GPU架构与技术详解
GPU架构与技术详解

GPU架构与技术详解在计算机科学领域中,GPU(Graphics Processing Unit,图形处理器)是一种高性能的并行处理器,专门用于处理图形和影像数据。
GPU架构和技术是GPU的核心部分,是其能够实现高性能并行计算的基础,下面将详细介绍GPU架构和技术。
一、GPU架构1.传统的固定管线架构:-传统的固定管线架构是指,GPU的硬件流水线是由多个固定功能单元组成的,包括顶点处理单元、光栅化单元、像素处理单元等。
这种架构适用于以图形渲染为主的应用,但对于一些通用计算任务来说效率较低。
2.可编程管线架构:-可编程管线架构是指,GPU的硬件流水线可以根据应用的需求进行动态配置和编程。
这种架构使得GPU能够处理更加复杂的图形和计算任务,提高了其灵活性和性能。
3.统一架构:- 统一架构是可编程管线架构的演化,它将GPU的顶点处理和像素处理合并为一个可编程的流处理器(Streaming Processor)。
这样一来,GPU可以根据任务需求动态分配处理资源,从而提高性能和灵活性。
4.并行处理架构:-并行处理架构是指GPU利用多个流处理器并行处理任务。
在这种架构下,每个流处理器都可以独立执行计算任务,从而实现高性能的并行计算。
二、GPU技术1.CUDA:2. OpenCL:3. Vulkan:- Vulkan是一种跨平台的图形和计算API,可以实现高性能的图形渲染和并行计算。
Vulkan具有低延迟、高吞吐量和低CPU开销等特点,适用于对性能要求较高的应用,如游戏开发、虚拟现实等。
4.光线追踪:-光线追踪是一种先进的图形渲染技术,它可以模拟光线在物体表面上的反射和折射,从而实现更加真实的图形效果。
GPU的并行计算能力使得光线追踪技术能够得到更好的应用和加速。
5.深度学习:-近年来,GPU的并行处理能力在深度学习领域得到了广泛的应用。
GPU能够高效地进行矩阵乘法等基本计算操作,并且具备大规模并行处理的能力,因此成为了深度学习训练和推理的重要工具。
GPU架构与技术详解

GPU架构与技术详解GPU(Graphics Processing Unit)是一种专门用于处理图形计算的处理器。
GPU的架构与技术一直是图形学和计算机科学研究的重要分支。
本文将从宏观和微观两个层面,详细讲解GPU的架构及相关技术。
一、GPU的宏观架构GPU的宏观架构分为三个部分:处理器、显存和外部接口。
1.处理器GPU内部的处理器架构,主要分为SIMD(Single Instruction Multiple Data)和MIMD(Multiple Instruction Multiple Data)两种。
SIMD在处理数据时仅使用一种指令并且把数据分成多个数据段。
而MIMD则使用不同的指令处理不同的数据,每个线程可以独立运作,相互之间互不干扰。
同时,GPU中的处理器也分为标量、向量和矩阵处理器。
标量是最基本的处理器,向量处理器则可以同时处理多个相同类型的向量数据。
矩阵处理器则适用于大规模矩阵计算,是GPU计算高性能的核心部件。
2.显存GPU的显存是一种特殊的内存,它是专门为图形处理而设计的,并采用非常高效的访问方式。
显存的带宽比普通内存大几倍,使GPU能够更快速地访问和处理图形数据。
同时,显存还采用了多通道和多级缓存技术,进一步提高了图形渲染和计算性能。
3.外部接口GPU的外部接口通常包括PCI-Express和AGP。
PCI-Express是目前最常见的GPU外部接口,它提供高速的数据传输,能够满足大多数应用场景的需求。
而AGP则较少使用,在一些较老的计算机中还可以见到。
二、GPU的微观架构GPU的微观架构主要包括计算单元、纹理单元和像素单元三个部分。
1.计算单元计算单元是GPU中最基本的部件,它主要负责整数和浮点数的计算。
计算单元包括SIMD处理器、标量处理器、向量处理器和矩阵处理器。
计算单元在执行计算任务时,需要高质量的处理器设计,如各种运算单元、指令管理单元、调度单元和寄存器文件等。
2.纹理单元纹理单元是GPU中的特殊部件,它主要负责处理图像数据。
gpu 需要掌握的知识

gpu 需要掌握的知识摘要:一、GPU简介1.GPU的定义与作用2.GPU的发展历程二、GPU结构与原理1.GPU的基本结构2.GPU的工作原理三、GPU的应用领域1.图形处理2.计算加速3.深度学习四、GPU的性能评价1.性能指标2.性能提升方法五、GPU的发展趋势1.新型GPU架构2.GPU与其他技术的融合正文:随着科技的不断发展,GPU(Graphics Processing Unit,图形处理单元)已经成为了计算机领域中不可或缺的一部分。
对于想要深入了解GPU的人来说,掌握GPU的相关知识是必不可少的。
本文将对GPU的各个方面进行详细的介绍,以帮助读者更好地理解GPU。
一、GPU简介GPU是一种专门用于处理图形和图像相关任务的微处理器,它通过硬件加速来实现对图像的实时渲染。
GPU最初由NVIDIA公司开发,主要用于个人电脑和游戏主机,以提高图形显示效果。
随着技术的进步,GPU逐渐被应用于计算领域,为各种计算任务提供加速。
二、GPU结构与原理1.GPU的基本结构GPU的基本结构包括运算单元、控制单元、存储单元等。
其中,运算单元负责执行图形相关的计算任务,如矩阵运算、向量计算等;控制单元负责协调各个部分的工作,实现指令的解码和执行;存储单元则用于存储数据和指令。
2.GPU的工作原理GPU的工作原理是,首先将图形相关的任务拆分成许多小的计算任务,然后将这些任务分配给多个运算单元同时执行。
由于运算单元的数量通常远大于CPU的运算单元数量,因此GPU可以在短时间内完成大量的计算任务。
最后,将计算结果合并,生成最终的图像。
三、GPU的应用领域1.图形处理作为GPU的“本职工作”,图形处理当然是GPU最重要的应用领域。
无论是玩游戏、观看视频,还是进行图形设计,都离不开GPU的图形处理能力。
2.计算加速随着GPU性能的不断提升,许多计算任务也可以通过GPU进行加速。
例如,科学计算、数据分析、密码学等领域都可以利用GPU的并行计算能力来提高计算效率。
一文详解GPU结构及工作原理

一文详解GPU结构及工作原理
GPU全称是GraphicProcessing Unit--图形处理器,其最大的作用就是进行各种绘制计算机图形所需的运算,包括顶点设置、光影、像素操作等。
GPU实际上是一组图形函数的集合,而这些函数有硬件实现,只要用于3D 游戏中物体移动时的坐标转换及光源处理。
在很久以前,这些工作都是由CPU配合特定软件进行的,后来随着图像的复杂程度越来越高,单纯由CPU 进行这项工作对于CPU的负荷远远超出了CPU的正常性能范围,这个时候就需要一个在图形处理过程中担当重任的角色,GPU也就是从那时起正式诞生了。
从GPU的结构示意图上来看,一块标准的GPU主要包括通用计算单元、控制器和寄存器,从这些模块上来看,是不是跟和CPU的内部结构很像呢?
事实上两者的确在内部结构上有许多类似之处,但是由于GPU具有高并行结构(highly parallel structure),所以GPU在处理图形数据和复杂算法方面拥有比CPU更高的效率。
上图展示了GPU和CPU在结构上的差异,CPU大部分面积为控制器和寄存器,与之相比,GPU拥有更多的ALU(Arithmetic Logic Unit,逻辑运算单元)用于数据处理,而非数据高速缓存和流控制,这。
了解电脑显卡中的GPU架构

了解电脑显卡中的GPU架构随着计算机技术的不断发展,电脑显卡已经成为了现代计算机中不可或缺的组件之一。
而在显卡中,GPU(图形处理器)架构则显得尤为重要。
本文将探讨GPU架构的概念、功能以及不同类型的GPU架构。
一、什么是GPU架构GPU架构是指在电脑显卡中用于处理图形和图像数据的架构。
它是显卡的核心组成部分,负责处理和加速计算机图形渲染、3D游戏以及其他图形相关的计算任务。
二、GPU架构的功能1. 并行计算能力:GPU架构具有强大的并行处理能力,能够同时处理多个任务和数据。
与传统的中央处理器(CPU)相比,GPU可以同时处理数百个线程,大大提高了图形处理的效率。
2. 图形渲染:GPU架构专注于图形渲染任务,可以加速计算机中的图形显示。
通过优化渲染算法和提高处理器的时钟频率,GPU可以实现流畅的图形效果和更快的画面刷新率。
3. 通用计算能力:除了图形渲染,现代的GPU架构还具备通用计算能力。
通过开发适用的计算框架和编程模型,GPU可以处理各种复杂的计算任务,如物理模拟、机器学习等。
三、不同类型的GPU架构1. NVIDIA的CUDA架构:CUDA(Compute Unified Device Architecture)是NVIDIA推出的一种GPU计算架构。
它采用了SIMD (Single Instruction, Multiple Data)并行计算模型,并集成了大量的高速缓存和计算单元。
CUDA架构在科学计算和深度学习等领域取得了显著的成果。
2. AMD的GCN架构:GCN(Graphics Core Next)是AMD开发的GPU架构,专注于图形处理和通用计算。
它采用了多核心和多指令流的设计,支持高性能计算和异构计算。
3. 英伟达的Turing架构:Turing架构是英伟达最新的GPU架构,于2018年发布。
它引入了RT Core(用于光线追踪)和Tensor Core (用于深度学习)等新技术,大幅提升了图形渲染和人工智能计算的性能。
GPU架构与技术详解

GPU架构与技术详解GPU(Graphics Processing Unit)是一种专为处理图形和图像数据而设计的处理器。
它具有高度并行化的计算能力,能够在相同的时钟周期内处理多个任务,因此广泛应用于游戏、计算机辅助设计、科学计算等领域。
而GPU架构和技术是指GPU的内部结构和相关的技术细节,下面将详细介绍。
1.GPU架构(1)处理单元:GPU的核心部分是处理单元(Processing Unit),也称为流处理器(Stream Processor)。
处理单元是一个高度并行化的计算单元,它包含多个流多处理器(Streaming Multiprocessor,SM),每个SM包含多个处理核心(Processing Core)。
每个处理核心可以执行单个线程的指令,而SM则能够同时执行多个线程,充分利用GPU的并行计算能力。
(2)内存层次结构:GPU的内存层次结构包括全局内存、共享内存和寄存器等部分。
全局内存用于存储全局变量和数据,可以被所有处理单元访问。
共享内存用于同一个线程块中的线程之间共享数据,访问速度比全局内存更快。
寄存器用于存储线程的局部变量和计算结果。
(3)数据通路:GPU的数据通路包括输入/输出接口、数据总线、内存控制器等部分。
输入/输出接口用于连接GPU与主机系统,数据总线用于传输数据,内存控制器则负责管理内存访问和数据的读写。
2.GPU技术GPU的技术主要包括并行计算、片上内存、纹理映射、着色器等技术。
(1)并行计算:GPU的设计初衷是处理图形数据,但是由于其高度并行化的计算能力,广泛应用于通用计算领域。
GPU通过并行计算能够同时处理多个任务,大大提高计算效率。
(2)片上内存:为了减少对全局内存的访问,GPU引入了片上内存(On-Chip Memory)作为高速缓存。
片上内存位于SM内部,能够快速共享数据,提高访问速度。
(3)纹理映射:纹理映射(Texture Mapping)是一种将二维图像映射到三维模型表面的技术。
GPU架构解析范文

GPU架构解析范文在这篇文章中,我们将对GPU架构进行深入分析。
我们将讨论GPU的基本组成部分、存储器层次结构、线程调度和并行执行以及一些常见的GPU架构。
GPU基本组成部分GPU的基本组成部分由以下几个主要组件组成:1.图形核心:这是GPU最重要的部分,负责执行图形渲染和图像处理任务。
图形核心通常由大量的处理单元(也称为流处理器或CUDA核心)组成,这些处理单元具有高度的并行执行能力。
2.存储器:GPU拥有多个层次的存储器,包括全局内存、共享内存和寄存器文件。
全局内存是最慢的存储器,用于存储图形数据和计算任务的输入和输出。
共享内存是一种高速的本地存储器,用于在同一个线程块中多个线程之间共享数据。
寄存器文件是一种非常快的本地存储器,用于暂存线程中的变量和计算结果。
3.内存控制器:内存控制器负责管理GPU的存储器,包括内部和外部的存储器。
它负责读写数据以及将数据传输到各个处理单元。
线程调度和并行执行GPU通过线程调度和并行执行来提高性能。
线程调度是指将多个线程分配给多个处理单元进行并行执行的过程。
每个线程都会执行相同的指令,但处理不同的数据。
GPU的硬件和软件是为了能够高效地进行线程调度和执行而设计的。
并行执行是指多个线程同时执行不同的指令。
GPU支持多种并行模型,包括单指令多数据(SIMD)、多指令多数据(MIMD)和单指令流多数据(SIMT)等。
这些模型允许GPU同时执行多个线程,从而加速图形渲染和图像处理任务。
常见的GPU架构目前市场上有几个常见的GPU架构,包括NVIDIA的Turing、Pascal和Maxwell架构,以及AMD的RDNA和GCN架构。
每个架构都有自己的特点和优劣势。
NVIDIA的Turing架构是NVIDIA最新的GPU架构之一、它通过引入RT Core和Tensor Core来提供更好的光线追踪和深度学习性能。
RTCore用于加速光线追踪算法,而Tensor Core用于加速深度学习任务。
深入解析GPU架构理解显卡性能的关键

深入解析GPU架构理解显卡性能的关键在现代计算机科学和图形处理领域中,GPU(图形处理器)扮演着越来越重要的角色。
它不仅用于游戏和图形渲染,还能有效地进行并行计算。
然而,要充分发挥GPU的潜力并理解其性能差异,对其架构进行深入分析是必不可少的。
一、GPU架构的基本组成GPU架构主要由处理器核心、存储器、缓存和片上互连等基本组成部分构建而成。
下面将对这些组成进行一一介绍。
1. 处理器核心:处理器核心是GPU的心脏,负责执行大量的计算任务。
每个处理器核心通常由多个执行单元(ALU)和流处理单元(SPU)组成,这些单元能够高效地执行向量运算和并行计算。
2. 存储器:存储器在GPU中起到存放数据的作用。
主要有全局内存、共享内存和常量内存等。
全局内存用于大规模数据存储,共享内存用于同一线程束的数据共享,而常量内存则用于存放常量数据,以提高存取效率。
3. 缓存:GPU中的缓存可以提高数据的访问速度和效率。
常见的缓存有纹理缓存、常量缓存和数据缓存等。
这些缓存能够减少主存和处理器之间的数据交互,从而加快数据处理速度。
4. 片上互连:片上互连是指连接GPU内部各个组件的通信通道。
它可以高效地传输大量的数据和指令,以确保各个组件之间的协同工作。
片上互连通常包括存储器总线、数据总线和控制总线等。
二、理解GPU架构对显卡性能的影响深入理解GPU架构对于评估显卡性能至关重要。
以下是几个可能影响性能的关键方面。
1. 成功率:GPU架构中的处理器核心数量直接影响到并行处理的能力。
拥有更多处理器核心的显卡可以同时执行更多的计算任务,进而提升性能。
2. 内存带宽:内存带宽是指GPU与主存之间数据传输的速度。
它取决于存储器的类型和带宽,对于需要大量数据传输的图形计算和并行计算任务尤为重要。
更高的内存带宽可以提高数据传输效率,从而加快计算速度。
3. 缓存:缓存的大小和速度对于提高性能至关重要。
更大的缓存可以存放更多的数据,减少存取延迟;而更快的缓存则可以提高数据处理速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPU架构与技术详解来源: 时间: 2010-06-22 作者: apolloGPU英文全称Graphic Processing Unit,中文翻译为“图形处理器”。
GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。
我们从GPU的发展历程来看看显卡GPU的架构和技术的发展。
整合VCD/DVD/HD/BD解压卡在了解了CPU的发展历程之后,我们再来看看GPU的发展过程,其实GPU 很多重大改进都与CPU的技术架构相类似。
比如最开始我们介绍了古老的CPU协处理器,下面再介绍一个被遗忘的产品——解压卡,资历较老的玩家应该记得。
十多年前,电脑的CPU主频很低,显卡也多为2D显示用,当VCD兴起的时候,好多电脑(主频为100MHz以下)无法以软解压的方式看VCD影片,根本运行不起来!ISA接口的VCD解压卡这时,VCD解压卡就出现了,此卡板载专用的解码处理器和缓存,实现对VCD的硬解码,不需要CPU进行解码运算,所以,即使在386的电脑上也可以看VCD了。
PCI接口的DVD解压卡随后,显卡进入了3D时代,并纷纷加入支持VCD的MPEG解码,而且CPU的主频也上来了,无论CPU软解还是显卡辅助解码都可以流畅播放视频,所以VCD解压卡就退出了市场!但DVD时代来临后,分辨率提高很多,而且编码升级至MPEG2,对于CPU和显卡的解码能力提出了新的要求,此时出现了一些DVD解压卡,供老机器升级之用,但由于CPU更新换代更加频繁,性能提升很大,DVD解压卡也是昙花一现,就消失无踪了。
现在已经是1080p全高清时代了,高清视频解码依然是非常消耗CPU资源的应用之一,于是几年前NVIDIA和ATI就在GPU当中整合了专用的视频解码模块,NVIDIA将其称为VP(Video Processor,视频处理器),ATI将其称为UVD (Unified Video Decoder,通用视频解码器),相应的技术被叫做PureVideo和AVIVO。
硬解码几乎不消耗CPU和GPU的资源,看高清视频时接近于待机状态虽然VP和UVD都被整合在了GPU内部,实际上它们的原理和作用与当年的协处理器/解压卡芯片没有实质性区别,都是为了减轻/分担处理器的某项特定任务。
如今NVIDIA和ATI的GPU硬解码技术都能够支持高分辨率、高码率、多部影片同时播放,性能和兼容性都很出色。
如今多核CPU的性能已经相当强大了,软解高清视频简直轻松加愉快,但要论效率的话,依然是GPU硬件解码更胜一筹,专用模块解码消耗资源更少,整机功耗发热更小,因此手持设备和移动设备都使用硬件解码,而桌面电脑CPU软解和GPU硬解就无所谓了。
ShaderModel指令集的扩充与发展掐指一算,从GPU诞生至今双方都已推出了十代产品,每一代产品之间的对决都令无数玩家心动不已,而其中最精彩的战役往往在微软DirectX API版本更新时出现,几乎可以说是微软DirectX左右着GPU的发展,而历代DirectX版本更新时的核心内容,恰恰包含在了ShaderModel当中:ShaderModel 1.0 → DirectX 8.0ShaderModel 2.0 → DirectX 9.0bShaderModel 3.0 → DirectX 9.0cShaderModel 4.0 → DirectX 10ShaderModel 5.0 → DirectX 11Shader(译为渲染或着色)是一段能够针对3D对象进行操作、并被GPU 所执行的程序,ShaderModel的含义就是“优化渲染引擎模式”,我们可以把它理解成是GPU的渲染指令集。
高版本的ShaderModel是一个包括了所有低版本特性的超集,对一些指令集加以扩充改进的同时,还加入了一些新的技术。
可以说,GPU的ShaderModel指令集与CPU的MMX、SSE等扩展指令集十分相似。
随着ShaderModel指令集的扩充与改进,GPU的处理资源和计算精度与日俱增,于是就有能力渲染出更加精美的图像,并且不至于造成性能的大幅下降。
就拿最近几个版本来讲,新指令集并没有带来太多新的特效,但却凭借优秀的算法提升了性能,是否支持DX10.1(ShaderModel 4.1)可能游戏画面上没有差别,但速度就很明显了。
此外,DX11中的关键技术DirectCompute通用计算技术就是通过调用ShaderModel 5.0中的新指令集来提高GPU的运算效率,很多基于DirectCompute技术的图形后处理渲染特效也都要用到SM5.0指令集来提高性能。
真正的双核/四核GPU从以往的多处理器系统到现在的双核、四核、六核,CPU只能依靠增加核心数量来提升性能。
而GPU从一开始就是作为并行渲染的管线式架构,GPU性能的强弱主要就是看谁的管线、流处理器数量更多。
不过双显卡甚至多显卡也成为提升电脑游戏性能的一种途径,通过SLI和CrossFire技术能够轻松让3D性能倍增,于是双核心的显卡成为NVIDIA和AMD 双方角逐3D性能王者宝座的杀手锏,近年来的旗舰级显卡几乎都是双核心设计的。
但与CPU单芯片整合多核心的设计不同,显卡一般是单卡多GPU设计,很少有单一GPU多核心设计,因为GPU性能提升的瓶颈主要在于制造工艺,只要工艺跟得上,那么他们就有能力在GPU内部植入尽可能多的流处理器。
★双核心设计的Cypress核心:不管GPU架构改不改,流处理器数量总是要扩充的,准确的说是以级数规模增长,这样才能大幅提升理论性能。
在流处理器数量急剧膨胀之后,如何管理好如此庞大的规模、并与其它模块协调工作成为新的难题。
RV870的双核心模块设计ATI RV870包括流处理器在内的所有核心规格都比RV770翻了一倍,ATI 选择了“双核心”设计,几乎是并排放置两颗RV770核心,另外在装配引擎内部设计有两个Rasterizer(光栅器)和Hierarchial-Z(多级Z缓冲模块),以满足双倍核心规格的胃口。
★四核心设计的GF100核心:GF100可以看作是四核心设计如果说Cypress是双核心设计的话,那么GF100的流处理器部分就是“四核心”设计,因为GF100拥有四个GPC(图形处理器集群)模块,每个GPC内部包含一个独立的Raster Engine(光栅化引擎),而在以往都是整颗GPU共享一个Raster Engine。
我们知道RV870的Rasterizer和Hierarchial-Z双份的,而GF100则是四份的,虽然命名有所不同但功能是相同的。
GF100的每个GPC都可以看作是一个自给自足的GPUGF100的四个GPC是完全相同的,每个GPC内部囊括了所有主要的图形处理单元。
它代表了顶点、几何、光栅、纹理以及像素处理资源的均衡集合。
除了ROP功能以外,GPC可以被看作是一个自给自足的GPU,所以说GF100就是一颗四核心的GPU。
CPU三大节能技术简单介绍来源: /时间: 2010-09-03 作者: apollo随着低碳概念的推广,节能技术在生活中开始变成无处不在,特别是在电子设备领域,各种节能技术运用地非常多。
现在很多朋友在选购电脑的时候都会将节能省电放在考虑因素里面,那么电脑中有那些节能技术呢?下面我们先看看CPU的三大节能技术。
1、C1E节能(增强型深度休眠技术)在当前的主流系统中(包括Intel和AMD平台),我们都可以看到一个“C1E”的选项。
它是一种可以令CPU省电的功能,开启后,CPU在空闲轻负载状态可以降低工作电压与倍频,这样就达到了省电的目的。
2、Intel EIST技术(增强型电源管理技术)EIST全称为“Enhanced Intel SpeedStep Technology”,最早是Intel公司专门为移动平台和服务器平台处理器开发的一种节电技术。
到后来,新推出的桌面处理器也内置了该项技术,比如Intel的Pentium 4 6xx系列及Pentium D全系列处理器都开始支持EIST技术。
现在基本上成为了处理器的标配技术,不管是桌面还是移动产品。
Intel EIST节能消费者仅需要在主板BIOS中开启“EIST”或“Intel SpeedStep technology”的选项,就能够让CPU更具实际使用情况来自己控制频率和电压,进而实现功耗的控制。
3、AMD Cool N' Quiet(“凉又静”)Cool‘n’Quiet是AMD台式机CPU的节能技术,被形象的称为“凉又静”。
Cool‘n’Quiet也是一项能让处理器在闲置状态下自动降低电压与频率的节能技术,与AMD移动平台的PowerNow!非常相似。
AMD Cool‘n’Quiet节能选项Cool‘n’Quiet需要处理器硬件、驱动程序和主板BIOS三方面的支持,应在主板BIOS中将“Power Management”设置页内的“Cool'N'Quiet”选项设成“Auto”,电源使用方案设成“最少电源管理”,并安装AMD处理器驱动程序,Cool'N'Quiet功能才会生效。
CPU缓存对CPU性能的影响来源: 时间: 2010-07-01 作者: 匿名CPU缓存是什么?CPU缓存有什么用?CPU缓存多大才好?这是很多朋友在选购CPU时会考虑到的问题。
CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多。
缓存的出现主要是为了解决CPU运算速度与内存读写速度不匹配的矛盾,因为CPU运算速度要比内存读写速度快很多,这样会使CPU花费很长时间等待数据到来或把数据写入内存。
下面我们来详细说说CPU缓存对CPU性能的影响。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
处理器缓存工作原理正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。
这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。
总的来说,CPU读取数据的顺序是先缓存后内存。
处理器缓存构造L2级缓存缓存大小是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。