搅拌器选型

合集下载

搅拌器的选型

搅拌器的选型

2.涡轮式
主要类型:开启式、圆盘式 【平直叶、斜叶、弯叶等】
转速较快:10 ~ 300 r/min d桨 / D釜≈ 1/5 ~ 1/2;一般取1/3 极高的剪切力,分散能力强,循环能力好 能量消耗不大时搅拌效率较高,搅拌产生很强的径向流 圆盘涡轮式以桨叶为界限形成上下两个循环流 开启涡轮式上下混合比圆盘式好
搅拌装置的设计与选择
--- 搅拌器的选型
杨凌职业技术学院
以甲苯做溶剂,萃取水溶液中 的某生物碱,现需要为萃取罐 配置一个搅拌装置,选择哪种 类型的搅拌器呢?
桨式 涡轮式 推进式 锚(框)式 螺带(杆)式
1.桨式
主要类型:平直叶、折叶 转速较慢:20~80 r/min d桨/ D釜≈ 1/3 ~ 2/3;一般取1/2 消耗功率 ∝ d桨5 一般在层流、过渡流状态时操作 适流动性大、黏度小的液体物料 可多层安装
再沿轴下降(轴流型) 螺杆式直径不大,一般在釜内径的2/5 ~1/2 螺杆式流动状态与螺带式相同,可偏心安装,也可加
装导流筒。 适高黏度液体的搅拌
分析
液-液 萃取
分散
“微团”越小 越好
“A”↑
湍动剧烈
传质阻力↓
要求: 剪切作用大---- 主 循 环 量 大---- 次
传质快 萃取效 果好
比较
转速r/min 剪切力 循环量
桨式
20-80

涡轮式
10-300

推进式 300-600 小
锚(框)式 30-80

螺带(杆)式 0.5-50

ቤተ መጻሕፍቲ ባይዱ
小 较大
大 小 小
径向、轴向
径向、切线、轴 向流动
轴向
水平环流(径向、 切线)

反应釜搅拌器的种类与选择

反应釜搅拌器的种类与选择

反应釜搅拌器的种类与选择1.框架搅拌器:框架搅拌器是一种常用的搅拌器,它由一个平面框架和旋转的叶片组成。

框架搅拌器操作简单且成本低廉,适用于反应物较少、粘度较低的情况。

2.锚式搅拌器:锚式搅拌器是一种结构相对复杂的搅拌器,可以提供较强的剪切力和混合效果。

锚式搅拌器适用于粘度较高的物料,如胶体、乳液等。

3.桥式搅拌器:桥式搅拌器的结构类似于一个悬在反应釜上方的桥,通过悬挂下来的叶片进行搅拌。

桥式搅拌器适用于较大容量的反应釜以及需要更大搅拌区域的情况。

4.螺旋搅拌器:螺旋搅拌器由一根螺旋形状的叶片组成,可以产生强烈的剪切力和混合效果。

螺旋搅拌器适用于粘度较高且容易结块的物料。

5.磁力搅拌器:磁力搅拌器通过磁力驱动,没有机械传动装置,避免了泄露和污染等问题。

磁力搅拌器适用于对反应物料有较高要求的场合,如制药、食品等行业。

选择合适的反应釜搅拌器1.反应物料的特性:包括物料的粘度、密度、粒径等。

对于粘度较低的物料,可以选择框架搅拌器;对于粘度较高的物料,可以选择锚式搅拌器或螺旋搅拌器。

2.反应速率和混合效果:不同种类的搅拌器对反应速率和混合效果的影响不同。

一般来说,锚式搅拌器和螺旋搅拌器可以提供较好的反应速率和混合效果。

3.反应釜尺寸和形状:反应釜尺寸和形状对搅拌器的选择有一定影响。

对于较大容量的反应釜,可以选择桥式搅拌器;对于封闭较小的反应釜,可以选择磁力搅拌器。

4.工艺要求和操作方式:根据不同的工艺要求和操作方式,选择合适的搅拌器。

例如,对于有洁净要求的场合,可以选择磁力搅拌器避免泄露和污染等问题。

综上所述,反应釜搅拌器的种类繁多,选择合适的搅拌器需要考虑反应物料的特性、反应速率和混合效果、反应釜尺寸和形状以及工艺要求等因素。

通过合理选择和设计搅拌器,可以提高反应釜的效率和产品质量。

混凝土搅拌设备选型与规格

混凝土搅拌设备选型与规格

混凝土搅拌设备选型与规格一、选型准则1.1 工程要求:根据工程所需的混凝土质量、生产效率、工作环境等要求进行选型。

1.2 设备性能:选用具有稳定性好、生产效率高、操作简便等优点的设备。

1.3 经济性:选用价格合理、维修保养方便、使用寿命长等经济实用的设备。

二、混凝土搅拌设备分类2.1 按照混凝土生产方式可分为分散式搅拌设备和集中式搅拌设备。

2.2 按照搅拌方式可分为强制式搅拌设备和自由式搅拌设备。

2.3 按照装载方式可分为升降式搅拌设备和倾斜式搅拌设备。

三、混凝土搅拌设备选型3.1 分散式搅拌设备分散式搅拌设备可以直接在工地上生产混凝土,适用于现场施工,具有生产效率高,操作简便等优点。

常见的分散式搅拌设备有移动式搅拌车和拖式搅拌车。

(1)移动式搅拌车移动式搅拌车是一种移动式混凝土搅拌设备,适用于现场施工,具有移动方便,生产效率高等优点。

选用时应考虑车身尺寸、搅拌罐容量、发动机功率等因素,根据工程需要选用合适的型号。

(2)拖式搅拌车拖式搅拌车是一种便携式混凝土搅拌设备,可以拖拉到施工现场进行混凝土生产,具有移动方便,操作简便等优点。

选用时应考虑车身尺寸、搅拌罐容量、发动机功率等因素,根据工程需要选用合适的型号。

3.2 集中式搅拌设备集中式搅拌设备是一种在混凝土生产基地上进行生产的设备,适用于工地远离混凝土生产地的情况。

常见的集中式搅拌设备有混凝土搅拌站和混凝土搅拌机。

(1)混凝土搅拌站混凝土搅拌站是一种集中式混凝土搅拌设备,适用于大型工程施工,具有生产效率高,混凝土质量稳定等优点。

选用时应考虑生产能力、设备配置、设备品牌等因素,根据工程需要选用合适的型号。

(2)混凝土搅拌机混凝土搅拌机是一种集中式混凝土搅拌设备,适用于小型工程施工,具有生产效率高,搅拌质量好等优点。

选用时应考虑搅拌罐容量、发动机功率、搅拌效率等因素,根据工程需要选用合适的型号。

3.3 强制式搅拌设备与自由式搅拌设备强制式搅拌设备是一种通过强制搅拌的方式将混凝土均匀搅拌的设备,适用于混凝土配合比较严格的工程,搅拌效果好。

混凝土搅拌机器的选型与规格

混凝土搅拌机器的选型与规格

混凝土搅拌机器的选型与规格一、概述混凝土搅拌机是建筑工程中常见的设备,作用是将水泥、沙子、石子等材料混合均匀,制成混凝土。

在建筑工地上,混凝土搅拌机的使用频率非常高,因此选购一台合适的混凝土搅拌机显得尤为重要。

本文将从混凝土搅拌机的选型、规格、品牌等方面进行详细介绍。

二、选型1.工程量选购混凝土搅拌机前,首先要了解自己的工程量。

工程量越大,需要的混凝土搅拌机就越大型。

一般来说,建筑工程中使用的混凝土搅拌机分为小型、中型和大型三种,可以根据自己的工程量来选择合适的型号。

2.混凝土的配比混凝土制作的配比也影响着混凝土搅拌机的选型。

如果混凝土配比粘性较大,那么需要选购带有搅拌叶的混凝土搅拌机;如果混凝土配比较干燥,可以选购普通的混凝土搅拌机。

3.搅拌时间混凝土搅拌机的搅拌时间也是选型的一个重要因素。

如果工地的搅拌时间很短,可以选购一些小型的混凝土搅拌机;如果工地需要长时间搅拌,那么就需要选购大型的混凝土搅拌机。

4.环境条件环境条件也会影响混凝土搅拌机的选型。

如果工地空间较小,可以选购小型的混凝土搅拌机;如果工地空间较大,可以选购大型的混凝土搅拌机。

三、规格1.容量混凝土搅拌机的容量是选购时需要考虑的一个重要因素。

容量一般分为1立方米、2立方米、3立方米等不同规格,可以根据工地的需要来选择。

2.电机功率电机功率是混凝土搅拌机的重要指标之一,一般来说,电机功率越大,混凝土搅拌机的搅拌效果就越好。

但是,电机功率也会影响到混凝土搅拌机的价格,需要根据自己的需求和预算来选择合适的电机功率。

3.搅拌速度混凝土搅拌机的搅拌速度也是选购时需要考虑的一个因素。

搅拌速度越快,混凝土的均匀度就越好,但是搅拌速度也会影响到混凝土搅拌机的价格。

4.搅拌叶数量搅拌叶数量也会影响混凝土搅拌机的搅拌效果。

一般来说,搅拌叶数量越多,混凝土的均匀度就越好,但是搅拌叶数量也会影响到混凝土搅拌机的价格。

四、品牌1.施工设备品牌混凝土搅拌机的品牌也是选购时需要考虑的因素之一。

反应釜搅拌器的分类与选型和特点

反应釜搅拌器的分类与选型和特点

反应釜搅拌器的分类与选型和特点一、反应釜搅拌器的分类根据搅拌器的形式和结构,反应釜搅拌器可以分为以下几种类型:1.锚式搅拌器:锚式搅拌器是最常见的一种反应釜搅拌器。

它的结构形式类似于锚,可以将被搅拌的物料从容器底部向上推动,实现物料的搅拌和混合。

锚式搅拌器适用于粘稠度较高的物料。

2.桨叶式搅拌器:桨叶式搅拌器由几个平直的搅拌桨组成,通过转动将物料进行搅拌和混合。

它适用于较小粘稠度的物料,混合效果好且能耗较低。

3.湍流搅拌器:湍流搅拌器通过高速旋转的叶片产生湍流效应,能将搅拌物料在极短的时间内充分混合均匀,适用于粘稠度较低的物料。

4.锥形搅拌器:锥形搅拌器由锥形结构的叶片组成,通过旋转实现物料的混合和搅拌。

它适用于高粘稠度的物料,混合效果好且能耗较低。

5.高剪切搅拌器:高剪切搅拌器通过高速旋转的刀片或齿轮将物料切割、撞击和搅拌,适用于高粘稠度和粉状物料。

根据搅拌器的驱动方式,反应釜搅拌器可以分为以下几种类型:1.机械驱动搅拌器:机械驱动搅拌器通过电动机驱动搅拌轴进行物料搅拌。

它结构简单、搅拌效果好且稳定,但需要电源供给。

2.气动驱动搅拌器:气动驱动搅拌器通过气动马达驱动搅拌轴进行物料搅拌。

它适用于易燃易爆场所和无电源供给的环境,但需要气源供给。

3.磁力驱动搅拌器:磁力驱动搅拌器通过磁力偶合将驱动力传递给搅拌器,不需要机械传动装置。

它适用于需要避免机械密封和减少泄漏的场所,但成本较高。

二、反应釜搅拌器的选型在选择合适的反应釜搅拌器时,需要考虑以下几个因素:1.物料性质:根据物料的粘稠度、流动性、颗粒大小等特性选择合适的搅拌器类型。

例如,粘稠度较高的物料适合使用锚式搅拌器或锥形搅拌器,流动性较好的物料适合使用桨叶式搅拌器或湍流搅拌器。

2.反应要求:根据反应过程中的混合要求选择合适的搅拌器类型。

例如,对混合均匀度要求较高的反应需要选择湍流搅拌器或锥形搅拌器,对混合时间要求较短的反应需要选择高剪切搅拌器。

反应釜搅拌器选型指南

反应釜搅拌器选型指南

反应釜搅拌器选型指南反应釜搅拌器是一种常见的工业设备,广泛应用于化工、制药、食品等行业中的反应过程。

正确选择和使用搅拌器对于反应釜的操作效果和产品质量至关重要。

本文将介绍反应釜搅拌器的选型指南,以帮助用户正确选择搅拌器,提高生产效率和产品质量。

1.材质选择反应釜搅拌器的材质选择应根据反应介质的性质和工艺要求来确定。

常用的材料有不锈钢、碳钢、钛合金等。

不锈钢通常用于一般化工反应,碳钢可用于中等温度和压力下的反应,而钛合金适用于腐蚀性介质的反应。

对于一些特殊工艺要求,也可选择陶瓷材料或涂层材料。

2.搅拌形式选择反应釜搅拌器的搅拌形式有桨式搅拌、框式搅拌、绞龙搅拌、喷射搅拌等。

选择搅拌形式应根据反应介质的性质、反应过程的要求以及反应釜的结构来确定。

一般来说,桨式搅拌器适用于搅拌均质的反应体系,框式搅拌器适用于粘稠或易结垢的反应体系,绞龙搅拌器适用于高粘度的反应体系,喷射搅拌则适用于溶解气体等需要气液两相互作用的反应体系。

3.功率选择搅拌器的功率选择应根据反应体系的粘度、比重、液相浓度、反应速率等参数来确定。

一般来说,反应体系越粘稠,搅拌器所需的功率越大;反应釜体积越大,搅拌器所需的功率也越大。

4.转速选择搅拌器的转速选择应根据反应体系的搅拌要求来确定。

一般来说,选择合适的转速可以提高混合效果、缩短反应时间,并保证反应体系的混合均匀性。

转速过高可能导致产物质量下降,转速过低可能导致反应不充分。

5.搅拌器结构选择搅拌器的结构选择应根据反应釜的结构和工艺要求来确定。

常见的搅拌器结构有桨叶式、框架式、锚式、螺旋桨式等。

桨叶式适用于小型反应釜和中等粘度的反应体系,框架式适用于大型反应釜,锚式适用于高粘度和易结垢的反应体系,螺旋桨式适用于大容量反应体系。

6.配件选择7.耐腐蚀性选择对于需反应的腐蚀介质,建议选择耐腐蚀性能良好的搅拌器。

一些特殊介质可能需要特殊材质的搅拌器或特殊的涂层材料来抵抗腐蚀。

在选择耐腐蚀材料时,还要考虑材料的成本和可行性。

搅拌器的选型

搅拌器的选型

小大 小 小 小小较大 大 小 小径向、轴向
径向、切线、轴 向流动 轴向 水平环流(径向、 切线) 轴向循环
比较

开启式:不阻碍桨上下层的混合
圆盘式:以桨叶为界限形成上下两个循环流

涡轮式

平直叶:剪切力大,利于乳化 折 叶:剪切力较小,轴向循环更快

开启涡轮式

后弯叶:剪切力小,排出性能好,桨叶 不易磨损

3.推进式

标准推进式搅拌器有三瓣叶片 转速很快:300 ~ 600 r/min d桨 / D釜≈ 1/4 ~ 1/3 搅拌时流体的湍流程度不高,循环量大,搅拌功率小 以容积循环为主,剪切作用小,上下翻腾效果好


常采用挡板或导流筒,轴向循环更强
适粘度低、流量大的场合

5.螺带(螺杆)式

转速很慢:0.5 ~50 r/min 螺带式是由钢带按一定螺距螺旋形绕成,钢带外缘常 做成几乎贴近釜内壁,与壁间隙很小(刮壁) 螺带式一般在层流状态操作,液体沿壁面螺旋上升, 再沿轴下降(轴流型) 螺杆式直径不大,一般在釜内径的2/5 ~1/2 螺杆式流动状态与螺带式相同,可偏心安装,也可加 装导流筒。
搅拌装置的设计与选择
--- 搅拌器的选型
杨凌职业技术学院
以甲苯做溶剂,萃取水溶液中 的某生物碱,现需要为萃取罐 配置一个搅拌装置,选择哪种 类型的搅拌器呢?
桨式
涡轮式
推进式
锚 (框 )式
螺带(杆)式
1.桨式

主要类型:平直叶、折叶 转速较慢:20~80 r/min
d桨/ D釜≈ 1/3 ~ 2/3;一般取1/2
结论

搅拌器设计选型

搅拌器设计选型

搅拌器设计选型绪论搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。

在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。

搅拌操作分为机械搅拌与气流搅拌。

气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。

与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕秒以上的高粘度液体是难于使用的。

但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。

在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。

搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。

其结构形式如下图:电动机搅拌装置结构图底轴承第一章搅拌装置第一节搅拌装置的使用范围及作用搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。

搅拌设备在许多场合时作为反应器来应用的。

例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。

搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。

搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。

搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。

例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。

化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。

第二节搅拌物料的种类及特性搅拌物料的种类主要是指流体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业搅拌与混合技术进展虞培清,周国忠(浙江长城减速机有限公司,温州325028)摘要:工业搅拌与混合技术在近些年来取得了很大的发展,本文综述了这方面的进展情况。

重点对新型搅拌与混合设备的开发、流场测试与计算流体力学以及搅拌设备选型与设计软件四个方面进行了综述与评价,并就国内的研究现状进行了简单概述。

关键词:搅拌,混合,搅拌器,流场测速,计算流体力学(CFD),专家系统搅拌与混合是化学、制药、食品、环保等工业中最常见的关键单元操作之一。

比如,一个合成纤维厂中,作为核心设备的聚合反应器仅两台,而与之配套的配料槽、溶解槽、稀释槽、缓冲槽等辅助搅拌设备则多达30台。

在高分子材料生产中,作为核心设备的聚合反应器85%是搅拌设备。

在制药发酵生产过程中,从种子培养到关键的发酵过程,几乎全部是搅拌设备。

鉴于搅拌设备的广泛应用,随着近年来工业技术的发展,流体混合技术在上世纪60到80年代期间得到了迅猛发展,其重点主要是对于常规搅拌桨在低粘和高粘非牛顿均相体系、固液悬浮和气液分散等非均相体系中的搅拌功耗、混合时间等宏观量进行实验研究。

长期以来,虽然有大量设计经验和关联式可用于分析和预测混合体系,但将搅拌反应器从实验室规模直接放大到工业规模,仍是十分危险的,至今仍然需要通过逐级放大来达到搅拌设备所要求的传质、传热和混合。

这种方法不但耗费巨额的资金和大量的人力物力,而且设计周期很长。

据统计,在工业高度发达的美国,化学工业由于搅拌反应器设计不合理所造成的损失每年约为10—100亿美元。

因此,从更微观更本质的角度,例如采用先进的测试手段和建立合理的数学模型,获取搅拌槽中的速度场、温度场和浓度场,不仅对开发新型搅拌设备,而且对搅拌设备的优化设计具有十分重要的经济意义,对放大和混合的基础研究具有现实的理论意义。

近些年来,工业搅拌与混合设备的一些新进展主要集中在以下几个方面。

1.新型搅拌与混合设备的开发在很多情况下,搅拌设备是作为一种辅助设备使用的,其操作条件比较简单,搅拌的目的多是以混合和固-液悬浮为主,其搅拌器常用轴流式搅拌器或开启涡轮。

这些通用的搅拌设备占据了搅拌设备公司销售额的大部分,因此,很对公司便集中力量在此领域开发新产品,即从提高混合和固-液悬浮效率着手致力于开发以较小能耗获得较大排量的轴流式搅拌器,典型的是世界最大的混合设备公司-莱宁(LIGHTNIN)公司。

该公司从80年代以来,开发了一系列新型轴流式搅拌器,引领着搅拌技术的发展方向。

在发酵等涉及气液两相过程中,广泛应用着用于气体分散的圆盘涡轮类搅拌器。

从80年代开始,对这类搅拌器的研究随着测试手段与计算流体力学的发展逐步深入。

各公司与研究单位也推出了许多功耗更低,气体分散效果更好的搅拌器。

在高分子工业中,研究开发高效的聚合反应器对搅拌设备的发展产生了强大的推动力。

对于聚合反应器来说,不仅需要良好的混合性能,还需要对物料提供足够大的剪切,同时为了及时撤除反应热,还需要搅拌槽具有尽可能高的传热能力。

轴流式搅拌器往往不能满足这种多方面的要求。

一些大型的、包括石化部门的企业集团,如日本的住友重机、三菱重工等便从开发新型、高效聚合反应器的角度,发明了如最大叶片式、泛能式、叶片组合式搅拌器。

这些搅拌器从综合性能看,它较平衡地考虑了混合、剪切、传热以及对液体粘度的适应性。

1.1新型轴向流搅拌器大量的搅拌设备用于低粘物系的混合和固液悬浮操作,需要叶轮能以低的能耗提供高的轴向循环流量。

传统的船舶推进式叶轮能满足这个要求,但其叶片为复杂的立体曲面,制造困难,且较难大型化。

近20多年间,许多混合设备公司竞相开发节能高效、造价低廉且易于大型化的轴向流搅拌器。

其中最著名的有莱宁公司开发A310,A315,A320,A6000等搅拌器,如图1所示。

这些新型的轴向流搅拌器有一个共同的特点,叶片的倾角和和叶片的宽度是随其径向位置而变化的,这与传统的船舶推进式搅拌器是一脉相承的。

莱宁公司在开发轴向流搅拌器时注重在水平投影面上叶片面积占搅拌器直径所在圆面积的百分数,并把此百分数作为区分和选用搅拌器的一个指标,可以称为叶片面积率。

常用的45°开启涡轮叶片面积率为43%,A310为22%,A320为67%,A315为87%。

A310搅拌器的叶片由钢板按一定规律弯曲制成,不必使用铣或精密浇注等成型工艺,且三枚叶片用螺栓固定在轮毂上,比较容易大型化。

当用于固液悬浮操作时,达到同样悬浮效果,A310叶轮比传统使用的45°折叶涡轮节能50%。

A320的叶片面积率远大于A310主要适用于搅拌中等粘度的液体。

A315的叶片面积率更大,其大面积的叶片也能与圆盘涡轮搅拌器中的圆盘一样,起阻止气体从叶轮穿过,延长气-液接触时间的作用,适用于气-液体系的搅拌。

A315搅拌器经常用于几十至数百立方的大型发酵反应器。

A6000搅拌器的叶片像飞机的机翼,全部由曲线构成,它用玻璃纤维复合材料加工制造,在同样的功耗下,A6000比A310能多产生30%的排量。

(a) A310 (b) A315(C) A320 (d) A6000图1 莱宁公司的系列搅拌器不仅莱宁公司开发了系列轴向流搅拌器,国内外其他的公司与研究机构也纷纷推出了具有自己特色的许多轴向流搅拌器,比如EKATO公司的INTERPRO搅拌,它在主叶片上面再增加了一个辅助叶片,该辅助叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减小,可使用于数千立方米的大型固-液悬浮搅拌槽。

法国ROBIN公司HPM搅拌器,叶片在轮毂处的倾角为45度,而在叶片端部处的倾角为17度左右,经常用于容积数百立方米的大型搅拌槽。

国内北京化工大学,华东理工大学,浙江长城减速机有限公司等也分别开发了自己的轴向流搅拌器。

浙江长城减速机有限公司开发的ZCX,KSX等搅拌器已经进行了十多年的成功工业应用,不仅取得了显著的经济效益,很多情况下替代了进口设备,更具有广泛的社会效益。

图2 EKATO公司的INTERPRO搅拌器图3 ROBIN公司的HPM搅拌器(a)ZCX搅拌器(b)KSX搅拌器图4 ZCX与KSX搅拌器1.2新型径向流搅拌器Rushton涡轮是最典型的径向流搅拌器,其结构比较简单,通常是一个圆盘上面带有六个直叶叶片,也称为六直叶圆盘涡轮,如图5所示。

圆盘涡轮搅拌器主要应用于气液分散过程中,设置圆盘的目的是为了防止气体未经分散直接从轴周围溢出液面。

一直以来,Rushton 涡轮在许多条件下能够满足工艺的需要,同时其结构非常简单,容易加工制造,所以其应用还是比较广泛的。

但是,越来越多的事实证明:这种结构并不是适用于气液分散的最优结构。

相关研究发现,当用六直叶圆盘涡轮式搅拌器把气体分散于低粘流体时,在每片桨叶的背面都有一对高速转动的漩涡,漩涡内负压较大,从叶片下部供给的气体立即被卷入漩涡,形成气体充填的空穴,称为气穴。

气穴的存在使得搅拌器在充气时的旋转阻力减小,因而造成搅拌功率降低,约为不通气时的20~40%左右。

气穴理论所揭示的气液分散机理对开发新型搅拌器有重大意义。

气穴使得Rushton涡轮的泵送能力降低。

在高气速下,有时整个搅拌器被气穴包围,搅拌器近似空转,效率很低。

为了改进Rushton涡轮搅拌器的缺点,Smith等提出采用弯曲叶片的概念,并解释了弯曲叶片相对于直叶叶片所具有的优点。

弯曲叶片可使其背面的漩涡减小,抑制叶片后方气穴的形成。

这种结构使该搅拌器具有如下优点:载气能力提高;改善了分散和传质能力;降低了由于通气而造成的搅拌功率的变化。

根据这些研究成果,各混合设备公司推出了采用弯曲叶片的搅拌器,其中有Chemineer公司的CD-6,如图6所示,Lightnin公司的R130搅拌器,Philadelphia公司的Smith turbine (6DS90)。

此类搅拌器的叶片采用的是半管的结构。

在湍流条件下,其功率准数一般在2.8~3.2之间,比Rushton涡轮要小得多。

英国ICI公司将半管的结构作了进一步改进,推出了如图7所示的专利搅拌器,叶片采取了深度凹陷的结构。

1998年,Bakker提出了采用弯曲非对称叶片的想法,并据此开发了最新一代的气液混合搅拌器BT-6(Bakker Turbine),并申请了专利(USP5791780),如图8所示。

BT-6搅拌器的特点是采用了上下不对称的结构设计,上面的叶片略长于下部的叶片。

该设计使得上升的气体被上面的长叶片盖住,避免了气体过早地从叶轮区域直接上升而逃逸,而是使更多的气体通过叶轮区域在径向被分散。

叶片曲线采用抛物线设计,既保留了弯曲叶片的优点,还能明显减少叶片后方的气穴,其功率准数一般在2.3左右。

实验证明该搅拌器的综合性能均优于前述的各种径向流气液分散搅拌器。

图5 Rushton涡轮图6 CD-6搅拌器图7 ICI搅拌器(USP5198156)图8 BT-6搅拌器1.3新型宽粘度域搅拌器对于传统的的搅拌器,一般可以分为两类。

一类是用于低粘流体的桨式、涡轮式搅拌器等,另一类是用于高粘流体的螺带、框式等搅拌器。

但是,在许多反应过程中,比如聚合反应过程,开始时物料的粘度很低,随着反应的进行粘度越来越大。

在这种情况下,搅拌器的选用就会发生问题。

对于这种工况,可以采用组合式搅拌装置,即中心设置适用低粘流体的搅拌器,再增加适用高粘流体的大直径框式搅拌器。

粘度低时启动中心搅拌装置,停止框式搅拌器,使其作为挡板使用;粘度增大后,同时启用两套装置,共同作用。

但是,组合式搅拌装置的传动机构一般比较复杂。

图9 板框-涡轮组合式搅拌设备1,2-电动机;3-板框式搅拌器;4-刮板;5-涡轮式搅拌器近年来日本开发出数种在很宽粘度范围均能进行高效混合的搅拌器,且搅拌器结构相当简单。

如图所示是日本住友重机、三菱重工等公司开发的最大叶片式、泛能式、叶片组合式搅拌器。

这三种搅拌器都有一个共同的特点,即叶片在搅拌槽的纵剖面上的投影面积占槽的纵剖面积的比例很大,不仅适合于固液悬浮及晶析等操作,也适合于液液分散以及使气体从液面吸入的气液传质过程,同时大叶片不仅使槽壁的局部传热膜系数较均匀,也提高了整体传热膜系数。

图10 最大叶片式搅拌器(住友重机)图11 泛能式搅拌器(神钢泛技术)图12 叶片组合式搅拌器(三菱重工)2.流场的测试技术与计算流体力学在评价一个搅拌设备的混合效果时可以有多种手段,比如搅拌功率的测量、传热系数的测量、混合时间的测量等,但最基本的评价在于测量搅拌设备内物料形成的流场。

作为搅拌技术的核心是要弄清楚对于某一类混合(如固-液悬浮、液-液分散等)需要什么样的流场,使用怎样的搅拌器以及怎样的操作条件能以最少的能耗来获得所需要的流场。

采用先进的测试手段和建立合理的数学模型,获得搅拌槽内的速度场、温度场和浓度场,不仅对搅拌设备的优化设计具有十分重要的经济意义,而且对放大和混合的基础研究具有现实的理论意义。

相关文档
最新文档