中考数学专题—— 尺规作图
中考数学--尺规作图

一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、基本作图最基本,最常用的尺规作图,通常称基本作图。
中考数学专题训练之尺规作图测试卷(01)

中考数学专题训练之尺规作图测试卷(01)一.选择题(共10小题)1.如图,在△ABC中,作BC边上的高线,下列画法正确的是()A.B.C.D.2.数学课上,晓峰同学用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你说出他作图的依据是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.SSS D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与“射线OP就是∠BOA的平分线.”他这样做的依据是()第一把直尺交于点P,小明说:A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.利用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.6.如图,在∠MON的两边上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;再连接AC,BC,AB,OC.若AB=10,OA=13.则四边形AOCB的面积是()A.65B.120C.130D.2407.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A .SASB .ASAC .AASD .SSS8.如图,已知△ABC (AB <BC <AC ),用尺规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是( )A .B .C .D .9.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD =5,AB =16,则△ABD 的面积是( )A .21B .80C .40D .4510.如图,在△ABC 中,∠B =30°,∠C =50°,请观察尺规作图的痕迹(D ,E ,F 分别是连线与△ABC 边的交点),则∠DAE 的度数是( )A .25°B .30°C .35°D .40°二.填空题(共10小题)11.如图,已知四边形ABCD 是长方形,依据尺规作图的痕迹,可知∠α= °.12.如图,矩形ABCD 中,连接BD ,按以下步骤作图:①分别以点B 和D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 分别交边AB ,CD 于点E ,F ;③以点D 为圆心,以适当长为半径作弧,分别交边DA ,DB 于点P ,Q ;④分别以点P 和Q 为圆心,以大于12PQ 的长为半径作弧,两弧相交于点G ;⑤作射线DG 交边AB 于点E ,则∠ADB = .13.如图,在长方形ABCD 中,连接BD ,分别以B ,D 为圆心,大于12BD 长为半径画弧,两弧交于点E ,F ,作直线EF ,交AD 于点M .若AD =4,AB =2.则AM 的长为 .14.如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M 、N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为 .15.如图,在△ABC 中,∠B =45°.按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点D 和E ;②作直线DE 交边AB 于点F .若BF =4,AF =2,则AC 的长为 .16.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形,其边长为 .17.如图,在△ABC 中,∠A =32°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E ,过点C 作CD ⊥AB ,垂足为点D ,CD 与BE 相交于点F ,若BD =CE ,则∠BFC 的度数为 .18.如图,在平行四边形ABCD 中,AB ⊥AC ,AB =6,AC =8,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN 与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 .19.如图,在▱ABCD 中,以点C 为圆心,适当长度为半径作弧,分别交CB ,CD 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径作弧,两弧交于点P ,作射线CP 交DA 于点E ,连接BE ,若AE =3,BE =4,DE =5,则CE 的长为 .20.如图,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A'O'B'=∠AOB 的依据是.三.解答题(共5小题)21.如图在5×5的网格中,△ABC的顶点都在格点上.仅用无刻度的直尺在给定的网格中分别按下列要求画图.(请保留画图痕迹,画图过程用虚线表示,画图结果用实线表示)(1)在图1中,画出△ABC的重心G;(2)在图2中,画线段CE,点E在AB上,使得S△ACE:S△BCE=3:4;(3)图3中,在,△ABC内寻找一格点N,使∠ANB=2∠C.并标注点N的位置.22.如图,已知∠AOB,C为射线OB上的一点,请用尺规作图法求作∠DCB,使得∠DCB =∠AOB.(作出一种即可)(保留作图痕迹,不写作法)23.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③给定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)24.如图所示方格纸中,每个小正方形的边长均为1,点A、点B、点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AB上的中线CE;(3)直接写出△ACE的面积为.25.如图①、图②均是4×2的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图:(1)在图①中画出线段CD,使得线段CD平分△ABC的面积;(2)在图②中画出线段CE,使得线段CE将△ABC分成两个直角三角形.。
2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)

热点09 尺规作图中考数学中《尺规作图》部分主要考向分为三类:一、尺规作图的痕迹(每年1道,3~8分)二、尺规作图画图(每年1道,3~12分)三、网格问题中的作图设计(每年1题,6~8分)尺规作图指的是只用无刻度的直尺和圆规,作已知线段的中垂线、已知角的角平分线;部分题型则考察由作图痕迹逆向推导是什么线,然后利用中垂线或者角平分线的性质继续解题。
最近几年又出现一类不用“尺规”,只用无刻度的直尺在网格图中按要求画图或找点。
当考察作图痕迹时,基本以选择题为主,实际画图题或者网格类问题则是简单题,虽然难度中等,但是对应考点的综合性已经越来越强,需要在做题时更加全面的分析。
考向一:尺规作图的痕迹【题型1 线段中垂线的尺规作图痕迹】满分技巧1、线段垂直平分线的画图痕迹:2、线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等1.(2023•凉山州)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°2.(2023•西宁)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于P,Q两点,作直线PQ交AB,AC于点D,E,连接CD.下列说法错误的是()A.直线PQ是AC的垂直平分线B.CD=ABC.DE=BCD.S△ADE:S四边形DBCE=1:43.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.AE=CF B.DE=BF C.OE=OF D.DE=DC4.如图,在△ABC中,∠C=40°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于M,N两点,作直线MN,交边AC于点D,连接BD,则∠ADB的度数为()A.40°B.50°C.80°D.100°5.(2023•西藏)如图,在△ABC中,∠A=90°,分别以点B和点C为圆心,大于的长为半径画弧,两弧相交于M,N两点;作直线MN交AB于点E.若线段AE=5,AC=12,则BE长为.6.(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA =34°,则∠CAB的度数为.【题型2 角平分线的尺规作图痕迹】满分技巧1、角平分线的画法:2、角平分线的性质:角平分线上的点到角两边的距离相等1.(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是()A.AB=AC B.AG⊥BC C.∠DGB=∠EGC D.AG=AC2.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为()A.B.C.D.3.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP 的垂线分别交BD,AD于点M,N,则CN的长为()A.B.C.D.45.(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为()A.6B.8C.9D.106.(2023•内蒙古)如图,在△ABC中,∠ABC=90°,∠BAC=60°,以点A为圆心,以AB的长为半径画弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径画弧,两弧交于点P,作射线AP交BD于点M,交BC于点E,连接DE,则S△BDE:S△CDE是()A.1:2B.1:C.2:5D.3:87.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD 于点F,则的值为.8.(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.9.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为°.10.(2023•阜新)如图,在矩形ABCD中,AB=6,AD=8.连接AC,在AC和AD上分别截取AE,AF,使AE=AF,分别以点E和点F为圆心,以大于EF的长为半径作弧,两弧交于点G,作射线AG交CD 于点H,则线段DH的长是.考向二:尺规作图画图【题型3 作一条线段的垂直平分线】满分技巧线段垂直平分线的画图步骤:1、分别以线段两端点为圆心,相同适当长(大于线段的一半)为半径画圆弧,上下各得两个弧的一个交点;2、过两个弧的交点作一条直线,则该直线即为所求作的线段中垂线。
2024中考数学总复习冲刺专题:尺规作图 通用版

“尺规作图”一、教学目标:1.知识与技能:(1)再认识什么是尺规作图,经历五个基本作图的复习与巩固,能在解答题中按要求进行尺规作图(不要求写出具体做法,但需要保留作图痕迹);(2)能在题目中识别出具体是哪种类型的尺规作图,并利用所做的线的性质来解决几何问题。
2.过程与方法:经历五个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。
3.情感、态度与价值观:通过复习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。
二、教学重点:掌握五个基本尺规作图的作法三、教学难点:能利用尺规作图解决实际问题四、教学过程:知识技能梳理1.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
2.五种基本作图:1)作一条线段等于已知线段;2)作已知角的平分线;3)作已知线段的垂直平分线;4)作一个角等于已知角;5)过一点作已知直线的垂线【点在线上、点在线外】。
模块一:五种尺规作图复习1.作一条线段等于已知线段已知:如图所示线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)在射线AP上截取AB=a.则线段AB就是所求作的图形。
2.作线段的垂直平分线(中垂线)或中点3.作已知角的平分线已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P;作射线OP。
则射线OP就是∠AOB的角平分线。
4.作一个角等于已知角已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:1)作射线O′A′;2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;3)以O′为圆心,以OM的长为半径画弧,交O′A′于M′;4)以M′为圆心,以MN的长为半径画弧,交前弧于N′;5)连接O′N′并延长到B′。
2024年中考数学微专题复习+尺规作图+课件

+ +
= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴
=
.
设 = ,则 = − ,
∴
−
=
,解得
= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.
4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图①
图②
(5)(2018·金平)如图,在 R t△A B C 中,∠A C B =90°,A C =12, A B =13. ①作△A B C 的高 C D ,(要求:尺规作图,不写作法,保
解:(1)如图所示,直线 EF 即为所求,
(2)∵四边形 ABCD 是菱形,
∴∠ABD=∠DBC=12∠ABC=75°, DC∥AB,∠A=∠C. ∴∠ABC=150°,∠ABC+∠C=180° ∴∠C=∠A=30°, ∵EF 垂直平分线段 AB,∴AF=FB, ∴∠A=∠FBA=30°,
∴∠DBF=∠ABD-∠FBE=45°.
例 2 如图,作∠A O B 的平分线 O C .
(2)(广东中考节选)如图,在△A B C 中用直尺和圆规作∠A B C 的平分线 B D 交 A C 于点 D .
(2)解:如图,BD为所求作
(3)作线段的垂直平分线 例 3 作线段 AB 的垂直平分线 CD.
(3)(广东中考节选)如图,在△A B C 中作 B C 边的垂直平分线 分别交 A C ,B C 于点 D ,E.
谢谢!
解:如图,△ABC为所求作.
13.(2018·河北改编)①过直线外一点作这条直线的垂线; ②作线段的垂直平分线;③过直线上一点作这条直线的垂 线;④作角的平分线.请在下列尺规作图标出对应的序号.
____④____
___①_____ ___②_____ ____③____
B组 14. 如图,已知⊙O.
的长为( B ) A .5 B .6 C .7 尺和圆规作一个角的平分线的示意图如
图所示,则能说明∠A O C =∠B O C 的依据是( A )
A .SSS
B .SA S
C .A A S
D . 角平分线上的点到角两边距离相等
12. 已知:线段 a,b,c,求作△A B C ,使三角形三边分别 为 a,b,c.
(1)作⊙O 的内接正方形;
(1)解:如图,正方形ABCD为所求作.
(2)作⊙O 的内接正六边形; (2)解:如图,六边形ABCDEF为所求作.
(3)作⊙O 的内接正三边形.
(3)解:如图,△ABC为所求作.
C组
15.(2018·陕西)如图,已知∠A O B 与点 M 、N .求作一点 P , 使点 P 到边 O A 、O B 的距离相等,且 PM =PN (保留作图
于 H,DG⊥AB 于 G,连接 MK 如图 4.
∵AD=AF,DE=EF,∴AE 平分∠DAF,
则△ AEK≌△AEB,∴AK=AB=4,
在 Rt△ ADG 中,DG= AD2-AG2=4 2,
∵KH∥DG,∴DKHG=AADK,∴4KH2=64,∴KH=8 3 2
∵MB=MK,∴MB+MN=KM+MN,
上.
(1)作∠A D E ,使∠A D E=∠A C B,D E 交 A B 于点 E ;(尺
规作图,保留作图痕迹,不要求写作法);
(2)若 B C =5,点 D 是 A C 的中点,求 D E 的长.
解:(1)如图,∠ADE为所作;
(2)∵∠ADE=∠ACB, ∴DE∥BC, ∵点 D 是 AC 的中点, ∴DE 为△ ABC 的中位线,
证法二:如图 3 延长 DE 交 AB 的延长线于 F, ∵CD∥AF,∴∠CDE=∠F, ∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF, ∵AD=AB+CD=AB+BF,∴CD=BF, ∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF, ∵AD=AF,∴AE⊥DE.
图3
②解:作点 B 关于 AE 的对称点 K,连接 EK,作 KH⊥AB
当 K、M、N 共线,且与 KH 重合时,
KM+MN 的值最小,最小值为 KH 的长,
∴BM+MN
的最小值为8 3
2 .
图4
考点 3 作线段的垂直平分线
5.(例 8)(2018·广东)如图,B D 是菱形 A B C D 的对角线, ∠C B D =75°, (1)请用尺规作图法,作 A B 的垂直平分线 E F ,垂足为 E , 交 A D 于 F ;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接 B F ,求∠D B F 的度数.
(3)解:如图,DE为所求作
(4)作一个角等于已知角
例 4 如图,作∠A ′O ′B ′,使∠A ′O ′B ′=∠A O B .
(4)(广州中考节选)如图,利用尺规,在△A B C 的边 A C 上方 作∠E A C =∠AC B.
(4)解:如图,∠EAC为所求作
(5)过一点作已知直线的垂线
痕迹,不写作法)
16.(2017·嘉兴)如图,已知△A B C ,∠B =40°. (1)在图中,用尺规作出△A B C 的内切圆⊙O ,并标出⊙O 与边 A B ,B C ,A C 的切点 D ,E ,F (保留痕迹,不必写
作法).
(2)连结 E F ,D F ,求∠E F D 的度数.
解:(1)如图,⊙O为所求作. (2)连接 OD,OE. ∴OD⊥AB,OE⊥BC ∴∠ODB=∠OEB=90° ∵∠B=40°,∴∠DOE=140° ∴∠EFD=70°
(2)在(1)的条件下,
①证明:A E ⊥D E ; ②若 C D =2,A B =4,点 M ,N 分别是 A E , A B 上的动点,求 B M +M N 的最小值.
解:(1)如图,∠ADC 的平分线 DE 如图 1 所示, 图1
(2)①证法一:如图 2,在 DA 上截取 DG=CD,连接 GE, 由(1)知∠GDE=∠CDE, 又 DE=DE,∴△GDE≌△CDE, ∴∠DGE=∠C=90°,∠DEC=∠DEG, 在△ AGE 和△ ABE 中,∠AGE=∠ABE=90°, 而 AD=AG+DG=AB+CD,DG=CD, ∴AG=AB, 又 AE=AE,∴Rt△ AEG≌Rt△ AEB ∴∠AEG=∠AEB, ∴∠DEG+∠AEG=∠DEC+∠AEB=90°, 图2 即∠AED=90°,故 AE⊥DE.
(2)证明:∵∠A=30°,∠ACD=90°, ∴∠ADC=60° ∴∠BCD=∠ADC-∠B=60°-30°=30° ∴∠B=∠BCD,∴CD=BD.
10.(2018·玉林)如图,在△A B C 中,∠A C B=90°,∠A =30°, B C =4,以点 C 为圆心,C B 长为半径作弧,交 A B 于点 D ;再分别以点 B 和点 D 为圆心,大于 12B D 的长为半径 作弧,两弧相交于点 E ,作射线 C E 交 A B 于点 F ,则 A F
解:(1)如图,AD 为所求作.
(2)∠BDC的度数为22.5°
考点 2 作已知角的角平分线
4.(例 7)(2018·广州)如图,在四边形 A B C D 中,∠B =∠C = 90°,A B >C D ,A D =A B +C D . (1)利用尺规作∠A D C 的平分线 D E,交 B C 于点 E ,连接 A E (保留作图痕迹,不写作法);
留作图痕迹);
②在①的条件下,求 C D 的长.
(5)解:①如图,CD为所求作. ②CD=6103
二、核心例题 考点 1 作线段等于已知线段
3.(例 6)(六盘水中考)如图,已知 R t△A B C 中,∠C =90°, ∠B A C =45°. (1)用尺规作图:在 C A 的延长线上截取 A D =A B ,并连接 BD ; (2)求∠B D C 的度数.
6.(2018·桂平市)如图,已知△A B C ,请用尺规过点 A 作一条 直线,使其将△A B C 分成面积相等的两部分,并在图中
标明相应字母(保留作图痕迹,不写作法)
解:如图,直线AD即为所求:
考点 4 作一个角等于已知角
7.(例 9)如图,点 E 为正方形 A B C D 的边 C D 上一点. (1)在 A B 的下方作射线 A F 交 C B 延长线于点 F ,且使 ∠B A F =∠D AE ; (2)求证:△D A E ≌△B A F .
PPT课程 第33课 尺规作图 主讲老师:
一、知识要点 1. 尺规作图的概念
在几何里,把限定用直尺(没有刻度的)和圆规来画 图的作法,称为尺规作图,在尺规作图中,了解作图的道理, 保留作图的痕迹,一般不要求写出作法.
对应练习 1. 尺规作图是指( C )
A . 用直尺规范作图 B . 用刻度尺和圆规作图 C . 用没有刻度的直尺和圆规作图 D . 直尺和圆规是作图工具
∴DE=12BC=52.
考点 5 过一点作已知直线的垂线
9.(例 10)(2018·潮南区)如图,∠A =∠B =30° (1)尺规作图:过点 C 作 C D ⊥A C 交 A B 于点 D ;(只要求
作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:C D =B D
证明:(1)如图所示,CD 即为所求;
(1)如图,∠BAF为所求作
(2)证明:∵四边形 ABCD 是正方形 ∴∠ADE=∠ABF=90°,AD=AB
∠ADE=∠ABF 在△ DAE 与△ BAF 中AD=AB
∠DAE=∠BAF ∴△DAE≌△BAF(ASA)
8.(2018·港南区)如图,在△A B C 中,A B >A C ,点 D 在边 A C
2. 常见五种基本作图 (尺规作图,保留作图痕迹) (1)作一条线段等于已知线段
例 1 作一条线段等于已知线段 A B .
2.(1)(广东中考节选)如图,已知▱A B C D .作图:延长 B C 并在 B C 的延长线上截取线段 C E ,使得 C E=B C .
(1)解:如图,CE为所求作
(2)作已知角的角平分线