材料力学 第五章 弯曲应力PPT课件

合集下载

材料力学课件第5章

材料力学课件第5章

M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M

1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx

材料力学弯曲应力PPT课件

材料力学弯曲应力PPT课件

M
Fl
F 解:1.画梁的剪力图和弯矩图
按正应力计算
max
M max Wz
6F1l bh2
F1
bh2
6l
107 100 1502 109 6
3750N
3.75kN
按切应力计算
max 3FS / 2A 3F2 / 2bh
F2 2 bh / 3 2106 100150106 / 3 10000N 10kN 35
截面为bh=30 60mm2 的矩形
求:1截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm 4
y 20mm : M y 33.3MPa
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲近似使用
12
试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面
要同时满足 t,max t , c,max c
25
例题
解:(1)求截面形心
52
z1 z
yc
80 2010 120 2080 80 20 120 20

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学第5章弯曲变形ppt课件

材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D

材料力学第五章弯曲应力

材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya

560 2

21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ

IZ ymax

材料力学5弯曲应力_图文

材料力学5弯曲应力_图文
(1)合理安排载荷 (2)分散载荷(从使用方案考虑) (3)调整支座位置(从设计角度)
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;

材料力学弯曲切应力ppt课件

材料力学弯曲切应力ppt课件
m
F*
B N2 n
dFs
FN*2
FN*1
dM Iz
S
* z
3 求纵截面 AB1 上的切应力 ’
S dFs 1 dM *
b dx bI z dx z
Fs
S
* z
bI z
z x
y
A1
FN*1
m
B1 dFs
A
n
bm
dx
B FN*2 n
Fs
S
* z
bI z
4 横截面上距中性轴为任意 y 的点,其切应力 的计 算公式。
*
z max [ ]
I zb
式中 :[] 为材料在横力弯曲时的许用切应力。
S* z max
为中性轴任一边的半个横截面面积对中性轴的静矩
F S s,max
*
z max [ ]
I zb
在选择梁的截面时,通常先按正应力选出截面, 再按切应力进行强度校核。
例题3 : 简支梁受均布荷载作用,其荷载集度 q 3.6 kN m
Fs,max 所在的横截面上,而且一般说是位于该截面的中性轴上。 全梁各横截面中最大切应力可统一表达为
S Fsmax
* z max
max
Izb
S Fsmax
* z max
max
Izb
S* z max
—— 中性轴一侧的横截面面积对中性轴的静矩
b —— 横截面在中性轴处的宽度
Fs max —— 全梁的最大剪力
q
m
C
E
G
H D
m
l 2
l
Fs 图 F
M图
ql 2
ql 2 8
E
τ max

05弯曲应力

05弯曲应力

例题5-1
q=60kN/m
A
1m
FAy
C
l = 3m
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBy
C 截面的曲率半径ρ y
FS 90kN

M ql 2 / 8 67.5kN m

x 90kN
n
I y


I yi
i 1
n
I z

I zi
i 1
(2)平行移轴公式
以形心为原点,建立与原坐标轴平行 y
x
dyAC
的坐标轴如图
xaxC

yb
yC

y
a
C
xC x
b
I x I xC b2 A SxCAyC 0
I x
y 2dA
A

(
A
yC
b)
2
dA

(
A
yC2
5.832 105
61.7 106 Pa 61.7MPa (压应力)
42
q = 60kN/m
A
1m
FAY
C
l = 3m
FS 90kN

B
x
FBY
x 90kN
180
120
2. C 截面最大正应力
30 C 截面弯矩
K
z
M C 60kN m
y
C 截面惯性矩
IZ 5.832 105 m 4

bh3 12
) /(h0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
§5-2 纯弯曲时的正应力
纯弯曲的内力 剪力Fs=0
1、变形几何关系 2、物理关系
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
1、变形几何关系 (一)实验观察现象:
施加一对正弯矩,观察变形
观察到纵向线与横向线有何变化?
弯曲正应力计算公式 弯曲正应力分布规律
My
IZ
5、横截面上最大弯曲正应力
max
Mymax Iz
M
I z / ymax
Wz
Iz ymax
——截面的抗弯截面系数;。
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
max
M WZ
适用条件 截面关于中性轴对称。
6、常见图形的惯性矩及抗弯截面系数:
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
求最大拉应力、最大压应力。
9KN 4KN
A
C
B
1m 1m
1m
Iz 7.64 106 m4
52 zc
88
分析: 非对称截面, 要寻找中性轴位置; 作弯矩图,寻找最大弯矩的截面 计算最大拉应力、最大压应力
截面上哪一点的正应力, 并确定该点到中性轴的距离,以及该点处应力的符号
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
观察纵向纤维之间有无相互作用力
2、假设: 纵向纤维之间没有相互挤压, 各纵向纤维只是发生了简单的轴向拉伸或压缩。
观察纵向纤维的变化
在正弯矩的作用下, 偏上的纤维 缩短,
偏下的纤维 伸长。
凹入一侧纤维 缩短;
凸出一侧纤维伸长。
中性层
ΔL<0
ΔL>0
ΔL=0 既不伸长也不缩短
中性层 --纤维长度不变
z hb
d z
D dz
Iz
1 bh3, 12
Wz
1 bh2 6
Iz
64
d4,
Wz
d3
32
Iz
(D4
64
d4)
64
D4 (1 4 )
Wz
32
D3 (1 4 )
§5-3
一、横力弯曲
横力弯曲时的正应力
F
Fs
F
x
M x
FL
横截面上内力
剪力+弯矩
横截面上的应力 既有正应力, 又有切应力
横力弯曲时的横截面
中性轴
中性轴上各点 σ=0 各横截面绕 中性轴发生偏转。 中性轴的位置 过截面形心
你能解释一下托架开孔合理吗?托架会不会破坏?
(三)理论分析:
y
z
两直线间的距离
y的物理意义
纵向纤维到中性层的距离; 点到中性轴的距离。
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。 从横截面上看: 点离开中性轴越远,该点的线应变越大。
max
Mymax Iz
推导弯曲正应力计算公式的方法总结
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲
(2)“实验—观察—假设” :梁弯曲假设
(3)外力
内力
应力法
(4)三关系法
变形几何关系 物理关系 静力学关系
(5)数学方法
积分
应力合成内力
注意
(1)计算正应力时,必须清楚所求的是哪个截面上的应力, 从而确定该截面上的弯矩及该截面对中性轴的惯性矩;
2、物理关系
当σ<σP时
虎克定律
弯曲正应力的分布规律
E E y
a、与点到中性轴的距离成正比;
沿截面高度 线性分布;
y
z
b、沿截面宽度 均匀分布;
c、正弯矩作用下, 上压下拉;
d、危险点的位置, 离开中性轴最远处.
弯曲正应力的分布规律
可 别 忘 记 啦 沿高度 沿宽度
3、静力学关系
dA FN 0
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
2.5103 88103 7.64 106
28.8MPa
(3)结论
52 zc
88
c,max 46.1MPa t,max 28.8MPa
例2:矩形截面简支梁承受均布载荷作用,如图所示
横截面 不再保持为平面 且由于切应力的存在,也不能保证纵向纤维之间没有正应力
二 横力弯曲正应力
纯弯曲正应力公式 My
IZ
弹性力学精确分析表明:
对于跨度 L 与横截面高度 h 之比 L / h > > 5的细长梁,
用纯弯曲正应力公式计算横力弯曲正应力, 误差<<2%
满足工程中所需要的精度。
横力弯曲最大正应力
变化的是: 1、纵向线的长度 2、两横截面的夹角 3、横截面的宽度
纵向线 横向线
由直线
曲线 各纵向线的长度还相等吗?
由直线
直线 各横向线之间依然平行吗?
相对旋转一个角度后, 仍然与纵向弧线垂直。
(二)提出假设:
1、平面假设: 变形前为平面的横截面变形后仍保持为平面; 横截面绕某一轴线发生了偏转。
瑞士科学家Jacob.贝努力 于1695年提出梁弯曲的平面假设
回顾与比较
内力
应力公式及分布规律
均匀分布 F
A
线形分布 T
IP
M
?
FA
FS
?
y
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 强度条件 §5-4 弯曲切应力 §5-6 提高梁强度的措施
一、纯弯曲
§5-1 纯弯曲
Fs
F
F
M
Fa
Fa
梁段CD上,只有弯矩,没有剪力 --纯弯曲
A
CB
FA
1m
1m
1m
2.5KNm FB
M
(1)求支反力,作弯矩图 FA=2.5KN (2)计算应力: B截面应力分布
4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
A
E y
Sz 0 中性轴过截面形心
M y z dA 0
A
M z y dA M
A
1 M
EIZ
坐标轴是主轴
中性层的曲率计算公式 EIz 抗弯刚度
4、弯曲正应力计算公式
变形几何关系
y
物理关系 E
静力学关系
1 M
EIZ
E y
正应力公式
My
IZ
1826年纳维在《材料力学》讲义中给出正确计算公式
q=60KN/m
120
A
B
1m C
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
相关文档
最新文档