Unsupervised image segmentation based on high-order hidden

合集下载

多尺度特征融合的脊柱X线图像分割方法

多尺度特征融合的脊柱X线图像分割方法

脊柱侧凸是一种脊柱三维结构的畸形疾病,全球有1%~4%的青少年受到此疾病的影响[1]。

该疾病的诊断主要参考患者的脊柱侧凸角度,目前X线成像方式是诊断脊柱侧凸的首选,在X线图像中分割脊柱是后续测量、配准以及三维重建的基础。

近期出现了不少脊柱X线图像分割方法。

Anitha等人[2-3]提出了使用自定义的滤波器自动提取椎体终板以及自动获取轮廓的形态学算子的方法,但这些方法存在一定的观察者间的误差。

Sardjono等人[4]提出基于带电粒子模型的物理方法来提取脊柱轮廓,实现过程复杂且实用性不高。

叶伟等人[5]提出了一种基于模糊C均值聚类分割算法,该方法过程繁琐且实用性欠佳。

以上方法都只对椎体进行了分割,却无法实现对脊柱的整体轮廓分割。

深度学习在图像分割的领域有很多应用。

Long等人提出了全卷积网络[6](Full Convolutional Network,FCN),将卷积神经网络的最后一层全连接层替换为卷积层,得到特征图后再经过反卷积来获得像素级的分类结果。

通过对FCN结构改进,Ronneberger等人提出了一种编码-解码的网络结构U-Net[7]解决图像分割问题。

Wu等人提出了BoostNet[8]来对脊柱X线图像进行目标检测以及一个基于多视角的相关网络[9]来完成对脊柱框架的定位。

上述方法并未直接对脊柱图像进行分割,仅提取了关键点的特征并由定位的特征来获取脊柱的整体轮廓。

Fang等人[10]采用FCN对脊柱的CT切片图像进行分割并进行三维重建,但分割精度相对较低。

Horng等人[11]将脊柱X线图像进行切割后使用残差U-Net 来对单个椎骨进行分割,再合成完整的脊柱图像,从而导致分割过程过于繁琐。

Tan等人[12]和Grigorieva等人[13]采用U-Net来对脊柱X线图像进行分割并实现对Cobb角的测量或三维重建,但存在分割精度不高的问题。

以上研究方法虽然在一定程度上完成脊柱分割,但仍存在两个问题:(1)只涉及椎体的定位和计算脊柱侧凸角度,却没有对图像进行完整的脊柱分割。

Introduction to Artificial Intelli智慧树知到课后章节答案2023年

Introduction to Artificial Intelli智慧树知到课后章节答案2023年

Introduction to Artificial Intelligence智慧树知到课后章节答案2023年下哈尔滨工程大学哈尔滨工程大学第一章测试1.All life has intelligence The following statements about intelligence arewrong()A:All life has intelligence B:Bacteria do not have intelligence C:At present,human intelligence is the highest level of nature D:From the perspective of life, intelligence is the basic ability of life to adapt to the natural world答案:Bacteria do not have intelligence2.Which of the following techniques is unsupervised learning in artificialintelligence?()A:Neural network B:Support vector machine C:Decision tree D:Clustering答案:Clustering3.To which period can the history of the development of artificial intelligencebe traced back?()A:1970s B:Late 19th century C:Early 21st century D:1950s答案:Late 19th century4.Which of the following fields does not belong to the scope of artificialintelligence application?()A:Aviation B:Medical C:Agriculture D:Finance答案:Aviation5.The first artificial neuron model in human history was the MP model,proposed by Hebb.()A:对 B:错答案:错6.Big data will bring considerable value in government public services, medicalservices, retail, manufacturing, and personal location services. ()A:错 B:对答案:对第二章测试1.Which of the following options is not human reason:()A:Value rationality B:Intellectual rationality C:Methodological rationalityD:Cognitive rationality答案:Intellectual rationality2.When did life begin? ()A:Between 10 billion and 4.5 billion years B:Between 13.8 billion years and10 billion years C:Between 4.5 billion and 3.5 billion years D:Before 13.8billion years答案:Between 4.5 billion and 3.5 billion years3.Which of the following statements is true regarding the philosophicalthinking about artificial intelligence?()A:Philosophical thinking has hindered the progress of artificial intelligence.B:Philosophical thinking has contributed to the development of artificialintelligence. C:Philosophical thinking is only concerned with the ethicalimplications of artificial intelligence. D:Philosophical thinking has no impact on the development of artificial intelligence.答案:Philosophical thinking has contributed to the development ofartificial intelligence.4.What is the rational nature of artificial intelligence?()A:The ability to communicate effectively with humans. B:The ability to feel emotions and express creativity. C:The ability to reason and make logicaldeductions. D:The ability to learn from experience and adapt to newsituations.答案:The ability to reason and make logical deductions.5.Which of the following statements is true regarding the rational nature ofartificial intelligence?()A:The rational nature of artificial intelligence includes emotional intelligence.B:The rational nature of artificial intelligence is limited to logical reasoning.C:The rational nature of artificial intelligence is not important for itsdevelopment. D:The rational nature of artificial intelligence is only concerned with mathematical calculations.答案:The rational nature of artificial intelligence is limited to logicalreasoning.6.Connectionism believes that the basic element of human thinking is symbol,not neuron; Human's cognitive process is a self-organization process ofsymbol operation rather than weight. ()A:对 B:错答案:错第三章测试1.The brain of all organisms can be divided into three primitive parts:forebrain, midbrain and hindbrain. Specifically, the human brain is composed of brainstem, cerebellum and brain (forebrain). ()A:错 B:对答案:对2.The neural connections in the brain are chaotic. ()A:对 B:错答案:错3.The following statement about the left and right half of the brain and itsfunction is wrong ().A:When dictating questions, the left brain is responsible for logical thinking,and the right brain is responsible for language description. B:The left brain is like a scientist, good at abstract thinking and complex calculation, but lacking rich emotion. C:The right brain is like an artist, creative in music, art andother artistic activities, and rich in emotion D:The left and right hemispheres of the brain have the same shape, but their functions are quite different. They are generally called the left brain and the right brain respectively.答案:When dictating questions, the left brain is responsible for logicalthinking, and the right brain is responsible for language description.4.What is the basic unit of the nervous system?()A:Neuron B:Gene C:Atom D:Molecule答案:Neuron5.What is the role of the prefrontal cortex in cognitive functions?()A:It is responsible for sensory processing. B:It is involved in emotionalprocessing. C:It is responsible for higher-level cognitive functions. D:It isinvolved in motor control.答案:It is responsible for higher-level cognitive functions.6.What is the definition of intelligence?()A:The ability to communicate effectively. B:The ability to perform physicaltasks. C:The ability to acquire and apply knowledge and skills. D:The abilityto regulate emotions.答案:The ability to acquire and apply knowledge and skills.第四章测试1.The forward propagation neural network is based on the mathematicalmodel of neurons and is composed of neurons connected together by specific connection methods. Different artificial neural networks generally havedifferent structures, but the basis is still the mathematical model of neurons.()A:对 B:错答案:对2.In the perceptron, the weights are adjusted by learning so that the networkcan get the desired output for any input. ()A:对 B:错答案:对3.Convolution neural network is a feedforward neural network, which hasmany advantages and has excellent performance for large image processing.Among the following options, the advantage of convolution neural network is().A:Implicit learning avoids explicit feature extraction B:Weight sharingC:Translation invariance D:Strong robustness答案:Implicit learning avoids explicit feature extraction;Weightsharing;Strong robustness4.In a feedforward neural network, information travels in which direction?()A:Forward B:Both A and B C:None of the above D:Backward答案:Forward5.What is the main feature of a convolutional neural network?()A:They are used for speech recognition. B:They are used for natural languageprocessing. C:They are used for reinforcement learning. D:They are used forimage recognition.答案:They are used for image recognition.6.Which of the following is a characteristic of deep neural networks?()A:They require less training data than shallow neural networks. B:They havefewer hidden layers than shallow neural networks. C:They have loweraccuracy than shallow neural networks. D:They are more computationallyexpensive than shallow neural networks.答案:They are more computationally expensive than shallow neuralnetworks.第五章测试1.Machine learning refers to how the computer simulates or realizes humanlearning behavior to obtain new knowledge or skills, and reorganizes the existing knowledge structure to continuously improve its own performance.()A:对 B:错答案:对2.The best decision sequence of Markov decision process is solved by Bellmanequation, and the value of each state is determined not only by the current state but also by the later state.()A:对 B:错答案:对3.Alex Net's contributions to this work include: ().A:Use GPUNVIDIAGTX580 to reduce the training time B:Use the modified linear unit (Re LU) as the nonlinear activation function C:Cover the larger pool to avoid the average effect of average pool D:Use the Dropouttechnology to selectively ignore the single neuron during training to avoid over-fitting the model答案:Use GPUNVIDIAGTX580 to reduce the training time;Use themodified linear unit (Re LU) as the nonlinear activation function;Cover the larger pool to avoid the average effect of average pool;Use theDropout technology to selectively ignore the single neuron duringtraining to avoid over-fitting the model4.In supervised learning, what is the role of the labeled data?()A:To evaluate the model B:To train the model C:None of the above D:To test the model答案:To train the model5.In reinforcement learning, what is the goal of the agent?()A:To identify patterns in input data B:To minimize the error between thepredicted and actual output C:To maximize the reward obtained from theenvironment D:To classify input data into different categories答案:To maximize the reward obtained from the environment6.Which of the following is a characteristic of transfer learning?()A:It can only be used for supervised learning tasks B:It requires a largeamount of labeled data C:It involves transferring knowledge from onedomain to another D:It is only applicable to small-scale problems答案:It involves transferring knowledge from one domain to another第六章测试1.Image segmentation is the technology and process of dividing an image intoseveral specific regions with unique properties and proposing objects ofinterest. In the following statement about image segmentation algorithm, the error is ().A:Region growth method is to complete the segmentation by calculating the mean vector of the offset. B:Watershed algorithm, MeanShift segmentation,region growth and Ostu threshold segmentation can complete imagesegmentation. C:Watershed algorithm is often used to segment the objectsconnected in the image. D:Otsu threshold segmentation, also known as themaximum between-class difference method, realizes the automatic selection of global threshold T by counting the histogram characteristics of the entire image答案:Region growth method is to complete the segmentation bycalculating the mean vector of the offset.2.Camera calibration is a key step when using machine vision to measureobjects. Its calibration accuracy will directly affect the measurementaccuracy. Among them, camera calibration generally involves the mutualconversion of object point coordinates in several coordinate systems. So,what coordinate systems do you mean by "several coordinate systems" here?()A:Image coordinate system B:Image plane coordinate system C:Cameracoordinate system D:World coordinate system答案:Image coordinate system;Image plane coordinate system;Camera coordinate system;World coordinate systemmonly used digital image filtering methods:().A:bilateral filtering B:median filter C:mean filtering D:Gaussian filter答案:bilateral filtering;median filter;mean filtering;Gaussian filter4.Application areas of digital image processing include:()A:Industrial inspection B:Biomedical Science C:Scenario simulation D:remote sensing答案:Industrial inspection;Biomedical Science5.Image segmentation is the technology and process of dividing an image intoseveral specific regions with unique properties and proposing objects ofinterest. In the following statement about image segmentation algorithm, the error is ( ).A:Otsu threshold segmentation, also known as the maximum between-class difference method, realizes the automatic selection of global threshold T by counting the histogram characteristics of the entire imageB: Watershed algorithm is often used to segment the objects connected in the image. C:Region growth method is to complete the segmentation bycalculating the mean vector of the offset. D:Watershed algorithm, MeanShift segmentation, region growth and Ostu threshold segmentation can complete image segmentation.答案:Region growth method is to complete the segmentation bycalculating the mean vector of the offset.第七章测试1.Blind search can be applied to many different search problems, but it has notbeen widely used due to its low efficiency.()A:错 B:对答案:对2.Which of the following search methods uses a FIFO queue ().A:width-first search B:random search C:depth-first search D:generation-test method答案:width-first search3.What causes the complexity of the semantic network ().A:There is no recognized formal representation system B:The quantifiernetwork is inadequate C:The means of knowledge representation are diverse D:The relationship between nodes can be linear, nonlinear, or even recursive 答案:The means of knowledge representation are diverse;Therelationship between nodes can be linear, nonlinear, or even recursive4.In the knowledge graph taking Leonardo da Vinci as an example, the entity ofthe character represents a node, and the relationship between the artist and the character represents an edge. Search is the process of finding the actionsequence of an intelligent system.()A:对 B:错答案:对5.Which of the following statements about common methods of path search iswrong()A:When using the artificial potential field method, when there are someobstacles in any distance around the target point, it is easy to cause the path to be unreachable B:The A* algorithm occupies too much memory during the search, the search efficiency is reduced, and the optimal result cannot beguaranteed C:The artificial potential field method can quickly search for acollision-free path with strong flexibility D:A* algorithm can solve theshortest path of state space search答案:When using the artificial potential field method, when there aresome obstacles in any distance around the target point, it is easy tocause the path to be unreachable第八章测试1.The language, spoken language, written language, sign language and Pythonlanguage of human communication are all natural languages.()A:对 B:错答案:错2.The following statement about machine translation is wrong ().A:The analysis stage of machine translation is mainly lexical analysis andpragmatic analysis B:The essence of machine translation is the discovery and application of bilingual translation laws. C:The four stages of machinetranslation are retrieval, analysis, conversion and generation. D:At present,natural language machine translation generally takes sentences as thetranslation unit.答案:The analysis stage of machine translation is mainly lexical analysis and pragmatic analysis3.Which of the following fields does machine translation belong to? ()A:Expert system B:Machine learning C:Human sensory simulation D:Natural language system答案:Natural language system4.The following statements about language are wrong: ()。

声纳海底管道图像去噪方法研究

声纳海底管道图像去噪方法研究

声纳海底管道图像去噪方法研究张晓娟;刘颉;杨逍;吕九红【摘要】在海底输送管道泄露检测中,声纳图像极易受到噪声污染.如果以管道的直线特征作为检测策略,即能观察到明显的管道直线边缘等特征以进行管道泄露分析.利用小波变换的改进方法——超小波脊波变换,针对噪声淹没中海底管道图像的直线特征实现去噪,增强管道部分图像.利用自适应“维纳滤波”进行图像去噪和去“卷绕”.仿真实验表明,脊波去噪技术相对于其它方法对管道图像去噪方法具有明显边缘等直线特征保持作用.文中研究结果为海底管道泄露图像处理技术提供数据预处理方法.【期刊名称】《海洋技术》【年(卷),期】2017(036)006【总页数】4页(P82-85)【关键词】脊波去噪;海底管道图像处理;维纳滤波【作者】张晓娟;刘颉;杨逍;吕九红【作者单位】国家海洋技术中心,天津300112;国家海洋技术中心,天津300112;国家海洋技术中心,天津300112;国家海洋技术中心,天津300112【正文语种】中文【中图分类】TN911.73声纳图像是水声信道中接收声回波能量的二维平面分布,受噪声影响严重,对比度较低。

受声基阵性能的限制,声纳图像的分辨率往往不高[1]。

主要考虑的噪声源有海洋环境噪声和舰船自噪声[2]。

海洋环境噪声常常遵循高斯分布[3],而文献[1]声纳信号的噪声考虑高斯模型。

维纳滤波、小波对于高斯噪声处理比较有效。

海底管道声纳图像具有直线边缘特征,线奇异性表现较为突出,为了克服小波变换不能达到最优逼近的问题,Candes等人提出了新的多尺度变换—Ridgelet变换,它能够有效地处理二维图像的线奇异性,较好地对此类信号进行“逼近”。

对于海底管道泄露检测利用基于小波理论的脊波进行直线特征加强,提高边缘的完整性,提高有用信号所占的信号比例。

增强处理后有用图像部分信噪比及直线特征边缘。

图1 Blueview前视2D声纳管道图像处理流程图基于“海底管道探测技术集成及风险评估技术研究与示范应用”子课题“海底管道ROV精细化探测系统集成——前视声纳系统”。

UNSUPERVISED SCENE SEGMENTATION

UNSUPERVISED SCENE SEGMENTATION

专利名称:UNSUPERVISED SCENE SEGMENTATION 发明人:JACKWAY, Paul,BAMFORD, Pascal申请号:AU2001000787申请日:20010628公开号:WO02/003331P1公开日:20020110专利内容由知识产权出版社提供摘要:A method of segmenting objects in an image is described. The method applies a Top Hat algorithm to the image then constructs inner and outer markers for application to the original image in a Watershed algorithm. The inner marker is constructed using binary erosion. The outer marker is constructed using binary dilation and perimeterisation. The method finds particular application for first level segmentation of a cell nucleus prior to detailed analysis.申请人:JACKWAY, Paul,BAMFORD, Pascal地址:Adelaide, S.A. 5005 AU,Building 8, 1st Floor 770 Blackburn Road Clayton, VIC 3168 AU,Department of Computer Science and Electrical Engineering University of Queensland Brisbane, QLD 4072 AU,Department of Computer Science and Electrical Engineering University of Queensland Brisbane, QLD 4072 AU,139 Frome Street Adelaide, S.A. 5000 AU,23 Lakeside Drive Burwood East, VIC 3151 AU,65 Gladstone Street Fyshwick, ACT 2609 AU,Salisbury, S.A. 5108 AU,North Terrace Adelaide, S.A. 5000 AU,Parkville, VIC 3052 AU,Sturt Road Bedford Park, S.A. 5042 AU,St Lucia, QLD 4072 AU国籍:AU,AU,AU,AU,AU,AU,AU,AU,AU,AU,AU,AU代理机构:FISHER, Adam, Kelly更多信息请下载全文后查看。

智能 ai 相关英文单词

智能 ai 相关英文单词

智能 AI 相关英文单词1. 介绍在当代科技的发展中,人工智能(Artificial Intelligence,简称AI)已经成为一个热门的话题。

随着智能技术的不断进步和应用,越来越多的人开始关注AI相关的英文单词。

本文将深入探讨与智能AI相关的英文单词,包括其定义、分类、应用等方面的内容。

2. 定义智能AI(Artificial Intelligence)是一种模拟人类智能的技术与系统。

它可以通过学习、推理和自适应来执行各种任务。

智能AI可以处理大量的数据和信息,并基于此做出决策。

它可以通过模式识别和机器学习来提高自身的性能。

3. 分类下面是一些与智能AI相关的英文单词分类:3.1 机器学习(Machine Learning)•监督学习(Supervised Learning)•无监督学习(Unsupervised Learning)•半监督学习(Semi-supervised Learning)•强化学习(Reinforcement Learning)3.2 深度学习(Deep Learning)•神经网络(Neural Networks)•卷积神经网络(Convolutional Neural Networks)•递归神经网络(Recurrent Neural Networks)•自编码器(Autoencoders)3.3 自然语言处理(Natural Language Processing)•文本分类(Text Classification)•命名实体识别(Named Entity Recognition)•机器翻译(Machine Translation)•问答系统(Question Answering)3.4 计算机视觉(Computer Vision)•物体检测(Object Detection)•图像分割(Image Segmentation)•人脸识别(Face Recognition)•图像生成(Image Generation)4. 应用智能AI的应用范围非常广泛,下面是一些常见的应用领域:4.1 医疗健康•医学影像诊断(Medical Imaging Diagnosis)•基因组学研究(Genomic Research)•个性化医疗(Personalized Medicine)•药物研发(Drug Discovery)4.2 交通运输•自动驾驶汽车(Autonomous Vehicles)•交通监控与管理(Traffic Monitoring and Management)•路线规划(Route Planning)•物流管理(Logistics Management)4.3 金融服务•欺诈检测(Fraud Detection)•个性化推荐(Personalized Recommendations)•风险管理(Risk Management)•量化交易(Quantitative Trading)4.4 教育与娱乐•自适应学习(Adaptive Learning)•智能辅导(Intelligent Tutoring)•游戏开发(Game Development)•虚拟现实(Virtual Reality)5. 总结本文对智能AI相关的英文单词进行了全面、详细、完整、深入的探讨。

ENVI主菜单中英文对照

ENVI主菜单中英文对照

ENVI主菜单中英文对照1.File 文件Open image file 打开图像文件Open vector file 打开矢量文件Open remote file 打开远程文件Open exteral file 打开特定文件Open previous file 最近使用文件Launch ENVI zoom 启动ENVI zoomEdit ENVI header 编辑头文件Generate test data 生成测试数据Data view 数据浏览Save file as 另存为Import from IDL variable 导入IDL变量Export to IDL variable 导出为IDL变量Compile IDL module 编译IDL程序IDL CPU parameters IDL CPU参数设置Tape utilties:磁带工具Read known tape formats 磁带格式读取各种传感器Read/write ENVI tapes ENVI磁带读写Read ENVI tape 磁带读取Write ENVI files to tape 写入磁带Scan tape and customize dump 浏览磁带并保存Dump tape 转储磁带Scan directory list 扫描目录Change output directory 更改扫描目录Save session to script 作业保存Execute startup script 脚本执行Restore display group 显示恢复ENVI queue manager ENVI队列管理ENVI log manager ENVI日志管理Close all files 关闭所有文件Preferences 参数设置Exit 退出2.Basic tools 基本工具Resize data(spatial/spectral) 数据重采样(空间子集/光谱子集)Subset data via ROIs 通过感兴趣区裁剪数据(选取子集)Rotate/flip data 旋转/翻转数据Layer stacking 图层堆栈Convert data(BSQ ,BIL ,BIP ) 数据格式转换Stretch data 数据拉伸Statistics 统计Compute statistcs 统计计算View statistics 查看统计文件Sum data bands 数据波段求和Generate random sample 生成随机样本Using ground truth classification 基于地表真实分类影像Using ground truth ROIs 基于地表真实感兴趣区Spactial statistics 空间统计Compute global spatial statistics 全局统计Compute local spatial statistics 局部统计Change detection 变化检测Measurement tool 量测工具Band math 波段运算Spectral math 光谱运算Segmentation image 图像分割Region of interest 感兴趣区Rool tool 感兴趣区Restore saved ROI file 打开感兴趣区文件Save ROIs to file 保存为感兴趣区文件Delete ROIs 删除感兴趣区Export ROIs to EVF 将感兴趣区导出为EVFExport ROIs to n-D visualizer 将感兴趣区导出进行n维散度分析Export ROIs to training data 将感兴趣区导出为矢量训练样本Output ROIs to ASCII 将感兴趣区导出为ASCII码文件Reconcile ROIs 调整感兴趣区Reconcile ROIs via map 利用地图调整感兴趣区Band threshold to ROI 利用波段阈值定义感兴趣区Creat class image from ROIs 利用感兴趣区生成分类图像Creat buffer zone from ROIs 利用感兴趣区生成缓冲区Compute ROI separability 计算感兴趣区分离度Mosaicking 图像镶嵌Pixel based 基于像素镶嵌Georeferenced 基于地理坐标镶嵌Tiled quickbird product 产品镶嵌Tiled worldview product 产品镶嵌Masking 掩膜Build mask 建立掩膜Apply mask 应用掩膜Preprocessing 预处理Calibration utilities 定标工具AVHRR Landsat calibration landsat 定标Quickbird radianceWorldview radianceFLAASH 大气纠正Quick atmospheric correction 快速大气校正Flat filed 平面场定标Log residuale 对数残差定标IAR reflectance IAR 反射率定标Empirical line 经验线性定标Thermal atm correction 热红外大气校正TIMS radiance 热红外多波段扫描仪定标Calculate emissivity 发射率计算General purpose utilities 通用工具Replace bad lines 坏行修补Dark substract 黑暗像元法Apply gain and offset 应用增益和偏移校正Destripe 多带噪声去除Cross-tarck Illumination correction 轨道光照修正Convert complex data complex转换Convert vax to IEEE vax转换为IEEEData-specific utilities 特定数据处理工具3.Classification 分类Supervised 监督分类Parallelepiped 平行六面体Minimum distance 最小距离法Mahalanobis distance 马氏距离法Maximum distance 最大似然法Spectral angle mapper 波谱角制图Spectral information divergence 光谱信息散度Binary encoding 二进制编码Netural net 神经网络Support vector machine 支持向量机Unsupervised 非监督分类IsodataK-MeansDecision tree 决策树分类Build new decision tree 新建决策树Edit existing decision tree 编辑决策树Execute existing decision tree 执行决策树Endmember collection 端元收集器Create class image from ROIs 利用感兴趣区生成分类图像Post classification 分类后处理Assign class colors 分类颜色设置Rule classifier 规则分类器Class statistics 分类结果统计Change detection statistics 变化监测统计Confusion matrix 混淆矩阵分析Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区ROC curves ROC曲线Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区Generate random sample 生成随机样本Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真是感兴趣区Majority/minority analysis 主要/次要分析Clump classes 分类集群Sieve classes 分类筛选Combine classes 分类合并Overlay classes 分类叠加Buffer zone image 缓冲区分析Segmentation image 图像分割Classification to vector 分类结果转换为矢量4.Transform 变换Image sharpening 图像融合HSV融合Color normalized(Brovey) Brovey融合Gram-schmidt spectral shapening Gram-schmidt融合PC spectial sharpening 主成分分析CN spectial sharpening CN波谱融合Band ratios 波段比Principal components 主成分分析Forward PC rotation 正向主成分分析Compute new statistics and rotate 计算统计值分析PC rotation from existing stats 现有统计值分析Inverse PC rotation 反向主成分分析变换Independent components独立主成分分析Forward IC rotation 独立主成分分析Compute new stats and rotate 计算统计值分析IC rotation from existing stats 现有统计值分析IC rotation from existing transformInverse IC rotation 反向独立主成分分析变换MNF rotation MNF变换(最小噪声分离)Forward MNF 正向MNF变换Estimate noise statistics from data 估算噪声分析Previous noise statistics 历史噪声统计Noise statistics from dark data 黑区图像估计噪声Inverse MNF transform 反向MNF变换Apply forward MNF to spectra 波谱应用正向MNF变换Apply inverse MNF to spectra 波谱应用反向MNF变换Color transforms 颜色空间变换RGB to HSVHSV to RGBHLS to RGBHSV to RGBDecorrelation stretch 去相关拉伸Photographic stretch 摄影拉伸Saturation stretch 饱和度拉伸Synthetic color image 合成彩色影像NDVITasseled cap 缨帽变换5.Filter 过滤器Convolutions and morphology 卷积滤波Texture 纹理分析Occurrence measures 概率统计Co-occurrence measures 二阶概率统计Adaptive 自适应滤波Lee Enhanced lee增强 lee 滤波Frost Enhanced frost 增强 forst 滤波Grmma、Kuan、Local sigma、Bit errorsFFT filtering 傅立叶变换滤波Forward EET 正向傅立叶变换Filter definition 滤波器自定义Inverse FFT 反向傅立叶变换6.Spectial 波谱工具SPEAR tools SPEAR工具THOR workflows 流程化高光谱工具Target detection wizard 目标检测向导Spectial libraries 波谱库Spectial slices 波谱切割MNF rotation MNF变换(最小噪声分离)Pixel purity index 纯净像元指数PPIn-Dimensional visualizer n维数据可视化Mapping methods 制图方法Vegetation analysis 植被分析Vegetation suppression 植被抑制SAM target finder with bandmax 基于bandMax的SAM目标查找提取RX anomaly detection RX异常检测Spectral hourglass wizard 波谱沙漏向导Automated spectial hourglass 自动波谱沙漏向导Spectral analyst 波谱分析Multi range SFF 多谱段SFFSMACC endmember extraction SMACC端元提取Spectial math 波谱运算Spectral resampling 波普重采样Gram-schmidt spectial sharpening Gram-schmidt 波谱融合PC spectial sharpening PC波段融合CN spectial sharpening CN波段融合EFFORT polishing EFFORT 波谱打磨FLAASH FLAASH大气校正Quick atmospheric correction 快速大气校正Build 3D cube 建立3D立方体Preprocessing 预处理Calibration utilitiesAVHRRLandsat calibrationQUickbird radianceWorldview radianceFLAASHQuick atmospheric correctionFlat filedLog residualeIAR reflectanceEmpirical lineThermal atm correctionTIMS radianceCalculate emissivityGeneral purpose utilitiesReplace bad linesDark substractApply gain and offsetDestripeCross-tarck illumination correctionConvert complex dataConvert vax to IEEEData-specific utilities7.Map (配准与镶嵌)Registration 几何校正Rigorous orthorectification 严格模型正射校正Orthorectification 正射校正Mosaicking 图像镶嵌Georeference from input geometry 输入几何文件进行几何校正 Georeference SPOT SPOT几何校正Georeference SeaWiFS SeaWiFS几何校正Georeference ASTER ASTER几何校正Georefencece AVHRR AVHRR几何校正Georeference ENVISAT ENVISAT几何校正Georeference MODIS MODIS几何校正Georeference COSMO-SkyMed(DGM) DGM几何校正Georeference RADARSAT RADARSAT几何校正Build RPCs 构建RPCsCustomize map projections 自定义地图投影Convert map projection 地图投影转换Layer stacking 波段组合Map coordinate converter 地图坐标转换ASCII coordinate conversion ASCII坐标转换Merge old “map_proj.txt” file 合并原有map_proj.txt文件GPS-Link GPS连接8.Vector 矢量工具Open vector image 打开矢量文件Create new vector layer 新建矢量层Using existing vector layer 基于现有矢量层Using raster image file 基于栅格图像文件Using user defined parameters 基于用户自定义参数Create world boundaries 创建世界边界Available vectors list 当前矢量列表Intelligent digitizer 智能数字化工具Raster to vector 栅格转矢量Classification to vector 分类结果矢量化Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM9.Topographic 地形工具Open topographic file 打开地形文件Topographic modeling 地形模型Topographic features 地貌特征分析DEM extraction DEM提取DEM提取向导;提取向导;使用现有文件;选择立体控制点对;选择立体匹配点;构建核面图像;提取DEM;编辑DEM;立体3D测量;3D核面指针Create hill shade image 山体阴影图生成Replace bad values 坏值替换Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM3D SurfaceView 3D曲面浏览Outil bathym rie10.Radar 雷达工具Open/prepare radar file 打开/预处理雷达数据文件Calibration 定标Beta noughtSigma noughtAntenna pattern correction 天线阵列校正Slant-to-ground range 斜地校正Incidence angle image 入射角图像Adaptive filters 自适应滤波Texture filters 纹理滤波Synthetic color image 彩色图像合成Polarimetric tools 极化分析工具Synthesize AIRSAR Data AIRSAR数据合成Synthesize SIR-C data SIR-C数据合成Extract polarization sigbatures 极化信号提取Multilook compressed data 数据压缩多视Phase image 相位图像Pedestal height image 图像消隐脉冲高度AIRSAR scattering classification AIRSAR散射机理分析TOPSAR tools TOPSAR工具Open TOPSAR file 打开TOPSAR文件Convert TOPSAR data 打开TOPSAR数据DEM replace bad value DEM坏值替换11.window 窗口Window finder 查找窗口Start new display window 新建显示窗口Start new vector window 新建矢量窗口Start new plot window 新建绘图窗口Start 3D liDAR viewer LiDAR三维浏览器Available files list 当前文件列表Available bands list 当前波段列表Available vectors list 当前矢量列表Remote connection manager 远程连接管理Mouse button descriptions 鼠标按键说明Display information 显示信息Cursor location/value 光标定位/数值信息Point collection 点收集Maximize open displays 显示窗口最大化Link diaplays 关联显示Close all display windows 关闭所有显示窗口Close all plot windows 关闭所有绘图窗口。

基于深度学习的图像分割技术分析

算注语言信IB与电厢China Computer&Communication2020年第23期基于深度学习的图像分割技术分析张影(苏州科技大学电子与信息工程学院,江苏苏州215009)摘要:近年来,深度学习已广泛应用在计算机视觉中,涵盖了图像分割、特征提取以及目标识别等方面,其中图像分割问题一直是一个经典难题。

本文主要对基于深度学习的图像分割技术的方法和研究现状进行了归纳总结,并就深度学习的图像处理技术进行详细讨论,主要从4个角度讨论处理图像分割的方法,最后对图像分割领域的技术发展做了总结。

关键词:深度学习;图像分割;深度网络中图分类号:TP391.4文献标识码:A文章编号:4003-9767(2020)23-068-02Research Review on Image Segmentation Based on Deep LearningZHANG Ying(College of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou Jiangsu215009,China) Abstract:In recent years,deep learning has been widely used in computer vision,covering image segmentation,feature extraction and target recognition,among which image segmentation has always been a classic problem.In this paper,the methods and research status of image segmentation technology based on deep learning are summarized,and the image processing technology of deep learning is discussed in detail.The methods of image segmentation are mainly discussed from four aspects.Finally,the development of image segmentation technology is summarized.Keywords:deep learning;image segmentation;deep network0引言在计算机视觉中,图像处理、模式识别和图像识别都是近几年的研究热点,基于深度学习类型的分割有分类定位、目标检测、语义分割等。

基于深度学习的单目图像深度估计

摘要图像深度估计是计算机视觉领域中一项重要的研究课题。

深度信息是理解一个场景三维结构关系的重要组成部分,准确的深度信息能够帮助我们更好地进行场景理解。

在真三维显示、语义分割、自动驾驶及三维重建等多个领域都有着广泛的应用。

传统方法多是利用双目或多目图像进行深度估计,最常用的方法是立体匹配技术,利用三角测量法从图像中估计场景深度信息,但容易受到场景多样性的影响,而且计算量很大。

单目图像的获取对设备数量和环境条件要求较低,通过单目图像进行深度估计更贴近实际情况,应用场景更广泛。

深度学习的迅猛发展,使得基于卷积神经网络的方法在单目图像深度估计领域取得了一定的成果,成为图像深度估计领域的研究热点。

但是单目深度估计仍面临着许多挑战:复杂场景中的复杂纹理和复杂几何结构会导致大量深度误差,容易造成局部细节信息丢失、物体边界扭曲及模糊重建等问题,直接影响图像的恢复精度。

针对上述问题,本文主要研究基于深度学习的单目图像深度估计方法。

主要工作包括以下两个方面:(1)针对室内场景中复杂纹理和复杂几何结构造成的物体边界扭曲、局部细节信息丢失等问题,提出一种基于多尺度残差金字塔注意力网络模型。

首先,提出了一个多尺度注意力上下文聚合模块,该模块由两部分组成:空间注意力模型和全局注意力模型,通过从空间和全局分别考虑像素的位置相关性和尺度相关性,捕获特征的空间上下文信息和尺度上下文信息。

该模块通过聚合特征的空间和尺度上下文信息,自适应地学习像素之间的相似性,从而获取图像更多的全局上下文信息,解决场景中复杂结构导致的问题。

然后,针对场景理解中物体的局部细节容易被忽略的问题,提出了一个增强的残差细化模块,在获取多尺度特征的同时,获取更深层次的语义信息和更多的细节信息,进一步细化场景结构。

在NYU Depth V2数据集上的实验结果表明,该方法在物体边界和局部细节具有较好的性能。

(2)针对已有非监督深度估计方法中细节信息预测不够准确、模糊重建等问题,结合Non-local能够提取每个像素的长期空间依赖关系,获取更多空间上下文的原理,本文通过引入Non-local提出了一种新的非监督学习深度估计模型。

基于遥感影像的土地利用特征提取与城乡梯度差异分析——以河北省涿州市为例

中国农业大学学报 2021,26(4) :157-166 h ttp:// Journal of China Agricultural University DOI:10. 11841/j.issn. 1007-4333. 2021. 04. 14基于遥感影像的土地利用特征提取与城乡梯度差异分析—以河北省涿州市为例汤怀志1汤敏2关明文3张美聪1王子彤1(1.中国农业大学土地科学与技术学院,北京100193;2.北京佰信蓝图科技有限公司,北京102208;3.运城学院经济管理系,山西运城044099)摘要为快速获取区域土地利用特征和精细刻画城乡土地利用差异,以河北省涿州市为研究对象,基于Sentinel-2影像数据,采取面向对象方法进行影像分割,利用隶属度函数与决策树方法相结合的非监督分类算法对涿州市土地利用进行分类,并选取了不同方向的城乡梯度样带进行了土地利用特征分析。

结果表明,应用模糊决策树方法的涿州市土地利用分类结果总体精度为93. 7%,K a p p a系数0. 892,分类精度较高。

分析上述结果发现:涿州市土地利用类型以耕地与城乡居民点用地为主,林地、草地、水体等自然生态空间比例较低,土地利用的城乡梯度特征明显;耕地集中分布在距离城市中心4〜7 k m的东南、南、西方向;城乡居民点整体分布分散,在距离城市中心3 k m以内、5 k m、8〜9 k m呈现明显的集聚特征。

建议涿州市依据预期人口规模和集聚特征优化建设用地布局,提高建设用地集约利用强度,同时提高林地、草地、水体等生态空间比例。

关键词 土地利用,面向对象分类,隶属度函数,决策树分类,遥感影像中图分类号F301.21 文章编号1007-4333(2021)04-0157-10 文献标志码ADiversity analysis of urban and rural land use based onSentinel-2 remote sensing image:A case study of Zhuozhou City in Hebei ProvinceTANG Huaizhi1,TANG Min2,GUAN Minwen3,ZHANG Meicong1,WANG Zitong1(1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China;2. Beijing Baixinlantu Science and Technology Co. Ltd. , Beijing 102208, China;3. School of Economics and Management, Yuncheng College, Yuncheng 044099, China)Abstract In order to quickly get the regional land use characteristics and describe the urban and rural land use differences, this study adopts object-oriented method for image segmentation, and USES unsupervised classification algorithm combining membership function and decision tree methods to classify the land use of Zhuozhou City based on Sentinel-2 image data, and selects the different directions of urban-rural gradient belt to analysis the characteristics of land use. The results show that the overall accuracy of the classification method is 93. 7% , the Kappa coefficient is0.892, and the classification accuracy is relatively high. Based on the classification results, it is found that Zhuozhou?s land use types are mainly farmland and urban and rural residential land, while the proportions of natural ecological space such as forest land, grassland and water body are relatively low. The spatial distribution shows an obvious urban-rural gradient characteristics. The cultivated land is concentrated in the southeast, south and west directions 4-7km away from the city center. The overall distribution of urban and rural residential areas is scattered, with certain clustering characteristics within 3, 5, and 8 -9 km from the city center. It is suggested Zhuozhou should收稿日期:2020-09-04基金项目:国家自然科学基金项目(41701201)第一作者:汤怀志,讲师,主要从事耕地资源保护与土地科技创新研究,£-1113丨1:丁31^只2@。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文


摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UNSUPERVISED IMAGE SEGMENTATIONBASED ON HIGH-ORDER HIDDEN MARKOV CHAINSS.Derrode,C.Carincotte and S.BourennaneMultidimensional Signal Processing Group,Institut Fresnel(CNRS-UMR6133) Domaine universitaire de Saint J´e rˆo me,13013Marseille Cedex20-FRANCEcyril.carincotte@fresnel.frABSTRACTFirst order hidden Markov models have been used for a long time in image processing,especially in image segmenta-tion.In this paper,we propose a technique for the unsu-pervised segmentation of images,based on high-order hid-den Markov chains.We also show that it is possible to re-lax the classical hypothesis regarding the state observation probability density,which allows to take into account some particular correlated noise.Model parameter estimation is performed from an extension of the general Iterative Condi-tional Estimation(ICE)method that takes into account the order of the chain.A comparative study conducted on a simulated image is carried out according to the order of the chain.Experimental results on Synthetic Aperture Radar (SAR)images show that the new approach can provide a more homogeneous segmentation than the classical one,im-plying higher complexity algorithm and computation time.1.INTRODUCTIONThe aim of this paper is to compare the high-order Hidden Markov Chain model(denoted by HMC-R,with R the or-der of the Markov chain or the memory length)with the classical HMC-1model for the unsupervised segmentation of images.The HMC-1model has been used successfully in im-age segmentation[1],thanks to the use of a Hilbert-Peano scan that converts the2D lattice into a1D sequence[2]. The success of HMC models is due to the fact that when the unobservable signal process X can be modelled by a finite Markov chain and when the noise is not too com-plex,then X can be recovered from the observed process Y using different Bayesian classification techniques like Maximum A Posteriori(MAP)or Maximal Posterior Mode (MPM).Recently,it has been shown that the HMC-1model can compete with Hidden Markov Random Field(HMRF) based methods in terms of classification accuracy,while be-ing much faster,even though the latter provides afiner and more intuitive modelling of spatial relationships[3].High-order Markov chains,especially HMC-2,have been used in a number of applications,including speech and hand-written recognition[4,5],genomic[6]and robotic[7]. However,to our knowledge,HMC-R model has not been tested in unsupervised image segmentation.This model can be of interest since increasing the memory of the Markov process allows to model more complex spatial relationships between pixels and so more complex noise structures.The paper is organized as follows:high-order Markov chain structure is presented in Section2.We specify in Sec-tion3the straightforward extension of the HMC-1,inspired by[5]and applied for image segmentation.The unknown HMC-R parameters estimation,achieved with an extension of the general ICE method[1,3],which can be seen as an al-ternative to well-known Estimation-Maximization(EM)al-gorithm,is then briefly presented.We also present in this Section a new approach which consists in taking into ac-count the order of the chain for the estimation of the condi-tional observation probability parative results on simulated and SAR images are presented in Section4, whereas conclusions are drawn in Section5.2.HIGH-ORDER MARKOV CHAINSTo simplify notations,X1→n will denote the sequence of random variables{X1,...,X n}and x will denote a real-ization of process X.X={X n}n∈{1,...,N}is a R-order Markov chain,with length N,and with each X n taking its value in the set of classesΩ={1,...,K}if and only if:P(X n=x n|X1→n−1=x1→n−1)=P(X n=x n|X n−R→n−1=x n−R→n−1).(1) Actually,it means that each component only depends on the R immediately previous ones.Such a Markov chain is said homogeneous if Eq.(1)does not depend on the position n in the sequence.This leads to the set of state transition probabilities of high-order of the form:t xn−R→n=P(X n=x n|X n−R→n−1=x n−R→n−1),∀n∈{R+1,...,N},with the state transition coefficients having the properties:t xn−R→n ≥0,Kx n=1t xn−R→n=1.All these probabilities are contained in a(R+1)-dimensions transition probabilities matrix T= t x n−R→n .It is important to note that R-order Markov chains are also defined by R−1matrices characterizing the Rfirst transitions in the sequence:•n=R:T R−1= t R−1x1→R ,∀x1→R∈ΩR,•...,•n=3:T2= t2x1→3 ,∀x1→3∈Ω3,•n=2:T1= t1x1→2 ,∀x1→2∈Ω2.Finally,for n=1,we get the initial state probabilitiesπx1=P(X1=x1),∀x1∈Ω.3.HIGH-ORDER HIDDEN MARKOV CHAINSHMC-based image segmentation methods assume that each component of the observation vector y={y1,...,y N}can be modelled as states of an underlying Markov chain X.In this section,we investigate models in which the un-derlying states sequence is an homogeneous R-order Markov chain.Similarly to the HMC-1context,wefirst consider the usual two following assumptions:•H1:the random variables Y1,...,Y N are independent conditionally on X.•H2:the distribution of each Y n conditionally on X is equal to its distribution conditionally on X n.Fig.1illustrates assumption H2for a HMC-2model. The continuous lines of the process X represent the orderof the HMC:X n+1is attached to X n and X n−1.The con-tinuous lines connecting Y with X symbolize H2:each Y nis linked with the corresponding X n.This assumption will be relaxed in Section3.3.3.1.HMC-R modelAs specified above,let X=X1→N be an homogeneousR-order Markov chain,corresponding to the unknown class image.We get:P(X=x)=πx1R−1r=1t r x1→r+1Nn=R+1t xn−R→n.Each state of the state space is associated with a distri-bution,characterizing the repartition of observations:f xn (y n)=P(Y n=y n|X n=x n).(2)YFig.1.Independence assumptions assumed in a HMC-2model.The dotted lines represent the new relation intro-duced by the more general assumption(H R2),see text inSection3.3.Given an observed sequence y=y1→N,we can com-pute the joint state-observation probability density by:P(X=x,Y=y)=πx1f x1(y1)R−1r=1t r x1→r+1f xr+1(y r+1)Nn=R+1t xn−R→nf xn(y n).(3)In the case of unsupervised classification,the distribu-tion P(X=x,Y=y)is unknown and must be estimatedin order to apply a Bayesian classification criterion.There-fore we have to estimate the following sets of parameters:•The setΓcharacterizing the homogeneous R-orderMarkov chain,i.e.the initial probability vectorπ=(πx1)∀x1∈Ω,the R−1intermediate transition matrices T1,...,T R−1and the R-order transition matrix T.•The set∆characterizing the conditional observationsdensity presented in Eq.(2),i.e.the parameters of the Kdistributions f k.In the Gaussian case,∆is composed ofthe means and the variances.3.2.Parameters estimationThe estimation of all the parameters inΘ={Γ,∆}canbe achieved using the general ICE algorithm[1,3].The ICEprocedure is based on the conditional expectation of someestimators from the complete data(x,y).It is an itera-tive method which produces a sequence of estimationsθqof parameterθas follows:(1)initializeθ0,(2)computeθq+1=E q[ˆθ(X,Y)Y=y],whereˆθ(X,Y)is an es-timator ofθ.In practice,we stop the algorithm at iterationQ ifθQ−1≈θQ.This procedure leads to two differentsituations:•For parameters in∆,θq+1is not tractable.However,it can be estimated by computing the empirical mean of sev-eral estimates according toθq+1=1 L l=1ˆθ(x l,y),wherex l is an a posteriori realization of X conditionally on Y.Itcan be shown that X|Y is a non homogeneous MarkovFig.2.Original image and noisy simulated one.chain whose parameters can be computed with the high-order normalized Baum-Welch algorithm.•For parameters in Γ,the expectation can be computed analytically,similarly to the HMC-1case,by using the high-order normalized Baum-Welch algorithm.3.3.Relaxing hypothesis H 2It can be easily shown that assumption H 2is not strictly necessary and can be relaxed to some extend:•H R 2:the distribution of each Y n conditionally on X is equal to its distribution conditionally on (X n ,X n −1,...,X n −R +1)for X being a R -order Markov chain,This assumption is less limitative and is sufficient in the relations involved in the extended Baum-Welch algorithm.Fig.1illustrates these two assumptions for a HMC-2model.Continuous and dotted lines connecting Y with Xnow symbolize H R2:each Y n is linked with the correspond-ing X n (continuous)and the previous one X n −1(dotted).For a R -order Markov chain,the expression of the con-ditional probability of the observation (Eq.(2))becomes:f x n −R +1→n (y n )=P (Y n =y n |X n −R +1→n =x n −R +1→n ).(4)This kind of model will be denoted HMC-R 1(R 2).For example,HMC-R 1(1)is the “classical”R 1-order case,and HMC-R 1(R 2)denote a segmentation with a HMC-R 1and a state observation probabilities of order R 2(R 2≤R 1).4.EXPERIMENTAL RESULTSClassical HMC-1and HMC-R have been comparatively as-sessed on two different images.Actually,in both cases,pa-rameters initialization was done with a fuzzy C-means clas-sifier.The ICE algorithm was stopped after fifty iterations,assuming it has converged,and the image classification was performed thanks to the Bayesian MPM criterion for the simulated image and with the MAP criterion for the SAR one.Experimentally,we observed that the standard devia-tions (std)associated with non-homogeneous classes (e.g.classes “101”,“001”,...for a HMC-3(3))were generally under-estimated.So we decided to artificially increasetheseHMC-1:14.5%HMC-2(1):14.6%HMC-3(1):14.5%HMC-2(2):11.4%HMC-3(2):11.2%HMC-3(3):8.1%Fig.3.Segmentation results obtained with ICE estimation and MPM classification for different memory lengthes.std,which allows to go through this question.However,this issue needs a deeper study.4.1.Noisy Simulated imageThe first image is a simulated one (256×256),which rep-resents a Gibbs field,in which the state densities are two Gaussians of near means (µ1=120,µ2=125)and stan-dard deviation (σ1=60,σ2=85).Furthermore,the noises are correlated with the application of a smoothing fil-ter.Original image of class and correlated noise image are presented in Fig.2.Results of segmentation are presented in Fig.3.The percentages give the error rates of misclassi-fication according to the original image in Fig.2.The resulting class images confirm the interest of a HMC-R ,associated with high-order conditional observation prob-abilities.Indeed,we can notice that a HMC-2(1)or a HMC-3(1)segmentation,based on classical state-observation prob-abilities densities (H 2),are equivalent with a HMC-1;whereasa HMC-2(2)and a HMC-3(3)segmentation,based on H R2,proved to be much more accurate in term of homogeneity.These results confirm the well-known assumption that it is possible to transform any HMC-R ,based on H 2,to a mathematically equivalent first order version.Furthermore,it confirms the interest of HMC-R in image segmentation,which seems to enable a more accurate segmentation for this kind of correlated noise.Fig.4.ERS SAR observation of an oil slick in the Mediter-raneansea.HMC-1HMC-2(2)HMC-3(3)Fig.5.Segmentation results obtained with HMC and HMC-R models.4.2.SAR imageFig.4is an excerpt of an ERS-SAR image (512×512),ac-quired in October 3rd 1992,near the Egyptian coast,cESA.Fig.5shows the class images resulting from the segmenta-tion with the classical HMC-1,and with the new HMC-2and HMC-3models.The difficulty of this image is due to the fact that oil on the water reduces air-sea interaction and the main observable phenomenon is the dampening of the capillary (surface)waves,which causes the major part of the noise it contains [8].The segmentation was naturally perform with two classes:oil slick and free sea .HMC-1technique,which only takes into account the previous pixel to determine the pixel state,is unable to de-tect the noisy zone which constitute the damped waves.HMC-R take more in account,and reveals very performing in detecting noisy zone.In fact,the HMC-1model,which captures only closed interactions,has a limited ability to describe noisy large scale behavior.Hence,the HMC-R model,which incorporate more neighboring pixels,allows one to take into account more complex noise structures.5.CONCLUSIONIn this work,we described a new technique based on HMC-R models for unsupervised image segmentation.The exten-sion of the HMC model to HMC-R one is almost straight-forward.However,we developed an extended version of the ICE procedure and also introduced a new high-order condi-tional observation probability,which allows one to take into account more complex and correlated noise.Due to the high complexity of the HMC-R model,implying greater num-ber of parameters and computation time,it was important to verify the interest of the method.Experiments on simulated data and SAR images confirm this.HMC-R model,which is more general -and more complex -than the HMC-1one,re-veals very performing in image segmentation,especially in modelling more complex spatial relationship between pixels and so more complex noise structures.We now plan to study the likeness between HMC-2and the recent Pairwise Markov Chains (PMC)[9]model.A preliminary study shows that HMC-2and PMC could pro-duce,in particular situation,similar results.However,HMC-R seems to be globally more efficient in terms of quality.6.REFERENCES[1]N.Giordana and W.Pieczynski,“Estimation of gener-alized multisensor HMC and unsupervised image seg-mentation,”IEEE Trans.on PAMI ,vol.19,no.5,pp.465–475,1997.[2]W.Skarbek,“Generalized Hilbert scan in image print-ing,”in Theoretical Foundations of Computer Vision .Akademik Verlag,Berlin,1992.[3]R.Fjørtoft,Y .Delignon,W.Pieczynski,M.Sigelle,andF.Tupin,“Unsupervised segmentation of radar images using HMC and HMRF,”IEEE Trans.on GRS ,vol.41,no.3,pp.675–686,2003.[4]E.de Villiers and J.du Preez,“The advantage of usinghigher order HMM for segmenting acoustic files,”in 12th Symp.PRASA ,South Africa,2001.[5]J.F.Mari,J.P.Haton,and A.Kriouille,“Automaticword recognition based on second-order HMMs,”IEEE Trans.on Speech and Audio Processing ,vol.5,no.1,pp.22–25,January 1997.[6]R.J.Boys and D.A.Henderson,“A comparison of re-versible jump MCMC algorithms for DNA sequence segmentation using HMMs,”Comp.Sci.and Stat.,vol.33,pp.1–15,2002.[7]O.Aycard,J.F.Mari,and F.Washington,“Learningto automatically detect features for mobile robots using second-order HMMs,”in IEEE IJCAI Workshop ,2003.[8]F.Girard-Ardhuin,G.Mercier,and R.Garello,“Oilslick detection by SAR imagery:potential and limita-tion,”in Oceans 2003,San Diego,USA,september 2003,pp.22–26.[9]W.Pieczynski,“Pairwise Markov chains,”IEEE Trans.on PAMI ,vol.25,no.5,pp.634–639,2003.。

相关文档
最新文档