11外压容器的设计共49页
外压容器的设计计算

外压容器的设计计算外压容器是一种用于储存或输送气体、液体或粉状物料的设备,设计计算是确保容器在正常工作条件下能够承受外部压力的重要环节。
下面将从容器的负荷计算、材料选择和结构强度校核等方面进行详细介绍。
首先,容器的负荷计算是设计计算的关键步骤之一、负荷可分为静止负荷和动载荷两部分。
静止负荷包括容器本身的重量、储存物的重量以及设备上附件的负荷;动载荷包括地震力、风荷载等。
针对每个负荷的特点,需要采用相应的计算方法进行计算。
静止负荷的计算可以使用强度、稳定性和刚度等方面的计算方法,而动载荷则可以使用动力学和模态分析方法。
接下来,材料选择是外压容器设计中的另一个重要考虑因素。
一般而言,常用的材料包括钢材、不锈钢和复合材料等。
在材料选择中,需要考虑材料的强度、刚度、耐腐蚀性、可焊性、可加工性等因素。
根据容器的具体工作条件和介质特性,可以选择合适的材料。
然后,容器的结构强度校核是设计计算中最关键的一步。
容器的结构强度主要包括轴向强度、环向强度和承压壳体强度三个方面。
轴向强度是指容器在轴向受力状态下的承载能力,一般计算采用拉伸强度和挤压强度的计算方法。
环向强度是指容器在环向受力状态下的承载能力,计算时采用圈接强度和薄壁圆筒强度的计算方法。
承压壳体强度是指容器在由于外压而受到的承载能力,计算时采用塑性分析和有限元分析方法。
此外,容器的设计还需要满足相应的安全要求。
例如,容器需要满足静态不破坏条件和动态不破坏条件,防止容器发生破裂,对人身和财产造成伤害。
同时,容器还需要满足泄漏要求,确保储存物料的安全。
容器的设计还需要满足相关的法律法规和标准要求,如ASME(美国机械工程师学会)标准。
综上所述,外压容器的设计计算是确保容器在正常工作条件下能够承受外部压力的关键环节。
其中包括负荷计算、材料选择和结构强度校核等方面。
通过科学合理的设计计算,可以保证容器的安全性和可靠性,提高容器的使用寿命,为工业制造提供可靠的储存和输送设备。
外压容器设计11

三、加强圈的设计计算
二、加强圈尺寸
参数A、B
cr
A
Pcr Do 2Ete
(4 - 26)
式中te为圆筒在设置加强圈后的等效壁厚
38
三、加强圈图算法的基本步骤
(1)设定加强圈个数n,计算加强圈间距Ls=L/(n-1)
(2)选定加强圈(扁钢、角钢或工字钢), 计算B,
(3)由B查A,若交不到,计算A
▪ 有一个圆筒容器,材料为20R,E 2105 MPa ▪ 圆筒内径D2=1000mm,壁厚S=10mm,长度
为20m,常温操作,承受均匀气体外压力, 求: ▪ 1、当圆筒椭圆度为0.2%时的临界压力; ▪ 2、当圆筒长度改为2m时重新计算。
52
44
三、外压法兰的计算
外压法兰仍利用Water 对内压法兰建立的 应力公式进行计算。
在预紧情况下,外压法兰与内压法兰的力 矩计算相同;
在操作状态下,因流体轴向静压力的方向 与内压时相反,升压时螺栓力降低,垫片反 力反而增加,故可以假定W=0,P3=P1+P2
45
三、外压法兰的计算
46
三、外压法兰的计算
m
“ 设计规定”稳定性系数m=3,此时要求了圆筒的 不圆度e
16
第二节 外压薄壁圆筒的稳定性计算
一、受均布侧向外压的长圆筒的临界压力 二、受均布侧向外压短圆筒的临界压力 三、轴向受压圆筒的临界应力
17
一、受均布侧向外压的长圆筒的临界压力
基本概念:长圆筒与短圆筒 当圆筒的长度与直径之比较大时,其中间部
29
第三节 外压圆筒的设计计算
一、解析法 二、图算法
30
第三节 外压圆筒的设计计算
一、解析法 基本原则:
外压容器设计PPT课件

直径选择
根据容器的用途、运输限 制和制造工艺等因素,选 择合适的直径。
直径与壁厚关系
根据容器承受的外压载荷 和材料特性,确定直径与 壁厚的关系,以满足强度 和稳定性的要求。
直径与高度关系
在满足强度和稳定性的前 提下,合理设计容器直径 与高度的比例,以实现容 器的轻量化。
容器高度设计
高度选择
根据容器的用途、工艺要求和运 输限制等因素,选择合适的高度。
分析容器的疲劳寿命, 预测可能出现的疲劳 裂纹和断裂。
05
外压容器制造工艺
容器材料加工工艺
钢材预处理
包括切割、矫形、抛丸等步骤,确保钢材表面清洁、无锈迹,为 后续的焊接和组装提供良好的基础。
卷板机加工
将钢材通过卷板机进行弯曲加工,形成所需的弧度和形状,以满 足容器设计的需要。
坡口加工
在焊接前对钢材进行坡口加工,形成焊接所需的坡口角度和形状, 以确保焊接质量和强度。
的密封方式。
密封结构
02
密封结构可以采用单层或双层密封结构,也可以采用其他形式
的密封结构。
密封材料
03
密封材料应选择耐高温、耐腐蚀、耐磨损的材料,以确保密封
结构的可靠性。
04
外压容器强度分析
应力分析
1 2
一次应力
由压力、重力和其他机械载荷引起的应力。
二次应力
由容器变形或温度变化引起的应力。
3
峰值应力
外压容器设计ppt课件
• 外压容器设计概述 • 外压容器设计原理 • 外压容器结构设计 • 外压容器强度分析 • 外压容器制造工艺 • 外压容器应用案例
01
外压容器设计概述
外压容器的定义与特点
总结词
外压容器的图算法(精)

[ p] 0.0833 E(
e
Ro
)
2
(5)比较:若[p]≥Pc,则以上假设的壁厚满足要 求,否则重新假设,重复以上步骤,直至[P]大于并接 近Pc为止。
【例题】
确定一外压圆筒的壁厚,如图所示。已 知:设计压力 p 0.2MPa , Di 1800mm ,设 t 250 C ,取壁厚附加量C=2mm, 计温度 材料Q345R。取 pc p 0.2MPa
hi
hi / 3 L
L 10350
hi / 3 L
【例题】
解:(1)假设名义厚度
n 14mm
e n C 12mm
D0 Di 2 n 1800 2 14 1828 mm
L 10350 / 3 3450 mm
L / D0 3450/ 1828 1.9
p B
e
D0
若A值落在设计温度下材料线的左方,则直接用 下式计算许用外压力[p],即
e 2 p EA 3 D0
n
一、外压圆筒的图算法
(5)比较:若[P]≥Pc,则以上假设的满足要求, 否则须重新假设名义厚度,重复上述步骤,直至[P] 大于并接近Pc为止。
二、外压封头的图算法
D0 / e 1828/ 12 152
【例题】
解: (2)由图1-134查得A=0.00035; (3)由图1-136可知A=0.00035,落在 250 C 线(插值)直线段,所以
1.86 1.69 E 10 5 1.775 10 5 MPa 2
【例题】
2 2 B EA 1.775 10 5 0.00035 41.42 MPa 3 3 (或从图中直接查取B值)
GB150.1-4-2011《压力容器》新旧版内容对照表

修订 150.1 1.5
修订 150.1 1.5a
新增 150.1 1.5b
未变 150.1 1.5c
修订 150.1 1.5d 未变 150.1 1.5e 未变 150.1 1.5f
修订 150.1 1.5g
删除 150.1 删除 150.1 修订 150.1 1.6 未变 150.1 1.6.1 未变 150.1 1.6.2 未变 150.1 1.6.3 未变 150.1 1.6.4
修订 150.1 1.6.5
修订 150.1 2 修订 150.1 3 修订 150.1 3.1 未变 150.1 3.1.1 未变 150.1 3.1.2 未变 150.1 3.1.3 未变 150.1 3.1.4 未变 150.1 3.1.5 新增 150.1 3.1.6 未变 150.1 3.1.7 未变 150.1 3.1.8 新增 150.1 3.1.9 未变 150.1 3.1.10 未变 150.1 3.1.11 未变 150.1 3.1.12 未变 150.1 3.1.13 新增 150.1 3.1.14 新增 150.1 3.1.15 新增 150.1 3.2
新增 150.1 1.4.2
本标准适用范围内的特定结构容器以及铝、钛、铜、镍及 镍合金、锆制容器,其结构形式和适用范围还应满足下述 标准的相应要求: a)GB151《管壳式换热器》 b)GB12337《钢制球形储罐》 c)JB/T4731《卧式容器》 d)JB/T4710《塔式容器》 e)JB/T4734《铝制焊接容器》 f)JB/T4745《钛制焊接容器》 g)JB/T4755《铜制焊接容器》 h)JB/T4756《镍及镍合金焊接容器》 i)NB/T47011《锆制压力容器》
修订 150.1 4.3.3b
外压薄壁容器课件

3、筒体形状和材 料的不均匀
材料的圆度 偏差越大, 材料的不均 匀性越大临 界压力越小
2020/1/21
筒体的圆度偏差定义为 e= ( Dmax-Dmin ) , Dmax 、Dmin分别为壳 体的最大直径、最小直 径。
在外压容器制造和安装 过程中要求
e≤ 0.5﹪DN
2020/1/21
内压容器: 容器的内部压力大于其外部压力的容器。
外压容器: 容器的外部压力大于其内部压力的容器。
2020/1/21
第四节 外压薄壁容器
外压容器:
减压分馏塔、真空冷凝器、带蒸 汽加热夹套的反应釜、潜艇等。
2020/1/21
减压蒸馏塔
带夹套的反应釜
2020/1/21
潜艇
真空干燥设备
结
(三)提高外压容器稳定性的措施
2020/1/21
ቤተ መጻሕፍቲ ባይዱ
作业: 什么是外压容器的失稳? 临界压力的影响因素有哪些 ?
2020/1/21
谢谢!
2020/1/21
H
2020/1/21
加强圈的结构形式
2020/1/21
• 加强圈的型钢
角 钢 工字钢
扁 钢
2020/1/21
加强圈与筒体的连接
加强圈安装在筒体外面: 加强圈安装在筒体内部:
2020/1/21
小
(一)(1)外压容器失稳的概念
(2)外压容器失稳的形式
(二)(1)临界压力的概念
(2)临界压力的影响因素
2020/1/21
问题:
容器正常的工作压力
要
临界压力Pcr
(大于、等于、小于)
2020/1/21
小于
2、临界压力Pcr的影响因素
第七章 外压容器设计

第七章 外压容器设计第一节 外压容器设计【学习目标】 掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(p cr )。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D (壁厚与直径的比值)、L /D (长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D 的值越大,圆筒刚度越大,临界压力p cr 值也越大;L /D 的值越大,圆筒刚度越小,临界压力p cr 也越小。
② 材料的性能材料的弹性模量E 值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E 值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力p cr ,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力[]3cr p p ≤。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
第13章 外压容器设计

用圆筒的抗弯刚度
D EJ (1 2 )
代替式(13-1)中圆环的抗弯刚度EJ,即得长圆筒的临界 压力计算式
3D 3EJ pcr 3 2 3 R (1 ) R
将 J e3 12 代入式(13-2),得
(13-2)
2E e 3 pcr ( ) 2 1 D
3. 筒体的椭圆度和材料的不均匀性
筒体的椭圆度定义为e=(Dmax-Dmin), Dmax 、Dmin
分别为壳体的最大直径、最小直径。 筒体的 椭圆度大小和材料的不均匀性 影响临界压力 的大小。但必须注意的是:外压容器的失稳是外压容 器固有的力学行为,并非由于壳体不圆或材料不均匀
引起的。
GB150中对外压容器椭圆度的要求比内压容器要严格。
13.1.1 外压容器的失稳
外压容器指容器外面的压力大于内部的容器。 例如:石油分馏中的减压蒸馏塔,多效蒸发中的真空 冷凝器,带有蒸汽加热夹套的反应容器以及某些真空
输送设备等。
圆筒容器受外压时的应力计算方法与
受内压相类似。其环向应力值是
pD 2
若超过材料的屈服极限或强度极限时,也会引起强度 失效。但薄壁容器极少出现这种失效,往往是在壳壁的
压应力还远小于筒体材料的屈服极限时,筒体就已经被
压瘪或出现褶皱,突然间失去自身原来的几何形状而导 致容器失效。 外压容器的 失效形式有 两种:
1.发生压缩屈服破坏;
2.当外压达到一定的数值时,壳 体的径向挠度随压缩应力的增 加急剧增大,直至容器压扁.
这种在外压作用下壳体突然被压瘪
(即突然失去自身原来形状)的现象
式(13-4)仅适合于 cr
(13-5)
s ,即弹性失稳。
13.2.2 短圆筒的临界压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计外压容器
设计外压容器,应使许用外压[p]小于临界压 力Pcr,即稳定条件为:
pcrm[p]
由于Pcr或[p]都与筒体的几何尺寸(de、D、L)
有关,通常采用试算法:
一、解析法
求Pcr,确定[P]
3
长圆筒
pcr
2.2E
de
D0
短圆筒
pcr
2.59Ed
2 e
mLD0
❖但即使壳体形状很精确和材料很均匀,当外压 力达到一定数值时,也会失稳,只不过是壳体 的圆度与材料的不均匀性能使其临界压力的数 值降低,使失稳提前发生。
第三节 外压圆筒的设计计算
算法概述 外压圆筒计算常遇到两类问题:
✓一是已知圆筒的尺寸,求它的许用外压 [p];
✓另一是已给定工作外压,确定所需厚度de。
容器强度足够却突然失去了原有的形状,筒 壁被压瘪或发生褶绉,筒壁的圆环截面一 瞬间变成了曲波形。这种在外压作用下, 筒体突然失去原有形状的现象称弹性失稳。
容器发生弹性失稳将使容器不能维持正常操 作,造成容器失效。
失稳现象的实质:
外压失稳前,只有单纯的压缩应力,在失稳 时,产生了以弯曲应力为主的附加应力。
pcr
3EJ R3
pcr
2E
1m2
(de )3
D
式中 Pcr-临界压力, MPa;
de-筒体的有效厚度, mm;
D-筒体的平均直径, mm E-操作温度下圆筒材料的弹性模量, MPa
m-材料的泊桑比。
❖分析:
pcr
2E
1m2
(de
D0
)3
长圆筒的临界压力仅与圆筒的相对厚度de/D 有关,而与圆筒的相对长度L/D无关。
失稳时的临界压力与de/D有关,而与L/D 无关。
出现波纹数n=2的扁圆形。 ✓短圆筒:两端封头对筒体变形有约束作用,
临界压力与de/D有关,而且与L/D 有关。失稳
破坏波数n>2。
✓刚性圆筒:若筒体较短,筒壁较厚,即L/D0 较小,de/D0较大,容器的刚性好,不会因失
稳而破坏。
2. 筒体材料性能
对于钢制圆筒,m=0.3,则
pcr
2.20E(de)3
D
scrP2cdrD e 1.1E(dDe)2
二、短圆筒
短圆筒的临界压力计算公式为:
pcr
2.59E(de /D)2.5
(L/D)
✓ 短圆筒临界压力与相对厚度de/D有关,也
随相对长度L/D变化。
✓ L/D越大,封头的约束作用越小,临界压
力越低。
复的。
临界压力与哪些因素有关?
失稳是固有性质,不是由于圆筒不圆或是材 料不均或其它原因所导致。
每一具体的外压圆筒结构,都客观上对应着 一个固有的临界压力值。
临界压力的大小与筒体几何尺寸、材质及结 构因素有关。
1. 筒体几何尺寸
✓长圆筒:刚性封头对筒体中部变形不起有效 支撑,最容易失稳压瘪,筒体的L/D值较大,
许用外压[p]
圆度,长圆筒或管子一般压力达到临界压力值 的 l/2~1/3时就可能会被压瘪。
大于计算压力的工况,不允许在外压力等于或 接近于临界压力,必须有一定的安全裕度,使 许用压力比临界压力小,即
[ p ] p cr m
[p]-许用外压; m-稳定安全系数,m>1
稳定安全系数m的选取
主要考虑两个因素: ✓一个是计算公式的可靠性; ✓另一个是制造上所能保证的圆度。 ❖根据GB150-1998《钢制压力容器》的规定
❖失稳,仍具有圆环截面, 但破坏了母线的直线性, 母线产生了波形,即圆 筒发生了褶绉。
二、临界压力及其影响因素
临界压力:导致筒体失稳的外压,Pcr
临界应力:筒体在临界压力作用下,筒壁内的 环向压缩应力,以scr表示。
➢外压低于Pcr,变形在压力卸除后能恢复其原先
形状,即发生弹性变形。
➢达到或高于Pcr时,产生的曲波形将是不可能恢
de
,
L D0
p B
D0 de
B2E A 2s,而 A,即 AB 的关 2 系 s
33
3
设计步骤
利用算图确定外压圆筒厚度。步骤如下:
1. D0/de≥20的外压圆筒及外压管
11外压容器的设计
第十一章 外压容器设计
第一节 概 述
一、外压容器失稳
外压容器:容器外部压力大于内部压力。 石油、化工生产中外压操作,例如:
石油分馏中的减压蒸馏塔、 多效蒸发中的真空冷凝器、 带有蒸汽加热夹套的反应釜 真空干燥、真空结晶设备等。
失稳的概念:
容器外压与受内压一样产生径向和环向应力, 是压应力。也会发生强度破坏。
D0
de
d
D0 3
mpc 2.2E
d
D0
2.m59pEcLD0 0.4
二、图算法
长、短圆筒临界压力计算 式均可归纳为
K为特征系数,
pcr
KE( de
D0
)3
K
L力为
scrp2cdrD e0 1 2K(ED de0)2
周向应变 以A代替
A
f
D0
D0
de
❖ 当筒长度L≥Lcr,Pcr按长圆筒
❖ 当筒长度L≤Lcr时,Pcr按短圆筒
公式按规则圆形推的,实际圆筒总存在 一定的不圆度,公式的使用范围必须要求限
制筒体的圆度e。
临界压力计算公式使用范围:
临界压力计算公式在认为圆筒截面是规则圆形 及材料均匀的情况下得到的。
❖实际筒体都存在一定的圆度,不可能是绝对圆 的,实际筒体临界压力将低于计算值。
薄壁筒体的临界压力与材料的屈服极限无关,而 与材料的弹性模量E和泊桑比m有关。 E、m值较大 的材料抵抗变形的能力较强,其临界压力也较高。
3. 筒体的椭圆度和材料的不均匀性
筒体的椭圆度大小和材料的不均匀性影响临界压 力的大小。
第二节 薄壁筒体的临界压力计算公式
一、 长圆筒
长圆筒的临界压力计算公式:
scrp2cdrD e 1L.3/D EdDe1.5
三、临界长度
➢实际外压圆筒是长圆筒还是短圆筒,可根据
临界长度Lcr来判定。 ➢当圆筒处于临界长度Lcr时,长圆筒公式计算
临界压力Pcr值和短圆筒公式计算临界压力Pcr
值应相等
2.2E 0(de)32.5E 9(de/D)2.5
D
(L/D)
得:
Lcr 1.17D0
外压容器的失稳,实际上是容器筒壁内的应 力状态由单纯的压应力平衡跃变为主要受 弯曲应力的新平衡。
㈠ 侧向失稳
❖由于均匀侧向外压引起失稳叫侧向失稳。 ❖壳体横断面由原来的圆形被压瘪而呈现波形,
其波形数可以等于两个、三个、四个……。
㈡ 轴向失稳
❖薄壁圆筒承受轴向外压, 当载荷达到某一数值时, 也会丧失稳定性。