第2章流体pVT关系
合集下载
第二章 流体的pvt关系

三维图
P-V-T图 以p、V、T为坐标轴,构 建坐标系,将各平衡态下 的状态点连起来,就成了 三维曲面
图示法 P-V图 二维图 将三维曲面投影在p-V平面 将三维曲面投影在p-T平面 将三维曲面投影在V-T平面
P-T图
V-T图
何为投影?
11
P-V-T三维图
构建坐标系
p
T V
12
P-V-T三维图
不同P-V-T点描绘连接起来
★ ★ ★ ★ ★
BWR方程
MH方程
★ ★
56
普遍化压缩因子
其它普遍化方程
补足缺点和改造环境
PV=RT
C0 2 p RT B 0 RT A 0 2 (bRT a) 3 T
3 c a 6 2 (1 2 )exp( 2 ) T
P(Z)
T(y) V(x)
13
P-V-T三维图
不同P-V-T(坐标点zxy)三维曲面
P(Z)
T(y) V(x)
14
P-V-T三维图
不同P-V-T(坐标点zxy)三维曲面 固-液 液相
超临界T>Tc, p>pc
Critical point 临界点Tc,Pc,Vc
饱和液体线 P(Z)
气相
固相
固-汽 汽液 汽相 V(x) 三相线
p
p
T V V
T
等压面
24
二维图的理解!!!
面的投影规律??? 线的投影规律???
25
面的投影规律??? 面投影在另外平面上,什么结果?
等容面 等温面
p
等压面
T
V
线的投影规律??? 线投影在另外平面上,什么结果?
P-V-T图 以p、V、T为坐标轴,构 建坐标系,将各平衡态下 的状态点连起来,就成了 三维曲面
图示法 P-V图 二维图 将三维曲面投影在p-V平面 将三维曲面投影在p-T平面 将三维曲面投影在V-T平面
P-T图
V-T图
何为投影?
11
P-V-T三维图
构建坐标系
p
T V
12
P-V-T三维图
不同P-V-T点描绘连接起来
★ ★ ★ ★ ★
BWR方程
MH方程
★ ★
56
普遍化压缩因子
其它普遍化方程
补足缺点和改造环境
PV=RT
C0 2 p RT B 0 RT A 0 2 (bRT a) 3 T
3 c a 6 2 (1 2 )exp( 2 ) T
P(Z)
T(y) V(x)
13
P-V-T三维图
不同P-V-T(坐标点zxy)三维曲面
P(Z)
T(y) V(x)
14
P-V-T三维图
不同P-V-T(坐标点zxy)三维曲面 固-液 液相
超临界T>Tc, p>pc
Critical point 临界点Tc,Pc,Vc
饱和液体线 P(Z)
气相
固相
固-汽 汽液 汽相 V(x) 三相线
p
p
T V V
T
等压面
24
二维图的理解!!!
面的投影规律??? 线的投影规律???
25
面的投影规律??? 面投影在另外平面上,什么结果?
等容面 等温面
p
等压面
T
V
线的投影规律??? 线投影在另外平面上,什么结果?
Chapter 2 流体pVT关系

Eqs A 和 B 分别是 Virial EoS的两种表达形式,它们之间是 全等的关系。正是由于两种形式的Virial EoS具有全等的关系, 两种形式的Virial系数之间存在明确的关联式。如,
B B' RT
C'
C B2 ( RT )2
2. 维里方程的应用 Virial EoS 是一种有无限多项的级数型方程,在实际应用 中,通常用二项或三项的近似 Virial EoS 计算流体的 p-V-T 性 质。 如果流体的压力 p < 1.5 MPa,用二项 Virial EoS
M B
三项 Virial EOS的应用 ( p > 1.5 MPa): ( 1) 已知容器中流体的 T 、 p,求容器中流体的质量
pV B C Z 1 2 RT V V
用迭代法通过计算机求出摩尔体积V,
Vt m M V
Chapter 2 流体 p、V、T 关系:状态方程 Volumetric Properties of Fluids: Equation of State
Why should we study the Volumetric Properties of Pure Fluids?
1. 流体热力学性质(thermodynamic properties), 如内能 (Internal Energy),焓 (Enthalpy),熵 (Entropy), Hemholtz自由 能 (Hemholtz Energy)和 Gibbs自由焓 (Gibbs Energy), 通常都 是通过流体的 p、 V、 T 关系式或数据进行计算。 流体是气体和液体的统称,化工过程的研究常常涉及到流 体的性质。流体的性质包括压力 p,温度 T,体积 V,内能 U, 焓 H,熵 S,自由能 A 和自由焓 G。其中 p, V,和 T 可以直接 测定,称为容积性质( Volumetric properties),其它 5个性质 不能直接测定,只能通过理论计算获得。
化工热力学-流体的 p-V-T 关系

Z
Z
Z
1
q
Z
或
Z
0.026196
Z
Z
0.026196
1.026196 Z 6.6060 0.026196
将 Z= 代入上式右边,迭代计算后得到收敛值Z=0.04331。
V l ZRT 0.043318.314350 133.3 cm3mol1
p
0.9457
为了比较计算结果,在例2/5-1的情况下,运用四种立方型状态 方程所计算得到的V v及V l 值列表如下:
第二章 流体的 p-V-T 关系
(一)纯流体的三维相图
自由度与相律
(二)纯流体的二维相图
异戊烷的p-V图
p-T相图
T-V图
(三)纯流体 pVT 行为的模型化
→ 什么是状态方程?
f p,V,T 0
dV
V T
p
dT
V p
T
dp
V=V(T,p)
p=p(T,V )
(四)理想气体
只有在Zc相等的条件下,对比态原理才能成立
以ω为第三参数的对应状态原理
Z f pr ,Tr ,
偏心因子
Pitzer: 物质对比饱和蒸汽压的对数,与对比温度的倒数呈 下列线性关系
log
prS
a 1
1 Tr
prS
pS pc
球形分子虽然临界参数相差很大,但在Tr=0.7时,对比蒸气压 logprS = -1 。
ZC 3/8 1/3 1/3 0.30740
临界压缩因子Zc
VDW: 3/8 RK/SRK: 1/3 PR: 0.3047
立方型状态方程的数值求解
p
RT
V b
V
化工热力学第二章 流体的p-V-T关系和状态方程

第二章 内 容
§2.1 纯流体的p-V-T相图 §2.2 气体状态方程(EOS) §2.3 对应态原理和普遍化关联式 §2.4 液体的p-V-T性质 §2.5 真实气体混合物p-V-T关系
§2.6 状态方程的比较和选用
§2.1 纯流体的p-V-T相图
§2.1.1 T –V 图 §2.1.2 p-V 图 §2.1.3 p-T 图 §2.1.4 p-V-T 立体相图 §2.1.5 纯流体p-V-T关系的应用及思考
§2.1.4 P-V-T立体相图
P-V-T立体相图
§2.1.4 P-V-T立体相图
水的P-V-T立体相图
【例2-1】 将下列纯物质经历的过程表 示在p-V图上:
1)过热蒸汽等温冷凝为过冷液体; 2)过冷液体等压加热成过热蒸汽; 3)饱和液体恒容加热; 4)在临界点进行的恒温膨胀
P
C
1)过热蒸汽等温冷凝为过冷液体; 2)过冷液体等压加热成过热蒸汽; 3)饱和蒸汽可逆绝热膨胀; 4)饱和液体恒容加热; 5)在临界点进行的恒温膨胀
• 1)由于刚性容器体积保持不变, 因此加热过程在等容线上变化,到 达B1时,汽液共存相变为液相单相; 继续加热,当T>Tc,则最终单相为 超临界流体,即C1点。
• 2)当水慢慢加热后,则状态从位 于汽液共存区的A2,变为汽相单相 B2,继续加热,当T>Tc,则最终单 相为临界流体C2。
§2.1 纯流体的P-V-T相图
P-T图
液相区
8atm下变成液体
气相区
1atm下变成气体
液化气的p-T 图
-82.62 ℃
室温10~40℃
乙烯、丙烯、 丁烯能做液化 气吗?
96.59℃
TC = 196.46 Tb =36.05 ℃
第2章_流体的pVT关系

Zc=0.307,该值比RK方程的0.333有明显改进,但仍 偏离真实流体的数值 ; 计算常数需要Tc , Pc和ω,a是温度的函数; 同时适用于汽液两相,PR方程计算饱和蒸汽压、饱 和液体密度和气液平衡中的准确度均高于SRK方程 , 在工业中得到广泛应用。
18
2.2.1.5 Patel-Teja方程 方程形式:
代入式(2-12)
RT a 8.314×273.15 1.5588 p= − 0.5 = − −5 V −b T V(V +b) ( 4.636−2.6806) ×10 ( 273.15)0.5 ×4.636×(4.636+ 2.6806)×10−10 =8.8307×107(Pa)
8.8307 × 107 − 101.33 × 106 Δp = = −12.9% 6 101.33 × 10
⎪ ⎨ 2 ∂ P ∂V 2 ⎪ ⎩
图2-3 纯物质的p-V图
(
)
c
T =Tc 6
=0
2.2 流体的状态方程
定义:描述流体p-V-T关系的函数表达式 。
f ( p,V , T ) = 0
重要价值: ⑴精确地表达相当广泛范围内的pVT数据; ⑵推算不能直接测量的其它热力学性质。 状态方程的分类: 结合理论和经验:半经验半理论状态方程 从级数的角度出发:多参数状态方程
方程常数: R 2Tc 2 a (T ) = ac ⋅ α (Tr , ω ) = 0.457235 ⋅ α (Tr , ω )
pc
α
0.5
= 1 + F (1 − Tr )
0.5
RTc b = 0.077796 pc
2
17
F = 0.37464 + 1.54226ω − 0.26992ω
18
2.2.1.5 Patel-Teja方程 方程形式:
代入式(2-12)
RT a 8.314×273.15 1.5588 p= − 0.5 = − −5 V −b T V(V +b) ( 4.636−2.6806) ×10 ( 273.15)0.5 ×4.636×(4.636+ 2.6806)×10−10 =8.8307×107(Pa)
8.8307 × 107 − 101.33 × 106 Δp = = −12.9% 6 101.33 × 10
⎪ ⎨ 2 ∂ P ∂V 2 ⎪ ⎩
图2-3 纯物质的p-V图
(
)
c
T =Tc 6
=0
2.2 流体的状态方程
定义:描述流体p-V-T关系的函数表达式 。
f ( p,V , T ) = 0
重要价值: ⑴精确地表达相当广泛范围内的pVT数据; ⑵推算不能直接测量的其它热力学性质。 状态方程的分类: 结合理论和经验:半经验半理论状态方程 从级数的角度出发:多参数状态方程
方程常数: R 2Tc 2 a (T ) = ac ⋅ α (Tr , ω ) = 0.457235 ⋅ α (Tr , ω )
pc
α
0.5
= 1 + F (1 − Tr )
0.5
RTc b = 0.077796 pc
2
17
F = 0.37464 + 1.54226ω − 0.26992ω
化工热力学第2章 流体的PVT关系和状态方程

P
RT V b
V
a
V
b
a
ac
T
0.42748
R 2Tc2 Pc
T
b 0.08664 RTc Pc
T
1
0.48
1.574
0.176
2
1
T 0.5 r
2
在临界点: T 1
优点
➢ 与RK方程相比,SRK方程大大提高了表达纯物质汽液平 衡的能力,使之能用于混合物的汽液平衡计算,故在工 业上获得了广泛的应用。
6.734m3
/ kmol
V1
6.814
4.2486.734 6.7346.734
0.08058 0.08058
6.198
V2
6.814
4.2486.198 6.1986.198
0.08058 0.08058
6.146
V3 6.141 V4 6.140 V 6.140m3 / kmol
( 2 ) SRK方程
Thiesen, 1885年提出 Onnes, 1901年改进
pV a(1 b' p c' p2 d ' p3 .....) 原型 p 0 理想气体
Z pV 1 Bp Cp2 Dp3 RT
Z pV 1 B C D
RT
V V2 V3
B B RT
C C B2 R2T 2
8.3142 408.12.5
a 0.42768 3.648 103
2.725104 kPa m6 K 0.5 / kmol2
b 0.08664 8.314 408.1 0.08058m3 / kmol 3.648 103
RT
a
P V b T1/2V V b
化工热力学第2章流体的PVT关系
时,这种流体就处于对比状态。
例如:H2 和N2这两种流体
对于H2
状态点记为1,P1 V1 T1
Tr1 =T1/TcH2
Pr1=P1/PcH2
对于N2
状态点记为2,P2 V2 T2
Tr2 =T2/TcN2
Pr2=P2/PcN2
当Tr1=Tr2 ,Pr1=Pr2 时,此时就称这两种流体处
一.P-T图
P
Pc
3液
相
固
相
2
1
密 流 区 C
气相
Tc T
1-2线 汽固平衡线(升华线)
2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线) C点临界点,2点三相点 P<Pc,T<Tc的区域,属汽体 P<Pc,T>Tc的区域,属气体 P=Pc,T=Tc的区域,两相 性质相同
P>Pc,T>Tc的区域,密流区
压缩因 子,方 程的计 算值和 实测值 的符合 程度是 判断方 程的优 劣标志 之一。
2. R-K Equation (1949年,Redlich and Kwong)
(1) R-K Eq的一般形式:
P
RT V-b
-
a T0.5V(V
b)
(2-11)
① R-K Equation中常数值不同于范德华方程中的a、b值, 不能将二者混淆。 在范德华方程中,修正项为a/V2,没有考虑温度的影响 在R-K方程中,修正项为,考虑了温度的影响。 ② R-K Equation中常数a、b值是物性常数,具有单位。
为表征物质分子的偏心度,既非球型分子偏离球对称的 程度,简单流体为0
R-K Eq经过修改后,应用范围扩宽。 SRK Eq:可用于两相PVT性质的计算,对烃类计算,其 精确度很高。
例如:H2 和N2这两种流体
对于H2
状态点记为1,P1 V1 T1
Tr1 =T1/TcH2
Pr1=P1/PcH2
对于N2
状态点记为2,P2 V2 T2
Tr2 =T2/TcN2
Pr2=P2/PcN2
当Tr1=Tr2 ,Pr1=Pr2 时,此时就称这两种流体处
一.P-T图
P
Pc
3液
相
固
相
2
1
密 流 区 C
气相
Tc T
1-2线 汽固平衡线(升华线)
2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线) C点临界点,2点三相点 P<Pc,T<Tc的区域,属汽体 P<Pc,T>Tc的区域,属气体 P=Pc,T=Tc的区域,两相 性质相同
P>Pc,T>Tc的区域,密流区
压缩因 子,方 程的计 算值和 实测值 的符合 程度是 判断方 程的优 劣标志 之一。
2. R-K Equation (1949年,Redlich and Kwong)
(1) R-K Eq的一般形式:
P
RT V-b
-
a T0.5V(V
b)
(2-11)
① R-K Equation中常数值不同于范德华方程中的a、b值, 不能将二者混淆。 在范德华方程中,修正项为a/V2,没有考虑温度的影响 在R-K方程中,修正项为,考虑了温度的影响。 ② R-K Equation中常数a、b值是物性常数,具有单位。
为表征物质分子的偏心度,既非球型分子偏离球对称的 程度,简单流体为0
R-K Eq经过修改后,应用范围扩宽。 SRK Eq:可用于两相PVT性质的计算,对烃类计算,其 精确度很高。
第2章流体的PVT关系
R-K Eq中 a=f (Tc,pc) SRK Eq中 a( T )=f (Tc,pc,T, ω)
Soave-Redlish-Kwang 方程(简称RKS方程)
使用情况和意义 (1) RKS方程提高了对极性物质及含有氢键物质的p –V –T
计算精度。 (2) 可以用于液体p V T 性质计算。如在饱和液体密度的计
算中更准确。
Peng-Robinson方程(简称PR方程)
方程形式:
p
RT V b
V
V
aT b b
V
b
方程参数:
aT a T 0.45724R2Tc2 / pc T
b 0.07780RTc / pc
(T
)
1
k(1
a/V2 — 分子引力修正项。
由于分子相互吸引力存在,分子撞击器壁的力减小,造成压力减小。
b —分子本身体积的校正项。
分子本身占有体积,分子自由活动空间减小,由V变成V-b。分子 自由活动空间的减小造成分子撞击器壁的力增大。造成压力增大
• 参数a和b获得途径:
(1)从流体的p-V-T实验数据拟合得到
中间根无意义。
ps
•当p≠ps时,只有一个根有意义,
其他两个实根无意义。
Vsl
T>Tc T=Tc
T<Tc
Vsv
V
Redlich-Kwong方程
方程形式:
RT
a
p V b T 0.5V (V b)
vDW方程的引力项没有考虑温度的影响,而RK方程的引力
项加入了温度项。
方程参数:
化工热力学
4.真实液体PVT性质
8
第三章 流体的热力学性若为单位质量的性质,则为强度性质 ,如mol热力学能能,偏mol性质。
3.偏微分、全微分、点函数、状态函数的概念
4.剩余性质的定义式 M E M M
5. 热容的定义式
Cv
U T V
QR
8.正向卡诺循环、逆向卡诺循环
C
1 TC TH
C
TL TH TC
9.蒸汽动力循环,蒸汽压缩制冷循环,深度制冷
循环(林德、克劳特)的工作原理,能用T-S图表示,
会查用T-S图,主要设备与作用。
28
二.有关计算 ☆ 1. 制冷循环:
有关计算q0,qh,G,-ωS(Nt),ε等 ☆ 2. 蒸汽动力循环 :
10. 有效能与理想功的联系 ΔB=-Wid
11. 有效能衡算 可逆过程
B B
不可逆过程 B B D
12. 有效能效率
B
B
D
1 B
B 考虑数量、质量
13. 热力学效率 (仅考虑数量)
Wac
Wid
产功过程
Wid
Wac
耗功过程
14. 有效能、无效能、理想功、损失功
22
二.有关计算
8.活度与活度系数的概念及定义式
aˆi fˆi / fi 0
9.L—R定则表达式
i
aˆi Xi
xi
fˆi fi0
fˆi
/
fˆ i
id
fˆi id
x i
fi0
f
0 i
L
R
fi
f
0 i
HL
Ki
10. Q函数表达式
Q GE RT
X i ln i
8
第三章 流体的热力学性若为单位质量的性质,则为强度性质 ,如mol热力学能能,偏mol性质。
3.偏微分、全微分、点函数、状态函数的概念
4.剩余性质的定义式 M E M M
5. 热容的定义式
Cv
U T V
QR
8.正向卡诺循环、逆向卡诺循环
C
1 TC TH
C
TL TH TC
9.蒸汽动力循环,蒸汽压缩制冷循环,深度制冷
循环(林德、克劳特)的工作原理,能用T-S图表示,
会查用T-S图,主要设备与作用。
28
二.有关计算 ☆ 1. 制冷循环:
有关计算q0,qh,G,-ωS(Nt),ε等 ☆ 2. 蒸汽动力循环 :
10. 有效能与理想功的联系 ΔB=-Wid
11. 有效能衡算 可逆过程
B B
不可逆过程 B B D
12. 有效能效率
B
B
D
1 B
B 考虑数量、质量
13. 热力学效率 (仅考虑数量)
Wac
Wid
产功过程
Wid
Wac
耗功过程
14. 有效能、无效能、理想功、损失功
22
二.有关计算
8.活度与活度系数的概念及定义式
aˆi fˆi / fi 0
9.L—R定则表达式
i
aˆi Xi
xi
fˆi fi0
fˆi
/
fˆ i
id
fˆi id
x i
fi0
f
0 i
L
R
fi
f
0 i
HL
Ki
10. Q函数表达式
Q GE RT
X i ln i
化工热力学第二章-----流体的PVT关系 [兼容模式]
24
MH方程
方程情况 ( 1 ) MH 方程是 1955 年 Martin 教授和我国学者候虞钧 教授提出的。首次发表在杂志AIChE J(美国化学工程 师会刊)上。有9个参数。 (2)为了提高该方程在高密度区的精确度,Martin于 1959年对该方程进一步改进。 (3)1981年候虞钧教授等又将该方程的适用范围扩展 到液相区,改进后的方程称为MH-81型方程。
0.5 r 2
k 0.3746 1.54226 0.26992 2
a( T )=a( T )=f (Tc,pc, Tr ,ω)
15
P-R方程
方程使用情况: (1)RK方程和SRK方程在计算临界压缩因子Zc和液 体密度时都会出现较大的偏差,PR方程弥补这 一明显的不足; (2)它在计算饱和蒸气压、饱和液体密度等方面有更 好的准确度; (3)是工程相平衡计算中最常用的方程之一。
8
van der Waals方程
1873年van der Waals(范德华) 首次提出了能表达从气态 到液态连续性的状态方程 :
•参数: (1)a/V2—分子引力修正项。 由于分子相互吸引力存在,分子撞击器壁的力减小,造成压力 减小。 (2)b —分子本身体积的校正项。 分子本身占有体积,分子自由活动空间减小,由V变成V-b。 分子自由活动空间的减小造成分子撞击器壁的力增大。b增大, 造成压力增大。
2
一、纯物质的P-T关系
1-2线 汽固平衡线(升华线)
P
A
Pc
C
超临 界流 体区
2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线) C点临界点,2点三相点 P<Pc, T<Tc的区域,属汽体 P<Pc, T>Tc的区域,属气体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p 0 V T TC
27R 2Tc2 a= 64 Pc RTc b= 8 Pc
2 p 0 2 V T TC • VDW方程的使用情况和意义:
(1)该方程是第一个适用于实际气体的状态方程,
(2)精确度不高,无很大的实用价值 (3)但是它建立方程的推理理论和方法对立方型状态方程的发展具有 重大的意义 (4)它对于对比态原理的提出也具有重大的贡献。
临界压力是与临界温度对应的最低 压力
纯物质的p –V图
T Tc 等温线曲线平滑并且不与相界面相交
T<Tc 等温线由三个部分组成, 中间水平段为汽液平衡共存区
等温线在两相区的水平段随着温度的升高 而逐渐变短,到临界温度时最后缩成一点C T=Tc等温线在临界点上是一个水平拐点, 其斜率和曲率都等于零
明显的不足; (2)它在计算饱和蒸气压、饱和液体密度等方面有 更好的准确度; (3)是工程相平衡计算中最常用的方程之一。
/~pjb 10/thermo/pure.html
立方型状态方程 的迭代形式
方程提出
若已知体系的温度T和压力p,要计算体积V,提出了便于 计算机迭代计算的方程形式。
关系:
当方程取无穷级数时,不同形式的virial系数之间存在着下述关系:
B B RT
局限性:
C
C B2
RT
2
D
D 3 BC 2 B 3
RT
3
(1)原则上,维里方程均应是无穷项。
(2)高阶维里系数的数据有限,目前用统计力学计算尚不是很方便。
目前,广泛使用是二阶舍项的维里方程
b 0.07780 RTc / pc
(T ) 1 k(1 T )
0.5 r
2
k 0.3746 1.54226 0.26992
a( T )=f (Tc,pc,T, ω)
2
方程使用情况:
(1)RK方程和RKS方程在计算临界压缩因子Zc和
液体密度时都会出现较大的偏差,PR方程弥补这一
分类:
(1)理想气体状态方程;
(2)virial(维里)方程; (3)立方型状态方程; (4)多参数状态方程
理想气体状态方程
假设:
分子的大小如同几何点 分子间不存在相互作用力 极低的压力下真实气体非常接近理想气体 理想气体状态方程是最简单的状态方程: pV RT 作用: (1)在工程设计中,可以用理想气体状态方程进行近似估算。 (2) 它可以作为衡量真实气体状态方程是否正确的标准之一, 当压力趋近于 0或者体积趋于无穷 时,任何真实气体状态方程 都应还原为理想气体方程。
是渐变的过程,不存在突发的相变。
超临界流体的性质非常特殊,既不同于液体,又 不同于气体,它的密度接近于液体,而传递性质 则接近于气体,可作为特殊的萃取溶剂和反应介 质。
超临界分离技术和反应技术成为研究热点
2.2 流体的状态方程
定义:
描述流体p –V -T关系的函数式为
f p,V , T 0
0.5 r
2
m 0.480 1.574 0.176 2 式中,ω为偏心因子
R-K Eq中 a=f (Tc,pc) SRK Eq中 a( T )=f (Tc,pc,T, ω)
Soave-Redlish-Kwang 方程(简称RKS方程)
使用情况和意义 (1) RKS方程提高了对极性物质及含有氢键物质的p –V –T
称为状态方程(Equation of Satate,EOS) 它用来联系在平衡态下纯流体的压力、摩尔体积、温度之间 的关系。 作用: 状态方程具有非常重要的价值 (1)表示较广泛范围内p、V、T之间的函数关系;
(2)可通过它计算不能直接从实验测得的其他热力学性质。
要求:
形式简单
计算方便 适用于不同极性及分子形状的化合物 计算各种热力学性质时均有较高的精确度
维里方程
基本概念: (1)“维里”(virial)这个词是从拉丁文演变而来的,它的原意是 “力”的意思。 (2)方程利用统计力学分析分子间的作用力,具有坚实的理论基础 。 方程形式:
pV 1 Bp C p2 Dp 3 RT 体积形式: Z 1 B C2 D3 V V V
式(2) 式(1) 1 0
n Z = Z
No
Yes
n n1
意义:引入h后,使迭代过程简单,便于直接三次方程求解。但需要注意的是
该迭代方法不能用于饱和液相摩尔体积根的计算。
Z
(1) (2)
Z(0)
h(0)
h
立方型状态方程的通用形式
方程形式 归纳立方型状态方程,可以将其表示为如下的形式:
Soave-Redlish-Kwang 方程(简称RKS方程)
方程形式:
a T RT p V b V V b
方程参数:
a T a T 0.4278 R 2Tc2 / pc T
b 0.08664 RTc / pc
(T ) 1 m(1 T )
方程参数:
RT a(T ) p V b (V b)(V b)
•参数ε和σ为纯数据,对所有的物质均相同;对于不同的方程数据不同;
RK方程参数不同于vdw方程参数
Redlich-Kwong方程
使用情况和意义
(1)RK方程的计算准确度比van der Waals方程有较大的提 高; (2)一般适用于气体p V T 性质计算;
(3)可以较准确地用于非极性和弱极性化合物,误差在2% 左右
(4)但对于强极性及含有氢键的化合物仍会产生较大的偏 差。误差达10~20%。 (5)很少用于液体p V T 性质计算; (6)为了进一步提高RK方程的精度,扩大其使用范围,便 提出了更多的立方型状态方程。
压力形式: Z
密度形式: Z 1 B C 2 D 3 维里系数: ( B) C (C ) D( D) ……分别称为第二、第三、第四……维 B 里(virial)系数。 对于特定的物质,它们是温度的函数。
维里系数
意义:
从统计力学分析,它们具有确切的物理意义。 第二virial系数表示两个分子碰撞或相互作用导致的与气体理想性的差异 第三virial系数则反应三个分子碰撞或相互作用导致的与气体理想性的差异。
方程形式:
Z 1 A h 1 h B 1 h
1
Z
1 A h 1 h B 1 2h h2
1 (PR)
方程参数:
b B h V Z
2
ap A 2 2.5 RT
RK 方程
ap A 2 2 RT
立方型状态方程
立方型状态方程是指方程可展开为体积(或密度)的三次
方形式。
特点:这类方程能够解析求根,有较高精度,又不太复杂, 很受工程界欢迎。 常用方程: van der Waals
RK方程
RKS方程 PR方程
van der Waals 状态方程
• 1873年van der Waals(范德华) 首次提出了能表达从气 态到液态连续性的状态方程 :
掌握RKS和PR方程。并能运用RKS和PR方程进行纯流体 的pVT计算。
掌握偏心因子的概念。 理解对比态原理的基本概念和简单对比态原理。 熟练掌握三参数的对应状态原理和压缩因子图的使用。 熟练运用普遍化状态方程式解决实际流体的pVT计算。 初步了解液体的pVT关系。 掌握混合物的pVT关系。重点掌握kay规则、气体混合物 的第二维里系数和立方型状态方程的混合规则。
计算精度。
(2) 可以用于液体p V T 性质计算。如在饱和液体密度的计 算中更准确。
Peng-Robinson方程(简称PR方程)
方程形式: 方程参数:
a T a T 0.45724 R 2Tc2 / pc T
a T RT p V b V V b b V b
纯物质的p –V图
p 0 V T TC
2 p 0 V 2 T TC
纯物质的p –T图
1-2线 汽固平衡线(升华线)
A
2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线)
B
三相点
图2-2 纯物质的p –T图
从A点到B点,即从液体到汽体。
(RKS, PR方程)
bp B RT
方程的计算过程
①设初值Z(一般取Z=1); ② 将Z值代入式(2),计算h;
③ 将h值代入式(1)计算Z值;
④ 比较前后两次计算的Z值,若误差已达到允许范围,迭代结束;否则 返回步骤②再进行运算。 用图表示为:
Z 初值(一般1) h Z Z - Z pVT
二阶舍项的维里方程
方程形式:
B Bp p 1 Z 1 1 B V RT
使用情况: (1)当温度低于临界温度、压力不高于1.5MPa时,用二 阶舍项的维里方程可以很精确地表示气体的p –V -T关系 (2)当压力高于5.0MPa时,需要用更多阶的维里方程。 (3)对第二维里系数,不但有较为丰富的实测的文献数 据,而且还可能通过理论方法计算。
T>Tc T=Tc T<Tc Vsl Vsv V
•当p≠ps时,只有一个根有意义,
其他两个实根无意义。
Redlich-Kwong方程
方程形式:
RT a p 0.5 V b T V (V b)
vDW方程的引力项没有考虑温度的影响,而RK方程的引力 项加入了温度项。 方程参数: (1)a,b为RK参数,与流体的特性有关。 (2)可以用实验数据进行拟合 (3) a,b可以依据临界等温线是拐点的特征进行计算,关 系式为: b 0.08664 RTc / pc a 0.42748 R2Tc2.5 / pc