化越来越小,这正是()'0f x =的原始形式,当时人们已认识到y x∆∆的重要性. 最后的冲刺来自牛顿与莱布尼兹.牛顿总结了先辈思想和方法,1664-1666年提出流数理论,建立了一套导数方法,他称之为“流数术”,牛顿称连续变化的量为流动的量或流量(fluent ),用英文字母,,,v x y z 等表示,x 的无限小的增量x ∆为x 的瞬,即无限小时间间隔为瞬,用小写字母o 表示.流量的速度,即流量在无限小的时间间隔内的变化率,称为流数(fluxion of flutnt),用带点的字母表示.牛顿的“流数术”就是以流量和瞬为基本概念的微积分,牛顿用有限差分的最初比和最终比来描述“流数术”,如函数()n y x n =为正整数,流量x 从x 流到x o +,函数值的增量()n n x o x +-,瞬o 与增量之比(最初比),当o 消失时,最后比即1:(1)n nx -,相当于1n y nx x∆=-∆.牛顿不仅仅引入导数,还明确了导数是增量比极限的思想,在1669年写的《运用无限多项方程的分析学》不仅给出求一个变量对另一个变量的瞬时变化率的普遍方法,还证明了“面积可以由变化率的逆过程得到”即“如果[],o x 区间上曲线是1y ma xm =⨯-则它下面的曲边形面积为Z a xm =⨯或dy y dx=,这一结论称为牛顿-莱布尼兹定理,此外牛顿还引入分部积分法、变量代换法、方程求根切线法,曲线弧长计算方法.牛顿足迹几乎遍布每一个数学分支.莱布尼兹在同期也做出同样的贡献,因此微积分的根本定理是由牛顿与莱布尼兹共同命名.他们的贡献在于将微分、积分的知识联系起来,发现了更具有本质、更有普遍意义的内涵,给出了纯洁的概念,特别是建立了变化的概念,创立了有普遍意义的微积分方法等.初创的微积分尚有不少问题,其数学基础的建立有待后世数学家给其注入严密性.2.2柯西与魏尔斯特拉斯的贡献 微积分学创立以后,由于运算的完整性和应用的广泛性,使微积分学成为了研究自然科学的有力工具.但微积分学中的许多概念都没有精确严密的定义,特别是对微积分的基础—无穷小概念的解释不明确,在运算中时而为零,时而非零,出现了逻辑上的困境.多方面的批评和攻击没有使数学家们放弃微积分,相反却激起了数学家们为建立微积分的严格而努力.从而也掀起了微积分乃至整个分析的严格化运动.微积分的严格化工作经过近一个世纪的尝试,到19世纪初已开始显现成效.对分析的严密性真正有影响的先驱则是伟大的法国数学家柯西.柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系.这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献.与此同时,柯西还在此基础上创建了复变函数的微积分理论.柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”.在定积分运算之前,强调必须确立积分的存在性.他利用中值定理首先严格证明了微积分基本定理.柯西关于分析基础的最具代表性的著作是他的《分析教程》(1821)、《无穷小计算教程》(1823)以及《微分计算教程》(1829),它们以分析的严格化为目标,对微积分的一系列基本概念给出了明确的定义,在此基础上,柯西严格地表述并证明了微积分基本定理、中值定理等一系列重要定理,定义了级数的收敛性,研究了级数收敛的条件等,他的许多定义和论述已经非常接近于微积分的现代形式.柯西的工作在一定程度上澄清了在微积分基础问题上长期存在的混乱,向分析的全面严格化迈出了关键的一步.另一位为微积分的严密性做出卓越贡献的是德国数学家魏尔斯特拉斯.魏尔斯特拉斯是一个有条理而又苦干的人,在中学教书的同时,他以惊人的毅力进行数学研究.魏尔斯特拉斯定量地给出了极限概念的定义,这就是今天极限论中的“ε-δ”方法.魏尔斯特拉斯用他创造的这一套语言重新定义了微积分中的一系列重要概念,特别地,他引进的一致收敛性概念消除了以往微积分中不断出现的各种异议和混乱.另外,魏尔斯特拉斯认为实数是全部分析的本源,要使分析严格化,就首先要使实数系本身严格化.而实数又可按照严密的推理归结为整数(有理数).因此,分析的所有概念便可由整数导出.这就是魏尔斯特拉斯所倡导的“分析算术化”纲领.基于魏尔斯特拉斯在分析严格化方面的贡献,在数学史上,他获得了“现代分析之父”的称号.通过柯西以及后来魏尔斯特拉斯的艰苦工作,数学分析的基本概念得到严格的论述.从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念,运动和直观了解的完全依赖中解放出来,并使微积分发展成为现代数学最基础最庞大的数学学科.3.微积分的意义众所周知,由古希腊继承下来的数学是常量的数学,是静态的数学.自从有了解析几何和微积分,就开辟了变量数学的时代,是动态的数学.数学开始描述变化、描述运动,改变了整个数学世界的面貌.数学也由几何的时代而进人分析的时代.微积分给数学注入了旺盛的生命力,使数学获得了极大的发展,取得了空前的繁荣.如微分方程、无穷级数、变分法等数学分支的建立,以及复变函数,微分几何的产生.严密的微积分的逻辑基础理论进一步显示了它在数学领域的普遍意义.微积分的建立是人类理性思维的结晶.他给出一整套科学的方法,开创了科学的新纪元,并因此加强了数学与其他学科的联系,加深了数学的应用.它极大的推动力天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展,并在这些学科中有越来越广泛的应用.特别是在物理学方面,有了微积分人们才能把握运动过程,万有引力被发现并导出了开普勒行星运动三定律,卫星、宇宙飞船、航天飞机不在是梦.与我们联系密切的现代工程技术,直接影响到人们的物质生产,而工程技术的基础是数学,都离不开微积分.如今微积分不但成了自然科学和工程技术的基础,而且还渗透到人们广泛的经济、金融活动中,也就是说微积分在人文社会科学领域中也有着其广泛的应用.一场空前巨大的,席卷近代世界的科学运动开始了,毫无疑问,微积分的发展是世界近代科学的开端.4.东西方微积分发展差异分析在13世纪40年代到14世纪初,各主要(数学)领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有着微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键.中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门.可惜中国元朝以后,八股取士制度造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学水平日渐衰落,在微积分创立的最关键一步落伍了.为什么微积分会产生在西方,而不是中国.东西方(东方特指中国)微积分的思想几乎同时产生,并且中国古代的数学成就也是相当辉煌.在东西方极限思想一般是用来计算平面面积和立体的体积,如上文中刘徽求圆的面积,欧多克斯用“穷竭法”求面积与体积等,这与古代的分田,交税等活动是分不开的,而在近代的西方,文艺复兴、启蒙运动极大地解放了人们的思想,随之而来的资产阶级革命更使西方在底层发生了改变,生产力大发展,人们对知识的渴望从未如此强烈,一批批各领域的大师纷纷登上历史的舞台,推动者科学的发展,当时间来到牛顿等人之时,微积分的大门被打开了.反观中国,小农经济,所谓男耕女织,一直都是不变的信条,国内没有发展自然科学的土壤,明朝更是大兴文字狱,人们的思想进一步被禁锢.在这里说明一下,中国的科技,大多是技术,比如:医学、农学、水利工程等.这与近代西方的科学有着本质的不同,近代西方科学是建立在近代科学方法论的基础之上,是通过实验、数学模型和数学推导演绎来研究的,是科学的,严谨的,中国则更像是经验的积累,这也是微积分没有产生在中国的原因.当然中国古代由几何问题引起极限,微积分等观念思想萌芽的出现,所用方法本质上是静态的,只有牛顿、莱布尼兹在他们先驱者所做工作的基础上才发展成动态分析的方法.结论微积分的发明不是一蹴而就的,而是人类集体智慧的结晶,是无数科学家长期奋斗的结果.数学来源于实践,没有当时大量实际问题的涌现,没有科学家深入实际,将大量实际问题转化为数学问题的研究,是不可能产生微积分理论的.东西方微积分发展差异在于:早期东西方都产生了微积分的极限思想,他们都用来解决一些实际问题,比如:求圆的面积、分田等,不同的是西方在后来有了更科学的研究体系,现有的数学知识不能解决当时的问题,如:牛顿求物体的位移。

相关文档
最新文档