2018年高考数学热门考点与解题技巧:考点11-三角函数的恒等变换(含解析)

合集下载

三角函数恒等变换含问题详解及高考题

三角函数恒等变换含问题详解及高考题

三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x 2.求)330cos()150sin()690tan()480sin()210cos()120tan(οοοοοο----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=οοοοοο 3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=xy 在区间[0,2]上的值域.解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2;(2)y =2sin x cos x -(sin x +cos x ).解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3, 令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

三角函数恒等变换ppt课件

三角函数恒等变换ppt课件
(1)求cos 2α的值; (2)求tan(α-β)的值.
解 (1)因为 tan α=43,tan α=csoins αα,所以 sin α=43cos α. 因为 sin2α+cos2α=1,所以 cos2α=295, 因此,cos 2α=2cos2α-1=-275. (2)因为 α,β 为锐角,所以 α+β∈(0,π).又因为 cos(α+β)=- 55, 所以 sin(α+β)= 1-cos2(α+β)=255,因此 tan(α+β)=-2.
真题演练
1.对于三角函数的求值,需关注:
(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用; (3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口, 对于很难入手的问题,可利用分析法.
感谢同学们的聆听
Thanks for Listening
(1)解析 由 α,β 为锐角,则-π2<α-β<π2,由 sin(α-β)=- 1100,得 cos(α-β)=31010, 又 sin α= 55,所以 cos α=255, 所以 sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)

55×3
1010-2
因为 tan α=43,所以 tan 2α=1-2tatnanα2α=-274, 因 此 , tan(α - β) = tan[2α - (α + β)] = 1t+ant2anα-2αttaann((αα++ββ))=思路:找差异,化同角(名),化简求值.三角变换的关键在于 对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和 灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联 系. 2.求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然 后结合角的取值范围,求出角的大小.求解时,尽量缩小角的取值范围,避免产生 增解.

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ;(3)区间角的表示:①象限角:第一象限角: ;第三象限角: ; 第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,xyOxyOr 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

2018年全国各地高考数学试题及解答分类汇编大全(08 三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类汇编大全(08 三角函数  三角恒等变换)

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( )A .»AB B .»CDC .»EFD .¼GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos 2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭Q 对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>Q ,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan α=tan α=时,可得1a =,2b =,即a =,b =时a b -=tan α=时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案:解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 41tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=Q ,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

高考11类热点问题的解法探究1:三角恒等变换大曝光

高考11类热点问题的解法探究1:三角恒等变换大曝光
尸 所以f(x)的定义域为{ xERlx#-飞亢 +了 坛 ,kEz
f(x)的最小正周期为立 2
行) (2)由f
= 2cos2a,得
叮;) tan(
= 2c换技巧大曝光
sin(a+于) =2(cos2 a — sm· 2 a),
(cos a+ 4)
整理,得 csionsaa+—cSoi.nsaa =2(cosa+sina)(cosa— sina).
3'
:. tan(2a — (3) =tan[(广(3)+a]
tan位— (3)+tana 1— tan位— f3)tana
=
1
— 12 +— 13 —— 1 X — 1
=1.
23
又·:o冬a<

4'
:.o冬2a<王 2 . ·:o<在五且tan(]= —— 71 <O,
:. 千<(3<1:,— 穴<— (3<— 千
一 、 切剖化弦
旁 1+
tan
— a 2
1 ta n
若cosa= —
4 5
, a是第三 象 限的角,则
()
- A
l 2
B
l 2
C. 2
D. —2
【解】
·:cosa=
—— 4 5
,a为第三象限角,
•. •
sma=
—— 3 5
.
l+tan

2
。 1

s ,1 n 冬2 _ a
cs _2
cos
— 仪 2 +sin
:. — 元::::za—(KO,

2018年高三一轮复习典型例题剖析:三角函数的恒等变换

2018年高三一轮复习典型例题剖析:三角函数的恒等变换

三角函数的恒等变换一、知识导学1.两角和、差、倍、半公式(1) 两角和与差的三角函数公式βαβαβαc o s c o s s i n s i n )s i n (±=±βαβαβαs i n s i n c o s c o s )c o s ( =±βαβαβαt a n t a n 1t a n t a n )t a n ( ±=± (2) 二倍角公式αααc o s s i n 22s i n= ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= ααα2tan 1tan 22tan -= (3) 半角公式2c o s 12s i n 2αα-=, 2c o s 12c o s 2αα+= , αααc o s 1c o s 12t a n 2+-= αααααs i n c o s 1c o s 1s i n 2t a n -=+= 2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值).二、疑难知识导析1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题.2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍数”关系上.3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用和变形使用,也要注意公式成立的条件.例)tan tan 1)(tan(tan tan βαβαβα ±=±、22cos 1sin 2αα-=、22cos 1cos 2αα+=等.4. 三角公式由角的拆、凑很灵活.如)()(2βαβαα-++=、ββαα-+=)(、 22βαβαβ+-+=,)2()2(2βαβαβα+--=-等,注意到倍角的相对性.5.化为三角函数式,常见的思路为化“三同”即同名、同角、同次,切割化弦、特殊值与特殊角的三角函数互化等.6. 三角恒等式的证明包括无条件恒等式和有条件恒等式(1)无条件恒等式证明,要认真分析等式两边三角函数的特点,角度和函数关系,找出差异寻找突破口.(2)有条件的等式证明,常常四寻找条件与需证式的区别与联系,对条件或须证式进行变形.采用消去法或基本量法等求证.三、典型例题导讲[例1] 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A.6πB.3πC.6π或π65D.3π或32π 错解:C错因:求角C 有两解后未代入检验.正解:A[例2] 已知tan α tan β是方程x 2+33x+4=0的两根,若α,β∈(-2,2ππ),则α+β=( ) A.3π B.3π或-π32 C.-3π或π32 D.-π32错解:B.错因:未能准确限制角的范围.正解:D.[例3] △ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A.6516 B.6556 C.6516或6556 D.6516- 错解:C错因:是忽略对题中隐含条件的挖掘.正解:A[例4] 已知53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θtan ( ) A 、324--m m B 、m m 243--± C 、125- D 、12543--或 错解:A错因:是忽略1cos sin 22=+θθ,而解不出m正解:C点评:在对三角式作变形时,以上四种方法,提供了四种变形的角度,这也是研究其他三角问题时经常要用的变形手法.四、典型习题导练1.已知集合M=}{R x x x y y ∈+=,cos sin ,N=}{R x x x y y ∈=,cos sin π则MUN 等于( )A.MB.NC.фD.}{22≤≤-y y2.若sinα+cosα=2,则tanα+cotα=( )A.1B.2C.-1D.-23.已知2л<α<л<,sinα=54,则cos 2α的值为( ) A.25或-55 B.- 55 C. 55 D.以上都不对 4.已知θ=5л,则`34an 3an 334an 3t θθθθt t t an ++= . 5.计算sin 10лsin 1013л= . 6.已知tanA·tanB=tanA+tanB+1,则cos(A+B)的值是( ) A.22- B.22C.22±D.21± 7.已知角A 是△ABC 的一个内角,且32cos sin =+A A ,则△ABC 是( ) A.锐角三角形 B.钝角三角形C.直角三角形D.形状不确定8.已知向量.552|),sin ,(cos ),sin ,(cos =-==b ββαα (1)求)cos(βα-的值;(2)若αββππαsin ,135sin ,02,20求且-=<<-<<的值.。

(全国通用)2018年高考数学 考点一遍过 专题16 三角恒等变换(含解析)理

考点16 三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).一、两角和与差的三角函数公式 1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin2α=2sin cos αα(2)2C α:cos2α=2222cos sin 12sin 2cos 1αααα-=-=-(3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且3.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==tan baϕ=二、简单的三角恒等变换 1.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cos sin22αβαβαβ+--=; cos cos 2cos cos22αβαβαβ+-+=; cos cos 2sin sin22αβαβαβ+--=-.考向一 三角函数式的化简1.化简原则(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式; (2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等. 2.化简要求(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(2)式子中的分母尽量不含根号.3.化简方法(1)切化弦;(2)异名化同名;(3)异角化同角;(4)降幂或升幂.典例1 化简:ππsin sin33ππcos cos33αααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=.【答案】【方法技巧】(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.学.(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.(3)在化简时要注意角的取值范围.1________.考向二三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββ=+-=,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.典例2 cos15cos30cos105sin30︒︒+︒︒的值是A B C .12D .1【答案】A【名师点睛】把所求式子中的角105°变为90°+15°,利用诱导公式cos (90°+α)=−sin α化简后,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可求出值.“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式.2A .1-B .2C .12D .1典例3 已知tan(α−β)=,tan β=−,且α,β∈(0,π),则2α−β=A .π4B .π4- C .3π4-D .π4或3π4- 【答案】C又α∈(0,π),所以0<α<.又<β<π,所以−π<2α−β<0,所以2α−β=−.故选C.【名师点睛】在解决给值求角问题时,不仅要注意已经明确给出的有关角的范围,还要结合有关角的三角函数值尽可能地缩小角的范围.302βαπ<<<. (1)求α2tan 的值. (2)求β的值.典例4 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=A BC D【答案】B【名师点睛】解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.4.已知角α,β均为锐角,且3cos5α=,tan(α−β)=,则tanβ=A. B.C. D.3考向三三角恒等变换的综合应用1.与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的形式.(2)利用公式2π(0)Tωω=>求周期.(3)根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的单调区间.2.与向量相结合的综合问题三角恒等变换与向量的综合问题是高考经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,a∥b⇔x1y2=x2y1,a⊥b⇔x1x2+y1y2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.3.与解三角形相结合的综合问题(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正、余弦定理把边的关系化成角的关系再用三角恒等变换化简求解.【注】此类题中的角是在三角形中,每个角范围限制在(0,π)内,如果是锐角三角形,则需要限制各个角均在π(0,)2内.角的范围在解题中至关重要,做题时要特别注意.典例5 设函数f(x)=sin2ωx−sin ωx cosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间π,]上的最大值和最小值.【答案】(1)1;(2)f(x)在区间π,]上的最大值和最小值分别为,−1.【解析】(1)f (x )=sin 2ωx −sin ωx cos ωx =·sin 2ωx =cos2ωx −sin 2ωx =−sin(2ωx −).因为图象的一个对称中心到最近的对称轴的距离为,且ω>0,所以=4×,因此ω=1.(2)由(1)知f (x )=−sin(2x −).当π≤x ≤时,≤2x −≤.所以−≤sin(2x −)≤1.因此−1≤f (x )≤.故f (x )在区间π,]上的最大值和最小值分别为,−1.5.已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.1.cos9π·cos 29π ·cos 23()9π-= A .−18B .−116 C .116D .182.已知1sin cos 5αα-=-,则的值为A .1225B .2425-C .2425D .1225-3.已知锐角,αβ满足,则αβ+的值为ACD 4.设,,且,则A .B .C .D .5.已知向量a =(sin(),1)6απ+,b =(4,4cos α),若a ⊥b ,则sin 4()3απ+=A .4-B .14-C .4D .146,则sin β= A .0C7A B CD 8.已知α为锐角,若,则sin α=ABC D 9.若()()sin 603cos 90θθ+︒=︒-,则tan θ=__________.10.在斜三角形ABC 中,tan tan tan tan 1A B A B ++=,则C ∠=_____________.11.已知函数,若为函数()f x 的一个零点,则0cos2x =__________.12(1)求sin2β的值;(213.已知函数.(1)求的最小正周期和最值;(2)设是第一象限角,且求的值.1.(2016年高考新课标Ⅱ卷)若cos(4π−α)=53,则sin 2α= A .725B .15C .−15D .−7252.(2016年高考新课标Ⅲ卷)若3tan 4α=,则2cos 2sin 2αα+= A .6425B .4825C .1D .16253.(2017年高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 4.(2017年高考江苏卷)若π1tan(),46α-=则tan α=___________.5.(2016年高考四川卷)cos 2π8–sin 2π8= . 6.(2016年高考浙江卷)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =________.1.【答案】−2sin42.【答案】C【解析】由()sin47sin 3017sin30cos17sin17cos30︒=︒+︒=︒︒+︒︒知,原式3.【答案】(1(2【解析】(1)由1cos ,072ααπ=<<(2)由0βαπ<<<,得0.2αβπ<-<由)(βααβ--=得)](cos[cos βααβ--=.3βπ∴=4.【答案】D5.【答案】(1)π;(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.【解析】f (x )=1cos ,2x ⎛⎫-⎪⎝⎭x ,cos 2x )cos x sin x −12cos 2x=2sin 2x −12cos 2x =ππcossin 2sin cos 266x x -=πsin 26x ⎛⎫-⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-. 因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.1.【答案】A2.【答案】C 【解析】由题意得,两边同时平方得故选C. 3.【答案】B【解析】因为锐角,αβ,所以因为()0,παβ+∈,所以 B. 4.【答案】B【解析】根据三角函数的基本关系可 得,,因为,,所以,所以(舍)或,得,故选B.5.【答案】B6.【答案】B,0⨯=,不合题意,舍去;,525=,应选B. 7.【答案】DD. 8.【答案】C【解析】∵α为锐角且 则,故本题选C.9.10.【解析】在ABC△ 中,tan tan tan tan 1A B A B ++⋅=,则t a n t a n 1A B A B+=-⋅0πC <<11.【答案】3512.【答案】(1(2【解析】(1(2【名师点睛】在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法是配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和与差的公式展开求值即可.13.【答案】(1)的最小正周期是,最大值为,最小值为;(2).【解析】(1).的最小正周期是,最大值为,最小值为. (2),则,即,又为第一象限的角,则,.1.【答案】D【解析】2237cos22cos12144525αα⎡π⎤π⎛⎫⎛⎫⎛⎫-=--=⨯-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又cos2cos2sin242ααα⎡π⎤π⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,所以7sin225α=-,故选D.【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.2.【答案】A【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.3.【答案】79- 【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,cos cos αβ=-=(或cos cos βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .4.【答案】75【解析】11tan()tan 7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.5.【答案】2【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值转化为特殊角的三角函数求值而得解.6.,1【解析】22cos sin 2)14x x x π+=++,所以 1.A b ==【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.。

2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。

三角恒等变换的常用技巧

三角恒等变换的常用技巧1.三角函数的互余关系三角函数的互余关系是指正弦函数与余弦函数之间、正切函数与余切函数之间存在一种关系,即sin(x) = cos(π/2 - x),cos(x) =sin(π/2 - x),tan(x) = cot(π/2 - x),cot(x) = tan(π/2 - x)。

利用这个关系,可以将一个三角函数用另一个三角函数表示,从而简化计算。

2.三角函数的辅助角公式三角函数的辅助角公式是指通过引入辅助角,使得原函数形式得到简化或变形的运算方法。

常见的辅助角公式包括:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x))/(1 - tan^2(x))利用辅助角公式,可以将一个三角函数表达式化简为另一个形式,从而方便计算。

3.和差角公式和差角公式是指将两个角的三角函数的和或差,表示为一个三角函数乘积的展开公式。

常见的和差角公式包括:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))通过和差角公式,可以将一个复杂的三角函数表达式展开为两个简单的三角函数表达式的和或差,方便进一步计算。

4.二倍角公式二倍角公式是指将一个角的三角函数的平方形式化简为另一个角的三角函数表达式的公式。

常见的二倍角公式包括:sin^2(x) = (1 - cos(2x))/2cos^2(x) = (1 + cos(2x))/2tan^2(x) = (1 - cos(2x))/(1 + cos(2x))通过二倍角公式,可以将一个角的三角函数平方形式化简为另一个角的三角函数的表达式,使得计算更加简化。

2018年高考数学总复习第四章三角函数解三角形4.6三角恒等变换课件理新人教A版


1
2
3
4
5
������ sin������ -2cos22 2. 化简: ������ π =( sin 2 - 4 ������ ������ A.2√2cos B. √2cos 2 2 ������ ������ C.2√2sin2 D. √2sin2
)
关闭
原式=
2sin cos -2co s 2
-2si n 2 ������ co s 2 ������ +
= =
=2cos 2x.
1
-10考点1 考点2 考点3
(3)(方法一)∵sin α= +cos α,
1 2
∴sin α-cos α=2, ∴√2sin ������- 4 = 2, ∴sin ������- 4 =
又 α∈ 0, 2 ,
√14 √7 =- 4 . 4

cos2 ������ sin ������ -
=
-
√7 4 √2 4
√14 =- 2 .
-12考点1 考点2 考点3
(方法二)∵sin α=2+cos α,
1
∴sin α-cos α=2, ∵α∈ 0, 2 , ∴sin α+cos α
=sin(x+φ)cos φ+cos(x+φ)sin φ-2sin φcos(x+φ)
=sin(x+φ)cos φ-cos(x+φ)sin φ
=sin [(x+φ)-φ]=sin x.
∴f(x)max=1.
1
解析
关闭
答案
-7知识梳理 考点自测
1
2
3
4
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1剟sin
x
π
4
44
4
2
,函数
f
x 在区间
2
2
π,0 的最小值为 1
.
2
1 cos
3 ,则
22 3 ,由于 与 关于 y 轴对 称,则
sin sin
1 cos
3,
22
cos
3 ,故
y
22 3
22 1 1 7
3
3 3 9.
β
α
O
x
2.. (2013 全国新课标卷理 15) 设 为第二象限的角,若 tan
π
1 ,则 sin
cos
.
42
3. ( 2015 重庆)若 tan
cos
cos π
变式 1. (2016 全国甲理 9)若
4
3
5 ,则 sin 2 =(
).
7 A. 25
1 C. 5
1 B. 5
7 D. 25
π
cos
解析 因为
4
3
2
cos sin
5, 2
3
cos
5 ,所以
3
sin = 2
1+sin2
5 ,两边平方得
18 25,即
sin 2
7 25 . 故选 D.
cos π
例 4. ( 2015 天津)已知函数 f x
sin2 x sin 2 x π , x R . 6
( 1)求 f x 最小正周期; ( 2)求 f x 在区间
π, π 上的最大值和最小值 . 34
分析 (1) 利用两角和与差的正余弦公式及二倍角的正余弦公式化简函数的解析式,由三角函数性质可求最
小正周期; (2) 先写出函数的单调区间,即可求函数的最大值与最小值
sin ,
π,π ,则 tan 2 的值是 ____________ . 2
解 析 : si n 2 2 si n cos
4
tan 2 tan
3.
3
题型 2 公式运用
,s i 因 为
π,π , 所 以 c o s 2
1

2
2
,所以
3
例 2 ( 2015 全国 1) sin 20 cos10 cos160 sin10 ( )
.
(2) 解法一:因为 f x 在区间
π, π 上是减函数,在区间 36
π,π 上是增函数, 64
fπ 3
1
π
,f
4
6
1 ,f
π
2
4
3
,所以
f
x 在区间
4
π,π 上的最大值 34
3

,最小值是
1.
4
2
解法二:由
π剟 x
π
,得
2 π剟 2 x
3
4
3
π

5π剟 2x
π
π

2
6
63
1剟sin 2x π
3, 1剟f x
变式 1. (2016 全国甲理 9)若
4
7 A. 25
1 B. 5
cos π
解析 因为
4
32 5 , 2 cos
3
5 ,则 sin 2 =(
).
1 C. 5
7 D. 25
3 sin
5,
3
cos sin = 2
1+sin2
所以
5 ,两边平方得,
18 sin2
25
7 25 . 故选 D.
题型 4 三角恒等变换与三角函数的值域
2 tanπ ຫໍສະໝຸດ 则5sinA. 1
B. 2
C. 3
D. 4
3π 10 ( ) . π 5
4. ( 17 江苏 05)若 tan
π 1 ,则 tan

46
解析 解法一(角的关系) : tan tan
44
tan
4
17 6
7 .故填
7

1 tan
55
5
46
解法二(直接化简) : tan
π tan 1 1 ,所以 tan 4 1 tan 6
3
A.
2
3
1
B

C

2
2
1
D

2
解析 原式 sin 20 cos10 cos20 sin10
变式 1. (2016 四川理 11) cos2 π sin2 π
8
8
sin 30
.
1
. 故选 D.
2
解析 由倍角得 cos2 π sin2 π cos2 π 2
8
8
42
变式 2. (2015 四川理) sin15 sin 75 的值是 _____________.
xx 2 sin cos
22
2x 2 sin .
2
( 2)求 f x 在区间 π,0 的最小值 .
解析 ( 1) f x
xx
1 cosx 2
2
2
2 sin cos 2
sin x
cosx
22
2
2
2
2
sin x π 4
2
,函数
f
x 的最小正周期
T
2 π.
2
( 2)当
π剎x ? 0 时,
3π剟 x
π
π

1
t
,当
3
x
2 ,即
6 时, f x 取最大值为 1.
6.(2017 浙江理 18) 已知函数 f x sin2 x cos2 x 2 3sin x cosx x R .
( 1)求 f 2 的值;( 2)求 f x 的最小正周期及单调递增区间 . 3
7. ( 2015 北京)已知函数 f x ( 1)求 f x 的最小正周期;
7
7
.故填 .
5
5
5. ( 2017 全国 2 理 14)函数 f x sin 2 x
3 3 cos x x
0,
的最大值是

4
2
解析
f x sin 2 x
3 cos x 3 1 cos2 x 4
3 3 cos x x
4
0 ,π 2
, 令 c o xs t 且 t
0 ,1 ,
y t2
3t 1 4
2
t3 2
3
.
62
2
4
当x
π
时,
f
x 取得最小值
1,当 x
π
时,
f
x
取得最大值为
3
.
6
4
4
【高考真题链接】
1.(2017 北京理 12) 在平面直角坐标系 xOy 中,角 与角 均以 Ox 为始边,它们的终边关于 y 轴对称 . 若
1
sin
3 , cos
=___________.
sin
解 析 由题作 出图形,如图所示,
解析 依据题意可得: sin15 题型 3 化简求值
例 3. ( 2015 江苏)已知 tan
sin 75 sin15 cos15 2 sin(15 45 )
2 , tan
1 ,则 tan 的值为
7
6. 2

解法三: tan tan
tan 1 tan
tan
1 tan 7
tan 1 1 tan
7
2 ,故 tan 3 .
热门题型
题型 1 同角求值 题型 2 公式运用 题型 3 化简求值 题型 4 三角恒等变换与三角函数的值域
题型 1 同角求值
例 1. ( 2016 全国丙理 5)若 tan
3
2
,则 cos
2sin 2

).
4
64
48
16
A.
B.
C.1
D.
25
25
25
【解题技巧】本题考查三角恒等变换,齐次化切
.
变式 1.(2013 四川理 13)设 sin 2
相关文档
最新文档