2018中考数学模拟试题五及答案

合集下载

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

2018届中考数学《第五章》单元达标测试(五)含答案

2018届中考数学《第五章》单元达标测试(五)含答案

单元达标测试(五)(第五章)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形DA.5个B.6个C.7个D.8个2.一个多边形除了一个内角外,其余各内角之和为2 570°,则这个内角的度数为BA.120°B.130°C.135°D.150°3.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是AA.3 cm B.6 cm C.10 cm D.12 cm,第3题图),第4题图),第5题图),第6题图)4.(2017·河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是BA.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②5.(2017·江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是DA.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形6.(2017·台湾)已知坐标平面上有一长方形ABCD,其坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),今固定B点并将此长方形依顺时针方向旋转,如图所示.若旋转后C点的坐标为(3,0),则旋转后D点的坐标为DA.(2,2) B.(2,3) C.(3,3) D.(3,2)7.(2017·黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD 于点O,则∠DOC的度数为AA.60°B.67.5°C.75°D.54°8.(2017·贵阳)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,若△CED的周长为6,则▱ABCD的周长为BA.6 B.12 C.18 D.24,第7题图) ,第8题图) ,第9题图),第10题图) 9.(2017·呼和浩特)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE =5,∠EAF =135°,则下列结论正确的是CA .DE =1B .tan ∠AFO =13C .AF =102D .四边形AFCE 的面积为94 10.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC =2,∠ADC =30°,①四边形ACED 是平行四边形;②△BCE 是等腰三角形;③四边形ACEB 的周长是10+213;④四边形ACEB 的面积是16.则以上结论正确的个数是CA .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =60°,则∠D =120°.,第11题图) ,第12题图),第14题图)12.(2017·怀化)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是AB 的中点,OE =5 cm ,则AD 的长是10cm .13.(2017·菏泽)菱形ABCD 中,∠A =60°,其周长为24 cm ,则菱形的面积为183cm 2.14.(2017·大庆)如图,点M ,N 在半圆的直径AB 上,点P ,Q 在AB ︵上,四边形MNPQ 为正方形.若半圆的半径为5,则正方形的边长为2.15.如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当AC AB =32时,四边形ADFE 是平行四边形.,第15题图) ,第17题图) ,第18题图)16.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x ,1),若以O ,A ,B ,C 为顶点的四边形是平行四边形,则x =4或-2.17.(2017·咸宁)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n =2 017时,顶点A 的坐标为(2,23).18.(2017·扬州)如图,把等边△ABC 沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,且DP ⊥BC ,若BP =4 cm ,则EC =(2+23)cm .三、解答题(共66分)19.(8分)(2017·大连)如图,在▱ABCD 中,BE ⊥AC ,垂足E 在CA 的延长线上,DF ⊥AC ,垂足F 在AC 的延长线上,求证:AE =CF.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∴∠BAC =∠DCA.∴180°-∠BAC =180°-∠DCA.∴∠EAB =∠FCD.∵BE ⊥AC ,DF ⊥AC ,∴∠BEA =∠DFC =90°.易证△BEA ≌△DFC.∴AE =CF.20.(8分)(2017·漳州)如图,在五边形ABCDE 中,AP 平分∠EAB ,BP 平分∠ABC.(1)五边形ABCDE 的内角和为540度;(2)若∠C =100°,∠D =75°,∠E =135°,求∠P 的度数.解:∵在五边形ABCDE 中,∠EAB +∠ABC +∠C +∠D +∠E =540°,∠C =100°,∠D =75°,∠E =135°,∴∠EAB +∠ABC =230°.∵AP 平分∠EAB ,BP 平分∠ABC ,∴∠PAB =12∠EAB ,∠PBA =12∠ABC.∴∠PAB +∠PBA =115°.∴∠P =180°-(∠PAB +∠PBA)=65°.21.(8分)(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠AEG =∠BFG.∵EF 垂直平分AB ,∴AG =BG .在△AGE 和△BGF 中,⎩⎪⎨⎪⎧∠AEG =∠BFG ∠AGE =∠BGF AG =BG,∴△AGE ≌△BGF(AAS ). (2)四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE =BF.∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.22.(10分)(2017·日照)如图,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E.(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即AD =BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,∵⎩⎪⎨⎪⎧DC =EA AD =CE AC =CA,∴△DCA ≌△EAC(SSS ). (2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形.∵CE ⊥AE ,∴∠E =90°.由(1)得:△DCA ≌△EAC ,∴∠D =∠E =90°.∴四边形ABCD 为矩形;故答案为:AD =BC(答案不唯一).23.(10分)(2017·镇江)如图,点B ,E 分别在AC ,DF 上,AF 分别交BD ,CE 于点M ,N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.解:(1)证明:∵∠A =∠F ,∴DE ∥BC.∵∠1=∠2,且∠1=∠DMF ,∴∠DMF =∠2.∴DB ∥EC.∴四边形BCED 为平行四边形.(2)∵BN 平分∠DBC ,∴∠DBN =∠CBN.∵EC ∥DB ,∴∠CNB =∠DBN.∴∠CNB =∠CBN.∴CN =BC =DE =2.24.(10分)如图,正方形ABCD 的边长为6.菱形EFGH 的三个顶点E ,G ,H 分别在正方形ABCD 的边AB ,CD ,DA 上,且AH =2,连接CF.(1)当DG =2时,求证:菱形EFGH 为正方形;(2)设DG =x ,试用含x 的代数式表示△FCG 的面积.解:(1)证明:在△HDG 和△AHE 中,∵四边形ABCD 是正方形,∴∠D =∠A =90°.∵四边形EFGH 是菱形,∴HG =HE.∵DG =AH =2,∴Rt △HDG ≌Rt △EAH.∴∠DHG =∠AEH.∴∠DHG +∠AHE =90°.∴∠GHE =90°.∴菱形EFGH 为正方形.(2)过点F 作FM ⊥CD ,垂足为点M ,连接GE.∵CD ∥AB ,∴∠AEG =∠MGE.∵GF ∥HE ,∴∠HEG =∠FGE.∴∠AEH =∠FGM.又∵∠A =∠M =90°,HE =FG ,∴Rt △AHE ≌Rt △MFG .∴MF =2.∵DG =x ,∴CG =6-x.∴S △FCG =12CG·FM =6-x.25.(12分)(2017·十堰)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO =90°,AC ∥OP 交OM 于点C ,D 为OB 的中点,DE ⊥DC 交MN 于点E.(1)如图①,若点B 在OP 上,则①AC =OE(填“<”,“=”或“>”);②线段CA ,CO ,CD 满足的等量关系式是AC 2+CO 2=CD 2;(2)将图①中的等腰Rt △ABO 绕O 点顺时针旋转α(0°<α<45°),如图②,那么(1)中的结论②是否成立?请说明理由;(3)将图①中的等腰Rt △ABO 绕O 点顺时针旋转α(45°<α<90°),请你在备用图中画出图形,并直接写出线段CA ,CO ,CD 满足的等量关系式CO -CA =2CD.解:(2)如图②,(1)中的结论②不成立,理由是:连接AD ,∵AB =AO ,∠BAO =90°,D 为OB 的中点,∴AD =BD =DO ,AD ⊥OB.∴∠ADO =90°.∵∠CDE =90°,∴∠ADO =∠CDE.∴∠ADO -∠CDO =∠CDE -∠CDO ,即∠ADC =∠EDO.∵∠ADO =∠ACO =90°,∴∠ADO +∠ACO =180°,∴∠CAD +∠DOC =180°.又∵∠DOC +∠DOE =180°,∴∠CAD =∠DOE.易证△ACD ≌△OED.∴AC =OE ,CD =DE.又∵∠CDE =90°,∴△CDE 为等腰直角三角形,∴OE +OC =2CD ,∴CA +CO =2CD ,∴CA 2+CO 2+2CA·CO =2CD 2.若(1)中的结论②成立,则有2CA·CO =CA 2+CO 2,即AC =CO.又∵0°<α<45°,∴AC ≠CO.∴(1)中的结论②不成立.(3)如图③,结论:OC -CA =2CD ,理由是:连接AD ,则AD =OD ,同理:∠ADC =∠EDO.∵∠CAB +∠CAO =∠CAO +∠AOC =90°,∴∠CAB =∠AOC.∵∠DAB =∠AOD =45°,∴∠DAB -∠CAB =∠AOD -∠AOC ,即∠DAC =∠DOE.∴△ACD ≌△OED.∴AC =OE ,CD=DE.∴△CDE是等腰直角三角形.∴CE2=2CD2.∴(OC-OE)2=(OC-AC)2=2CD2.∴OC-AC =2CD,故答案为:OC-AC=2CD.。

2018年武汉市中考数学模拟试题及答案

2018年武汉市中考数学模拟试题及答案

2018年武汉市中考数学模拟题及答案一、选择题(共10小题,每小题 3分,共30分) 1•月球表面白天的温度可达 123 C,夜晚可降到一 A . 110C B110C C . 356C 233 C ,那么月球表面昼夜的温差为( D . — 356C 2. 如果分式 —没有意义,那么X 1x 的取值范围是 X M 0 计算 3ab 2 - 4ab A. - ab 2 B . X = 0 2的结果是(B. ab 2C . X M — 1D . X =— 1 .7ab 2 色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性, 抽取体检表,统计结果如表: D . - 1 从男性体检信息库中随机 抽取的体检表数 n 50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数 m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069 0.01)( )根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到 A . 0.069 B . 0.07 5. 计算(a — 1)2正确的是(A . a 2— 1B .6. 在平面直角坐标系中,点 A . ( — 1, 2)C . 0.070 ) a 2 — 2a — 1 C . —2)关于 2) )D . 0.06 P (1 , B. (1 , a 2 — 2a + 1 X 轴的对称点的坐标为 C. ( — 1 , — 2) a 2— a + 1)D. ( — 2, — 1)7. 图中三视图对应的正三棱柱是( D 童老师随机调查了 每天使用零花钱(单位:元)5 10 15 20 25 人数 2 5 8 X6 30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( ) B C 8 .为调查某班学生每天使用零花钱的情况, A . 15、 15 B . 20、17.5 C . 20、 20 D . 20、 15 9.如图,动点P 从(0 , 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射 角等于入射角.当点 P 第17次碰到矩形的边时,点 P 的坐标为( )A. (3 , 0)B. (0 , 3)C. (1 , 4)D. (8 , 3)10 .如图,FA 、PB 切O O 于AB 两点,CD 切O O 于点E 交FA 、PB 于C 、D .若△ PCD 的半径 为3r ,则tan / APB 的值为()、填空题(本大题共 6个小题,每小题 3分,共18分)11 .计算J8逅的结果是 ________________16 .已知关于 x 的二次函数 y = x 2-2x -2,当a < x < a + 2时,函数有最大值 1,贝U a 的值为三、解答题(共 8题,共72 分)5,1312 3.13 512 •计算: 2x 2 x 1 x 113•学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了 从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是 4名女生和2名男生,则14•如图,将矩形 ABCD 沿BD 翻折,点 C 落在P 点处,连接AP.若/ ABP = 26 ° 贝APB =60。

【名师推荐-新课标】2018年重庆市中考数学模拟试题及答案解析

【名师推荐-新课标】2018年重庆市中考数学模拟试题及答案解析

2018年重庆市中考数学模拟试卷(D卷)一、选择题(本大题共12个小题,每小题4分,共48分)1.某地连续四天每天的平均气温分别是:2℃,﹣1℃,0℃,﹣3℃,则平均气温中最低的是()A.2℃B.﹣1℃C.0℃D.﹣3℃2.若代数式有意义,则x的取值范围是()A.x≠0 B.x≠2 C.x≠﹣2 D.x>﹣23.下列运算正确的是()A.a6÷a2=a4B.(a2)3=a5C.a2•a3=a6 D.a3+a2=2a54.如图,AB∥CD,若∠2=135°,则∠1的度数是()A.30°B.45°C.60°D.75°5.若正比例函数y=kx的图象经过点(2,﹣6),则k的值为()A.﹣3 B.﹣ C.3 D.6.不等式x+7<3x+1的解集是()A.x<﹣3 B.x>3 C.x<﹣4 D.x>47.某班一小组7名同学的毕业升学体育测试成绩(满分50分)依次为:45,43,45,47,40,45,这组数据的中位数和众数分别是()A.43 45 B.43 43 C.45 45 D.43 438.如图,在边长为4的菱形ABCD中,∠BAD=120°,则对角线AC的长为()A.4 B.2 C.2 D.39.如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10cm,则⊙O的半径为()A.5cm B.8cm C.10cm D.12cm10.成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢乐谷游玩,小丽乘私家车从重庆出发1小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐出租车去欢乐谷,他们离开重庆的距离y(千米)与乘车t(小时)的关系如图所示,结合图象,下列说法不正确的是()A.两人恰好同时到达欢乐谷B.高铁的平均速度为240千米/时C.私家车的平均速度为80千米/时D.当小王到达成都车站时,小丽离欢乐谷还有50千米11.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.3112.如图,在平面直角坐标系中,△OAB的边OA在x轴的正半轴上,OA=AB,边OB的中点C在双曲线y=上,将△OAB沿OB翻折后,点A的对应点A′,正好落在双曲线y=上,△OAB的面积为6,则k为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题4分,共24分)13.据调查,目前越来越多的人通过手机进行银行交易,今年三季度中国手机银行交易额达到37000亿元,37000这个数用科学记数法可表示为______.14.计算:(﹣π)0﹣(﹣1)2016=______.15.方程3x2+2x=0的解为______.16.如图,在扇形AOB中,半径OA=2,∠AOB=120°,C为弧AB的中点,连接AC、BC,则图中阴影部分的面积是______(结果保留π).17.有A,B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3;B布袋中有三个标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.若用(m,n)表示小明取球时m与n的对应值,则使关于x的一元二次方程x2﹣mx+n=0有实数根的概率为______.18.如图,O为正方形ABCD对角线的交点,E是线段OC的中点,DE的延长线交BC边于点F,连接并延长FO交AD于点G.若AB=2,则GF=______.三、解答题(本大题共2小题,每小题7分,共14分)19.解方程组.20.如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:OE=OF.四、解答题(本大题共4小题,每小题10分,共40分)21.化简:(1)(a+3b)2+a(a﹣6b);(2)÷(﹣a﹣b).22.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角α等于______;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23.近年来重庆推多个建设项目治堵,为缓解中梁山隧道常年拥堵的情况,华岩隧道正在紧锣密鼓地建设中,预计明年底竣工.图中线段AB表示该工程的部分隧道.无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D 时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米.(1)分别求隧道AC段和BC段的长度;(2)建工集团安排甲、乙两个金牌施工队分别从隧道的两头向中间施工,甲队负责AC段施工,乙队负责BC段施工,计划两队同时开始同时结束.两队开工8天后,甲队将速度提高了50%,乙队将速度提高了20%,从而甲队比乙队早了7天完工,求原计划甲、乙两队每天各施工多少米.(参考数据:tan12°≈0.2,cos12°≈0.98)24.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.五、解答题(本大题共2个小题,每小题12分,共24分)25.如图,等边△ABC的边长为4,BD为AC边上的中线,E为BC边上一点(不与B、C重合).(1)如图1,若DE⊥BC,连接AE,求AE的长;(2)如图2,若DE平分∠BDC,求BE的长;(3)如图3,连接AE,交BD于点M.以AM为边作等边△AMN,连接BN.请猜想∠CAE、∠CBD、∠BMN之间的数量关系,并证明你的结论.26.已知抛物线y=﹣x2+bx+c与x轴交于点A(1,0),B(3,0),与y轴交于点C,抛物线的顶点为D.(1)求b,c的值及顶点D的坐标;(2)如图1,点E是线段BC上的一点,且BC=3BE,点F(0,m)是y轴正半轴上一点,连接BF,EF与线段OB交于点G,OF:OG=2:,求△FEB的面积;(3)如图2,P为线段BC上一动点,连接DP,将△DBP绕点D顺时针旋转60°得△DB′P′(点B的对应点是点B′,点P的对应点是点P′),DP′交y轴于点M,N为MP′的中点,连接PP′,NO,延长NO交BC于点Q,连接QP,若△PP′Q的面积是△BOC面积的,求线段BP的长.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.某地连续四天每天的平均气温分别是:2℃,﹣1℃,0℃,﹣3℃,则平均气温中最低的是()A.2℃B.﹣1℃C.0℃D.﹣3℃【考点】有理数大小比较.【分析】根据正数大于一切负数解答.【解答】解:∵2℃、﹣1℃、0℃、﹣3℃中气温最低的是﹣3℃,∴平均气温中最低的是﹣3℃.故选:D.2.若代数式有意义,则x的取值范围是()A.x≠0 B.x≠2 C.x≠﹣2 D.x>﹣2【考点】分式有意义的条件.【分析】分式有意义,分母不等于零,即x+2≠0,由此求得x的取值范围.【解答】解:依题意得:x+2≠0,解得x≠﹣2,故选:C.3.下列运算正确的是()A.a6÷a2=a4B.(a2)3=a5C.a2•a3=a6 D.a3+a2=2a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项法则;对各选项分析判断后利用排除法求解.【解答】解:A、a6÷a2=a4,故A正确;B、(a2)3=a6,故B错误;C、a2•a3=a5,故C错误;D、a3和a2不是同类项,不能合并,故D错误.故选:A.4.如图,AB∥CD,若∠2=135°,则∠1的度数是()A.30°B.45°C.60°D.75°【考点】平行线的性质;对顶角、邻补角.【分析】要求∠1的度数,只需根据两直线平行,同位角相等的性质求得∠1的邻补角.【解答】解:∵AB∥CD,若∠2=135°,∴∠2的同位角为135°.∴∠1=180°﹣135°=45°.故选B.5.若正比例函数y=kx的图象经过点(2,﹣6),则k的值为()A.﹣3 B.﹣ C.3 D.【考点】一次函数图象上点的坐标特征.【分析】因为正比例函数y=kx的图象经过点(2,﹣6),代入解析式,解之即可求得k的值.【解答】解:∵正比例函数y=kx的图象经过点(2,﹣6),∴﹣6=2k,解得:k=﹣3.故选A.6.不等式x+7<3x+1的解集是()A.x<﹣3 B.x>3 C.x<﹣4 D.x>4【考点】解一元一次不等式.【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:不等式x+7<3x+1,移项合并得:﹣2x<﹣6,解得:x>3,故选B7.某班一小组7名同学的毕业升学体育测试成绩(满分50分)依次为:45,43,45,47,40,45,这组数据的中位数和众数分别是()A.43 45 B.43 43 C.45 45 D.43 43【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:40,43,45,45,45,47,数据,45出现了3次最多为众数,处在中间位置的两数为45,45,故中位数为45.所以本题这组数据的中位数是45,众数是45.故选C.8.如图,在边长为4的菱形ABCD中,∠BAD=120°,则对角线AC的长为()A.4 B.2 C.2 D.3【考点】菱形的性质.【分析】利用菱形的每条对角线平分一组对角,则∠BAO=∠BAD=60°,即△ABC是等边三角形,由此可求得AC=AB=4.【解答】解:在菱形ABCD中,∠BAO=∠BAD=×120°=60°,又在△ABC中,AB=BC,∴∠BCA=∠BAC=60°,∠ABC=180°﹣∠BCA﹣∠BAC=60°,∴△ABC为等边三角形,∴AC=AB=4.故选:A.9.如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10cm,则⊙O的半径为()A.5cm B.8cm C.10cm D.12cm【考点】切线的性质;三角形的外角性质;含30度角的直角三角形.【分析】连接OC,根据切线的性质求出∠OCD=90°,求出∠ACO和∠A,求出∠COD,根据含30°角的直角三角形性质求出OD=2OC,即可得出答案.【解答】解:连接OC,∵CD切⊙O于点C,∴∠OCD=90°,∵∠ACD=120°,∴∠ACO=30°,∵OA=OC,∴∠A=∠ACO=30°,∴∠OCD=∠A+∠ACO=60°,∴∠D=30°,∴OD=2OC,∵BD=10cm,∴OC=OB=10cm,即⊙O的半径为10cm,故选C.10.成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢乐谷游玩,小丽乘私家车从重庆出发1小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐出租车去欢乐谷,他们离开重庆的距离y(千米)与乘车t(小时)的关系如图所示,结合图象,下列说法不正确的是()A.两人恰好同时到达欢乐谷B.高铁的平均速度为240千米/时C.私家车的平均速度为80千米/时D.当小王到达成都车站时,小丽离欢乐谷还有50千米【考点】一次函数的应用.【分析】根据图象的信息解答,且利用路程除以时间得出速度判断即可.【解答】解:A、根据图象得出两人恰好同时到达欢乐谷,正确;B、高铁的平均速度==240千米/时,正确;C、设y=kt+b,当t=1时,y=0,当t=2时,y=240,得:,解得:,故把t=1.5代入y=240t﹣240,得y=120,设y=at,当t=1.5,y=120,得a=80,∴y=80t,所以私家车的平均速度=80千米/时,正确;D、当t=2,y=160,216﹣160=56(千米),∴小丽离欢乐谷还有56千米,错误.故选D.11.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图象含有正方形的个数是()A.102 B.91 C.55 D.31【考点】规律型:图形的变化类.【分析】根据图形的变化规律可以得知每个图形比前一个图形多它序号的平方数个正方形,从而得出结论.【解答】解:结合图形可知,第②个图形比第①分图形多22个正方形,第③个比第②个多32个正方形,…,即多的个数为序号的平方数,∴第⑥个图象含有正方形的个数是1+22+32+42+52+62=91.故选B.12.如图,在平面直角坐标系中,△OAB的边OA在x轴的正半轴上,OA=AB,边OB的中点C在双曲线y=上,将△OAB沿OB翻折后,点A的对应点A′,正好落在双曲线y=上,△OAB的面积为6,则k为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义;翻折变换(折叠问题).【分析】连接AA′,过点A′作A′E⊥x轴于点E,过点C作CF⊥x轴于点F,根据OA=AB 结合翻折的特性可知∠A′BO=∠AOB,四边形OABA′为菱形,由中位线的性质结合平行线的性质可得出A′E=2CF,AE=2AF,再根据反比例函数系数k的几何意义和三角形面积公式即可得出OF=OA,S△OCF=×S△OAB=2,由此即可得出反比例系数k的值.【解答】解:连接AA′,过点A′作A′E⊥x轴于点E,过点C作CF⊥x轴于点F,如图所示.∵OA=AB,∴∠AOB=∠ABO,由翻折的性质可知:∠A′BO=∠ABO,A′B=AB,A′O=AO,∴∠A′BO=∠AOB,四边形OABA′为菱形,∴A′B∥OA.∵点C是线段OB的中点,A′E⊥x轴,CF⊥x轴,∴A′E=2CF,AE=2AF,又∵S△OA′E=S△OCF,∴OF=2OE,∴OE=EF=FA,∴OF=OA.∵S△OAB=OA•A′E=6,S△OCF=OF•CF,∴S△OCF=×S△OAB=2.∵S△OCF=|k|=2,∴k=±4,∵反比例函数在第一象限有图象,∴k=4.故选D.二、填空题(本大题共6个小题,每小题4分,共24分)13.据调查,目前越来越多的人通过手机进行银行交易,今年三季度中国手机银行交易额达到37000亿元,37000这个数用科学记数法可表示为 3.7×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于37000有5位,所以可以确定n=5﹣1=4.【解答】解:37 000=3.7×104.故答案为:3.7×104.14.计算:(﹣π)0﹣(﹣1)2016= 0 .【考点】实数的运算;零指数幂.【分析】根据实数的运算顺序,首先计算乘方,然后计算减法,求出算式(﹣π)0﹣(﹣1)2016的值是多少即可.【解答】解:(﹣π)0﹣(﹣1)2016=1﹣1=0故答案为:0.15.方程3x2+2x=0的解为x1=0,x2=﹣.【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘积为0,这两式中至少有一因式为0”来解题.【解答】解:∵3x2+2x=0,∴x(3x+2)=0,∴x1=0,x2=﹣.故答案为x1=0,x2=﹣.16.如图,在扇形AOB中,半径OA=2,∠AOB=120°,C为弧AB的中点,连接AC、BC,则图中阴影部分的面积是﹣2(结果保留π).【考点】扇形面积的计算.【分析】连接OC,过点A作AD⊥CD于点D,根据∠AOB=120°,C为弧AB的中点可知AC=BC,∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD的长,由S阴影=S扇形AOB﹣2S△AOC即可得出结论.【解答】解:连接OC,过点A作AD⊥CD于点D,∵∠AOB=120°,C为弧AB的中点,∴AC=BC,∠AOC=∠BOC=60°,∴△ACO与△BOC为边长相等的两个等边三角形.∵AO=2,∴AD=OA•sin60°=2×=.∴S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故答案为:﹣2.17.有A,B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3;B布袋中有三个标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.若用(m,n)表示小明取球时m与n的对应值,则使关于x的一元二次方程x2﹣mx+n=0有实数根的概率为.【考点】列表法与树状图法;根的判别式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:画树形图得:.∴(m,n)所有取值是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);由原方程得;△=m2﹣2n.当m,n对应值为(0,0)(1,0),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)时,△≥0,原方程有实数根.所以P(△≥0)==故答案为:.18.如图,O为正方形ABCD对角线的交点,E是线段OC的中点,DE的延长线交BC边于点F,连接并延长FO交AD于点G.若AB=2,则GF= .【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【分析】过点O作OH⊥BC,于点H,因为E是线段OC的中点,所以根据正方形的性质可得CF:AD=1:3,进而可求出CF的长,由正方形的性质可知△BOC是等腰直角三角形,所以BH=CH=1,进而可求出HF的长,再利用勾股定理可求出OF的长,继而求出GF的长.【解答】解:∵四边形ABCD是正方形,∴AD∥BC,AO=CO=BO=DO,AC⊥BD,AB=BC=CD=AD,∴△ADE∽△CFE,∵E是线段OC的中点,∴CE:AC=CF:AD=1:3,∵AB=2,∴CF=,过点O作OH⊥BC,∴BH=CH=BC=1,∴HF=1﹣FC==,∵OH=BC,∴OF==,∴FG=2OF=,故答案为:.三、解答题(本大题共2小题,每小题7分,共14分)19.解方程组.【考点】解二元一次方程组.【分析】将方程①×3+②×2可求得x的值,将x的值代入①可求得y.【解答】解:解方程组,①×3,得:9x+6y=3 ③,②×2,得:4x﹣6y=10 ④,③+④,得:13x=13,解得:x=1,将x=1代入①,得:3+2y=1,解得:y=﹣1,故方程组的解为:.20.如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:OE=OF.【考点】全等三角形的判定与性质.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD (SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.四、解答题(本大题共4小题,每小题10分,共40分)21.化简:(1)(a+3b)2+a(a﹣6b);(2)÷(﹣a﹣b).【考点】分式的混合运算;单项式乘多项式;完全平方公式.【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分,再把分子分母因式分解和除法转化为乘法运算,然后约分即可.【解答】解:(1)原式=a2+6ab+9b2+a2﹣6ab=2a2+9b2;(2)原式=÷=•=﹣.22.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.23.近年来重庆推多个建设项目治堵,为缓解中梁山隧道常年拥堵的情况,华岩隧道正在紧锣密鼓地建设中,预计明年底竣工.图中线段AB表示该工程的部分隧道.无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D 时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B的俯角为45°,此时点E离地面高度EF=700米.(1)分别求隧道AC段和BC段的长度;(2)建工集团安排甲、乙两个金牌施工队分别从隧道的两头向中间施工,甲队负责AC段施工,乙队负责BC段施工,计划两队同时开始同时结束.两队开工8天后,甲队将速度提高了50%,乙队将速度提高了20%,从而甲队比乙队早了7天完工,求原计划甲、乙两队每天各施工多少米.(参考数据:tan12°≈0.2,cos12°≈0.98)【考点】解直角三角形的应用-仰角俯角问题;分式方程的应用.【分析】(1)根据坡度的概念和俯角的概念解答即可;(2)设原计划甲队每天各施工x米,根据题意表示出乙队每天各施工的长度,根据两队开工8天后,甲队将速度提高了50%,乙队将速度提高了20%,从而甲队比乙队早了7天完工列出分式方程,解方程即可得到答案.【解答】解:(1)由题意得,∠EBF=45°,EF=700米,∴BF=EF=700米,∵AE的坡度为1:2,∴AF=2EF=1400米,∴AB=1400+700=2100米,设CD=x米,∵AE的坡度为1:2,∴AC=2CD=2x米,∵∠DBC=12°,tan12°≈0.2,∴BC=5CD=5x米,则7x=2100,解得,x=300米,∴AC=600米,BC=1500米;(2)设原计划甲队每天施工x米,乙队每天施工2.5x米,由题意得,=﹣7,解得x=12,经检验,x=12是原方程的根,2.5x=30.答:原计划甲队每天各施工12米,乙队每天各施工30米.24.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.【考点】因式分解-十字相乘法等;因式分解-分组分解法.【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;③同②的方法分解;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【解答】解:(1)①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y),②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4),③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2),故答案为)①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y﹣4),③(x﹣3y)(x+2y+2),(2)如图,m=3×9+(﹣8)×(﹣2)=43或m=9×(﹣8)+3×(﹣2)=﹣78.五、解答题(本大题共2个小题,每小题12分,共24分)25.如图,等边△ABC的边长为4,BD为AC边上的中线,E为BC边上一点(不与B、C重合).(1)如图1,若DE⊥BC,连接AE,求AE的长;(2)如图2,若DE平分∠BDC,求BE的长;(3)如图3,连接AE,交BD于点M.以AM为边作等边△AMN,连接BN.请猜想∠CAE、∠CBD、∠BMN之间的数量关系,并证明你的结论.【考点】相似形综合题.【分析】(1)如图1,过A作AF⊥于F,由等边△ABC的边长为4,BD为AC边上的中线,得到CD=AC=2,∠C=60°,CF=AC=2,根据勾股定理即可得到结论;(2)如图2,过E作EM⊥CD于M,根据等边三角形的性质得到CD=AC=2,∠C=60°,BD⊥AC,由角平分线的定义得到∠EDM=45°,然后解直角三角形即可得到结论;(3)由等边三角形的性质得到∠ADM=90°,由△AMN是等边三角形,得到∠AMN=60°,根据平角的定义得到∠BMN+∠BME=120°,根据对顶角的性质和直角三角形的性质得到∠BME=∠AMD=90°﹣∠EAC,然后等量代换即可得到结论.【解答】解:(1)如图1,过A作AF⊥于F,∵等边△ABC的边长为4,BD为AC边上的中线,∴CD=AC=2,∠C=60°,CF=AC=2,∴CE=CD=1,AF=2,∴EF=1,∴AE===;(2)如图2,过E作EM⊥CD于M,∵等边△ABC的边长为4,BD为AC边上的中线,∴CD=AC=2,∠C=60°,BD⊥AC,∵DE平分∠BDC,∴∠EDM=45°,∴EM=DM,CM=EM=DM,∴DM+CM=(1+)EM=CD=2,∴EM=3﹣,∴CE=2﹣2,∴BE=BC﹣CE=6﹣2;(3)∠CAE+∠CBD=∠BMN,证明:∵∠ADM=90°,∵△AMN是等边三角形,∴∠AMN=60°,∴∠BMN+∠BME=120°,∵∠BMN=∠AMD=90°﹣∠EAC,∴∠BMN+90°﹣∠EAC=120°,∴∠BMN﹣∠CAE=30°,∵∠DBC=30°,∴∠BMN﹣∠CAE=∠DBC,即∠CAE+∠CBD=∠BMN.26.已知抛物线y=﹣x2+bx+c与x轴交于点A(1,0),B(3,0),与y轴交于点C,抛物线的顶点为D.(1)求b,c的值及顶点D的坐标;(2)如图1,点E是线段BC上的一点,且BC=3BE,点F(0,m)是y轴正半轴上一点,连接BF,EF与线段OB交于点G,OF:OG=2:,求△FEB的面积;(3)如图2,P为线段BC上一动点,连接DP,将△DBP绕点D顺时针旋转60°得△DB′P′(点B的对应点是点B′,点P的对应点是点P′),DP′交y轴于点M,N为MP′的中点,连接PP′,NO,延长NO交BC于点Q,连接QP,若△PP′Q的面积是△BOC面积的,求线段BP的长.【考点】二次函数综合题.【分析】(1)把A和B代入函数解析式,解方程组求得b和c的值,进而利用配方法求得顶点坐标;(2)首先证明△DFG∽△HFE,根据相似三角形的性质求得OH、OF和OG的长,根据S=S△FGB+S△GEB即可求解;△FEB(3)易证△ADB是等边三角形,则B旋转到A的位置,B′P′在x轴上,利用待定系数法求得M的坐标,利用待定系数法求得DP′所在直线的解析式,则M的坐标即可求得,然后求得ND所在直线的解析式,作QQ′⊥x轴,则△Q′BQ为有一个角是60°的直角三角形,根据三角形的面积公式即可列方程求解.【解答】解:(1)根据题意得:,解得:,则抛物线的解析式是y=﹣x2+4x﹣3,y=﹣x2+4x﹣3=﹣(x2﹣4x)﹣3=﹣(x2﹣4x+4﹣4)﹣3=﹣(x﹣2)2+,则顶点D的坐标是(2,);(2)在y=﹣x2+4x﹣3中令y=0,则﹣x2+4x﹣3=0,解得:x=1或3,则B的坐标是(3,0),令x=0,则y=﹣3,则C的坐标是(0,﹣3),BC=3BE,易得E的坐标是(2,﹣).作EH∥x轴交y轴于点H.△DFG∽△HFE,故=,HE=2.解得:HF=,OH=,OF=,OG=×=.S△FEB=S△FGB+S△GEB=×(3﹣)×+×(3﹣)=××=.即△FEB的面积是.(3)∵由题意得△ADB是等边三角形,∠OBC=60°,∴旋转后B′与A重合,B′P′在x轴上,设线段BP长为d,0<d<6.P′(1﹣d,0),B′(1,0),D(2,).过D作BP'的垂线,垂足为K,过Q作OB的垂线,垂足为L,由于QOB=NOP'=NP'O,则有△P'DK∽△OQL,从而得,设Q(a,),则:;解得a=,|y Q|=又P(3﹣,﹣),|y P|=则S△PP'Q=S△PP'B﹣S△BP'Q=BP'(|y P|﹣|y Q|)=×(d+2)×(﹣)=﹣(d2﹣4d﹣6)而易求S△BOC==由S△BOC=9S△PP'Q得:化简得:d2﹣4d﹣6=﹣2;即d2﹣4d﹣4=0,解得d=2+2或d=(舍去);故BP的长d=2+2.2016年9月20日。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

广东中考数学复习各地区2022年模拟试题分类(深圳专版)(5)——三角形(含解析)

广东中考数学复习各地区2022年模拟试题分类(深圳专版)(5)——三角形(含解析)

广东中考数学复习各地区2018-2022年模拟试题分类(深圳专版)(5)——三角形一.选择题(共23小题) 1.(2022•福田区校级模拟)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,以AD 为边向外作等边△ADE ,AE =√6,连接CE ,交BD 于F ,若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分∠AMC ,下列选项正确的有( ) ①DF =√3−1;②S △AEC =3(1+√3)2;③∠AMC =60°;④CM +AM =√2MF .A .1个B .2个C .3个D .4个2.(2022•龙华区二模)如图,直线a ∥b ∥c ,等边三角形△ABC 的顶点A 、B 、C 分别在直线a 、b 、c 上,边BC 与直线c 所夹的角∠1=25°,则∠2的度数为( )A .25°B .30°C .35°D .45°3.(2022•宝安区二模)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,连接MN ,交AB 于点H ,以点H 为圆心,HA 的长为半径作的弧恰好经过点C ,以点B 为圆心,BC 的长为半径作弧交AB 于点D ,连接CD ,若∠A =22°,则∠BDC =( )A .52°B .55°C .56°D .60° 4.(2022•福田区一模)如图,正方形ABCD 中,E 是BC 延长线上一点,在AB 上取一点F ,使点B 关于直线EF 的对称点G 落在AD 上,连接EG 交CD 于点H ,连接BH 交EF 于点M ,连接CM .则下列结论,其中正确的是( ) ①∠1=∠2; ②∠3=∠4; ③GD =√2CM ;④若AG =1,GD =2,则BM =√5.A .①②③④B .①②C .③④D .①②④ 5.(2022•光明区一模)如图,AB ∥CE ,∠A =40°,CE =DE ,则∠C =( )A .40°B .30°C .20°D .15° 6.(2022•南山区模拟)如图,△ABC 中,AB =5,AC =4,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH ⊥AC 于H ,GH =2,则△ABG 的面积为( )A .4B .5C .9D .10 7.(2022•龙岗区模拟)平面直角坐标系中,已知A (1,2)、B (3,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .8 8.(2022•宝安区三模)如图,在三角形ABC 中,AB =AC ,BC =6,三角形DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF =( )A .√5B .√7C .√3D .79.(2022•龙岗区校级模拟)如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED =90°+12∠C ,则BC +2AE 等于( )A .ABB .ACC .32ABD .32AC10.(2022•南山区校级一模)等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A .17B .22C .13D .17或22 11.(2022•罗湖区一模)由三角函数定义,对于任意锐角A ,有sin A =cos (90°﹣A )及sin 2A +cos 2A =1成立.如图,在△ABC 中,∠A ,∠B 是锐角,BC =a ,AC =b ,AB =c .CD ⊥AB 于D ,DE ∥AC 交BC 于E ,设CD =h ,BE =a ',DE =b ',BD =c ',则下列条件中能判定△ABC 是直角三角形的个数是( ) ①a 2+b 2=c 2;②aa '+bb '=cc ';③sin 2A +sin 2B =1;④1a 2+1a 2=1a 2.A .1个B .2个C .3个D .4个 12.(2022•龙华区二模)如图,已知a ∥b ,将一块等腰直角三角板的两个顶点分别放在直线a 、b 上.若∠1=23°,则∠2的度数为( )A .68°B .112°C .127°D .132° 13.(2022•福田区校级模拟)如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A .83√2 B .4√2C .163√2D .6√214.(2022•罗湖区一模)在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( ) A .三条高的交点 B .重心 C .内心 D .外心 15.(2022•福田区校级模拟)下列性质中,直角三角形具有而等腰三角形不一定具有的是( ) A .两边之和大于第三边 B .内角和等于180°C .有两个锐角的和等于90°D .有一个角的平分线垂直于这个角的对边 16.(2022•南山区校级二模)如图,等腰△ABC 中,AB =AC =10,BC =6,直线EF 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .16 17.(2022•龙岗区校级二模)等腰三角形的两边分别为1和2,则其周长为( ) A .4 B .5 C .4或5 D .无法确定 18.(2022•盐田区二模)如图,直线AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,EG 平分∠AEF .若∠1=29°,则∠2=()A.29°B.58°C.61°D.60°19.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B,C在直线b上,若∠1=125°,∠2=50°,则∠3为()A.55°B.65°C.70°D.75°20.(2022•坪山区一模)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.97°B.116°C.122°D.151°21.(2022•福田区校级模拟)如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°22.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B、C在直线b上,∠1=120°,∠2=50°,则∠3为()A.70°B.60°C.45°D.30°23.(2022•宝安区二模)如图,将一副直角三角板按图中所示的位置摆放,两条斜边互相平行,则∠1=()A.75°B.70°C.65°D.60°二.填空题(共8小题)24.(2022•龙岗区校级模拟)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,M为AB边的中点,连结ME、MD、ED,设AB=10,∠DBE=30°,则△EDM的面积为.25.(2022•龙岗区一模)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=4,则CF的长为.26.(2022•宝安区校级一模)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为.27.(2022•龙岗区模拟)如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.28.(2022•深圳三模)如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=5cm,BC=6cm,DE=3cm,则图中阴影部分的面积为cm2.29.(2022•福田区校级模拟)如图,△ABC中,AB=AC=8,D为BC上一点,BD=3,∠ADE=∠B=30°,则AE的长为.30.(2022•龙岗区校级模拟)如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF 的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.31.(2022•深圳模拟)如图,△ABC的顶点均在坐标轴上AE⊥BC于点E,交y轴于点D,已知点B,C的坐标分别为B(0,6),C(2,0).若AD=BC,则△AOD的面积为.三.解答题(共5小题)32.(2022•宝安区二模)如图1,在平面直角坐标系中,等边△ABC的边BC在x轴上,A(0,3),B(−√3,0),点M(m,0)为x轴上的一个动点,连接AM,将AM绕点A逆时针旋转60°得到AN.(1)当M点在B点的左方时,连接CN,求证:△BAM≌△CAN;(2)如图2,当M点在边BC上时,过点N作ND∥AC交x轴于点D,连接MN,若S四边形ACDN=43S△MND,试求D点的坐标;(3)如图3,是否存在点M,使得点N恰好在抛物线y=﹣2x2+4√3x+3上,如果存在,请求出m的值,如果不存在,请说明理由.33.(2022•龙岗区模拟)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.34.(2022•龙岗区模拟)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC =AE+CD.35.(2022•宁波一模)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.36.(2022•南山区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC 上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.广东中考数学复习各地区2022-2022年模拟试题分类(深圳专版)(5)——三角形参考答案与试题解析一.选择题(共23小题)1.【答案】C【解答】解:如图,过点F作FG⊥CD于G,作∠HFC=∠DCE,交CD于H,连接OE交AD于P,连接AF,在AM上截取MQ=MC,连接FQ,∵四边形ABCD是正方形,△ADE是等边三角形,∴AD=CD,AE=AD=√6,∠ADE=60°,∠ADC=90°,∠ADB=∠CDB=45°,∴∠EDC=150°,DE=DC=√6,∴∠DEC=∠DCE=15°,∴∠HFC=∠DCE=15°,∴HC=HF,∠FHG=30°,∵FG⊥CD,∠BDC=45°,∠FHG=30°,∴DG=GF,GH=√3GF,HF=2GF=HC,∴DF=√2GF,∵CD=DG+HG+HC=(3+√3)GF=√6,∴GF=√6−√22,∴DF=√2GF=√3−1,故①正确;∵DE=AE,DO=AO,∴EO垂直平分AD,∴EP⊥AD,又∵△AED是等边三角形,AD=DE=√6,∴AP=√62,EP=√3AP=3√22,∵DO=AO,∠AOD=90°,OP⊥AD,AD=√6,∴OP=√6 2,∴EO=OP+EP=3√2+√62,∵S△AEC=S△AEO+S△EOC=12×3√2+√62×√6=3(√3+1)2,故②正确;∵FM平分∠AMC,∴∠CMF=∠AMF,又∵CM=QM,FM=FM,∴△CMF≌△QMF(SAS),∴∠MCF=∠FQM,FC=FQ,∵AD=CD,∠ADB=∠CDB,DF=DF,∴△ADF≌△CDF(SAS),∴AF=CF,∠DCF=∠DAF=15°,∴∠F AQ=75°,F A=FQ=FC,∴∠FQA=F AQ=75°,∴∠FQM=∠FCM=105°,∴∠DCM=120°,∵DC∥AB,∴∠AMC+∠DCM=180°,∴∠AMC=60°,故③正确;如图,过点C作CN⊥MF于N,设BM=a,∵∠CBM=90°,∠CMB=60°,∴CM=2BM=2a,CB=√3a=AB,∴AM=√3a+a,∴AM+CM=(√3+3)a,∵∠CMF=12∠CMA=30°,∴∠CFM=180°﹣105°﹣30°=45°,∵CN⊥FM,∠CMN=30°,∠CFM=45°,∴CN=12CM=a,MN=√3a,FN=CN=a,∴MF=√3a+a,∴AM+CM=√3MF,故④错误,故选:C.2.【答案】C【解答】解:∵b∥c,∴∠3=∠1=25°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠4=∠ABC﹣∠3=60°﹣25°=35°,∵a∥b,∴∠2=∠4=35°,故选:C.3.【答案】C【解答】解:连接CH,由题意得,直线MN是线段AB的垂直平分线,∴AH=BH,∵CH=AH,∴CH=12AB,∴∠ACB=90°,∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°,∵BC=BD,∴∠BDC=∠BCD=12(180°﹣68°)=56°,故选:C.4.【答案】A【解答】解:如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=12∠ABC=45°,过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=12∠BCD=45°,∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=√2TM,DG=2WG,∴DG=√2CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM=√aa2+aa2=√22+12=√5,故④正确,故选:A.5.【答案】C【解答】解:∵AB∥CE,∴∠AEC=∠A=40°,∵CE=DE,∴∠C=∠D,∴∠AEC=∠C+∠D=2∠C,∴∠C=12∠AEC=12×40°=20°.故选:C.6.【答案】B【解答】解:作GM⊥AB于M,如图,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴S△ABG=12×5×2=5.故选:B.7.【答案】C【解答】解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2√2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(0,2+√7)、(0,2−√7),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.8.【答案】B【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=12AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=12BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF=√aa2−aa2=√7,故选:B.9.【答案】B【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+12∠C)=90°−12∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.10.【答案】B【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.11.【答案】D【解答】解:∵a2+b2=c2,∴∠ACB=90°,∴△ABC 是直角三角形,故①正确,∵DE ∥AC ,∴△DEB ∽△ACB , ∴aa aa =aa aa =aa aa , ∴a′a =a′a =a′a ,不妨设a′a =a′a =a′a =k , 则a ′=ak ,b ′=bk ,c ′=ck ,∵aa '+bb '=cc ',∴a 2k +b 2k =c 2k ,∴a 2+b 2=c 2,∴△ABC 是直角三角形,故②正确, ∵sin 2A +sin 2B =1,sin 2A +cos 2A =1,∴sin 2B =cos 2A ,∴sin B =cos A ,∵sin A =cos (90°﹣A ),∴90°﹣∠B =∠A ,∴∠A +∠B =90°,∴△ABC 是直角三角形,故③正确,∵1a 2+1a 2=1a 2, ∴a 2a 2+a 2a 2=1,∴sin 2B +sin 2A =1,∴△ABC 是直角三角形,故④正确.故选:D .12.【答案】B【解答】解:如图,∵a ∥b ,∴∠1=∠3=23°,∵∠4=45°,∠2=∠5,∴∠2=180°﹣∠3﹣∠5=112°,故选:B .13.【答案】C【解答】解:在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴BA =DA =8√2,在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =8√2,∴CD =8√63,∵CE 平分∠ACD ,∴∠ECD =30°,∴DE =CD •tan30°=8√23, ∴AE =AD ﹣DE =8√2−8√23=16√23,故选:C .14.【答案】D【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最适当.15.【答案】C【解答】解:A、两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,不符合题意.故选:C.16.【答案】D【解答】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16.故选:D.17.【答案】B【解答】解:由题意可知,三角形为等腰三角形,又由三边关系得出三角形第三边只能是2,所以周长是5.若另一边是1的话,则1+1=2不成立.故选:B.18.【答案】B【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=58°.∵AB∥CD,∴∠2=58°.故选:B.19.【答案】D【解答】解:∵a∥b,∠1=125°,∴∠ACD=125°,∵∠2=50°,∴∠3=125°﹣50°=75°.故选:D.20.【答案】D【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选:D.21.【答案】A【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°.∴∠2=64°.22.【答案】A【解答】解:∵a ∥b ,∠1=120°,∴∠ACD =120°,∵∠2=50°,∴∠3=120°﹣50°=70°,故选:A .23.【答案】A【解答】解:如图,∵AB ∥DE ,∴∠ABC =∠D =45°,又∵∠A =30°,∴∠1=∠A +∠ABC =75°,故选:A .二.填空题(共8小题)24.【答案】见试题解答内容【解答】解:∵在△ABC 中,AD ⊥BC ,垂足为点D ,BE ⊥AC ,垂足为点E ,∴△ABE ,△ADB 是直角三角形,∴EM ,DM 分别是它们斜边上的中线,∴EM =DM =12AB =5,∵ME =12AB =MA ,∴∠MAE =∠MEA , ∴∠BME =2∠MAE , 同理,MD =12AB =MA ,∴∠MAD =∠MDA ,∴∠BMD =2∠MAD ,∴∠EMD =∠BME ﹣∠BMD =2∠MAE ﹣2∠MAD =2∠DAC =60°,∴△EDM 是边长为5的等边三角形,∴S △EDM =√34×52=25√34. 故答案为:25√34.25.【答案】见试题解答内容【解答】解:连接CD ,DB ,过点D 作DM ⊥AB 于点M ,∵AD 平分∠F AB ,∴∠F AD =∠DAM ,在△AFD 和△AMD 中,{∠aaa =∠aaaaaaa =aaaa aa =aa ,∴△AFD ≌△AMD (AAS )∴AF =AM ,FD =DM ,∵DE 垂直平分BC∴CD =BD ,在Rt △CDF 和Rt △BDM 中,{aa =aa aa =aa , ∴Rt △CDF ≌Rt △BDM (HL )∴BM =CF ,∵AB =AM +BM =AF +MB =AC +CF +MB =AC +2CF ,∴8=4+2CF ,解得,CF =2,故答案为:2.26.【答案】见试题解答内容【解答】解:∵△OAA 1为等腰直角三角形,OA =1,∴AA 1=OA =1,OA 1=√2OA =√2;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=√2,OA 2=√2OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=√2OA 2=2√2;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=2√2,OA 4=√2OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=√2OA 4=4√2.∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 5=4√2,OA 6=√2OA 5=8.∴OA 8的长度为√28=16.故答案为:16.27.【答案】见试题解答内容【解答】解:∵AB =AC ,∴可把△AEC 绕点A 顺时针旋转120°得到△AE ′B ,∴BE ′=EC =8,AE ′=AE ,∠E ′AB =∠EAC ,∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,∴∠E ′AD =∠E ′AB +∠BAD =60°,在△E ′AD 和△EAD 中{aa ′=aa aa′aa =aaaa aa =aa,∴△E ′AD ≌△EAD (SAS ),∴E ′D =ED ,过E ′作EF ⊥BD 于点F ,∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =∠E ′BA =30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=12BE′=4,E′F=4√3,∵BD=5,∴FD=BD﹣BF=1,在Rt△E′FD中,由勾股定理可得E′D=√(4√3)2+12=7,∴DE=7.故答案为7.28.【答案】见试题解答内容【解答】解:连接MN,作AF⊥BC于F,∵M、N分别是AB、AC的中点,∴MN=12BC=3,MN∥BC,∴AF⊥MN,∵AB=AC,AF⊥BC,∴FC=12BC=3,在Rt△AFC中,AF=√aa2−aa2=4,图中阴影部分的三个三角形的底长都是3cm,高的和为4cm,∴图中阴影部分的面积=12×3×4=6(cm2),故答案为:6.29.【答案】见试题解答内容【解答】解:如下图所示∵AB=AC∠B=∠C=30°=∠ADE而∠ADB=∠DAE+∠C∠DEC=∠DAE+∠ADE∴∠ADB=∠DEC又由∠B=∠C∴△ABD∽△DCE∴aa aa =aa aa又∵AB =8,∠B =30°∴AM =4,BM =CM =4√3∴CD =8√3−3于是有3aa =8√3−3 ∴CE =3√3−98于是AE =AC ﹣CE =8﹣3√3+98=738−3√3 故答案为738−3√3.30.【答案】见试题解答内容【解答】解:∵BE =CE ,∴BE =12BC ,∵S △ABC =6, ∴S △ABE =12S △ABC =12×6=3.∵AD =2BD ,S △ABC =6, ∴S △BCD =13S △ABC =13×6=2,∵S △ABE ﹣S △BCD =(S △ADF +S 四边形BEFD )﹣(S △CEF +S 四边形BEFD )=S △ADF ﹣S △CEF ,即S △ADF ﹣S △CEF =S △ABE ﹣S △BCD =3﹣2=1.故答案为:131.【答案】见试题解答内容【解答】解:∵AE ⊥BC ,∴∠AEC =90°,∵∠EAC +∠ACE =90°,∠DAO +∠ADO =90°,∴∠ADO =∠ACE ,在△ADO 和△BCO 中{∠aaa =∠aaaaaaa =aaaa aa =aa,∴△ADO ≌△BCO (AAS ),∴OD =OC =2,OA =OB =6,∴△AOD 的面积=12×2×6=6. 故答案为6.三.解答题(共5小题)32.【答案】见试题解答内容【解答】解:(1)证明:∵△ABC 是等边三角形,∴∠BAC =60°,AB =AC ,∵将AM 绕点A 逆时针旋转60°得到AN ,∴AM =AN ,∠MAN =60°=∠BAC ,即∠CAN +∠BAN =∠MAB +∠BAN ,∴∠CAN =∠MAB ,∴△BAM ≌△CAN (SAS );(2)如图1,连接CN ,由(1)可知△BAM ≌△CAN ,∴∠B =∠ACN =60°,∵DN ∥AC ,∴∠NDC =∠ACB =60°,∴∠NCD =60°,∴△CDN 是等边三角形,∴CN =DN ,∠CND =60°,∵AM =AN ,∠MAN =60°,∴△AMN 是等边三角形,∴AN =MN ,∠ANM =60°,∴∠ANC =∠MND ,∴△ANC ≌△MND (SAS ),∴S △ACN =S △MND ,∵S 四边形ACDN =43S △MND =S △ACN +S △CDN , ∴13a △aaa =a △aaa ,∴CD =13aa =13AB ,∵A (0,3),B (−√3,0),∴OA =3,OB =√3,∴AB =√aa 2+aa 2=2√3,∴CD =2√33,∴OD =OC +CD =√3+2√33=5√33, ∴D (5√33,0);(3)如图2,过点C 作CE ∥AB 交y 轴于点E ,由(1),(2)可知点N 在直线CE 上,CE 与抛物线交于点N 1,N 2,∴∠ABC =∠OCE =60°,OC =OB =√3, ∴OE =3,∴E (0,﹣3),设直线CE 的解析式为y =kx +b , ∴{√3a +a =0a =−3,解得:{a =√3a =−3, ∴直线CE 的解析式为y =√3x ﹣3, ∴{a =−2a 2+4√3a +3a =√3a −3, 解得:{a 1=2√3a 1=3,{a 2=−√32a 2−92, ∴N 1(2√3,3),N 2(−√32,−92), 若AM 绕点A 逆时针旋转60°得到AN 1时,M (m ,0), ∴AM =AN 1=2√3,∵AB =2√3,AN 1∥x 轴,∴点M 与点C 重合,即m =√3,若AM 绕点A 逆时针旋转60°得到AN 2时,M (m ,0), ∵C (0,√3),∴CN 2=(√3+|√32)2+(0+92)2=3√3, 由(1)可知BM 2=CN 2=3√3, ∴OM 2=OB +BM 2=√3+3√3=4√3, ∴m =﹣4√3.综合以上可得,m =√3或﹣4√3.33.【答案】见试题解答内容【解答】证明:(1)∵BE =DF , ∴BE ﹣EF =DF ﹣EF ,即BF =DE ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在Rt △ADE 与Rt △CBF 中,{aa =aa aa =aa , ∴Rt △ADE ≌Rt △CBF ;(2)如图,连接AC 交BD 于O ,∵Rt △ADE ≌Rt △CBF ,∴∠ADE =∠CBF ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,∴AO =CO .34.【答案】见试题解答内容 【解答】证明:在AC 上取AF =AE ,连接OF ,∵AD 平分∠BAC 、∴∠EAO =∠F AO ,在△AEO 与△AFO 中,{aa =aa aaaa =aaaa aa =aa∴△AEO ≌△AFO (SAS ),∴∠AOE =∠AOF ;∵AD 、CE 分别平分∠BAC 、∠ACB ,∴∠ECA +∠DAC =12∠ACB +12∠BAC =12(∠ACB +∠BAC )=12(180°﹣∠B )=60°则∠AOC =180°﹣∠ECA ﹣∠DAC =120°;∴∠AOC =∠DOE =120°,∠AOE =∠COD =∠AOF =60°, 则∠COF =60°,∴∠COD =∠COF ,∴在△FOC 与△DOC 中,{∠aaa =∠aaa aa =aa aaaa =aaaa,∴△FOC ≌△DOC (ASA ),∴DC =FC ,∵AC =AF +FC ,∴AC =AE +CD .35.【答案】见试题解答内容 【解答】(1)证明:∵AD 平分∠CAB ,DE ⊥AB ,∠C =90°, ∴CD =ED ,∠DEA =∠C =90°,∵在Rt △ACD 和Rt △AED 中{aa =aaaa =aa , ∴Rt △ACD ≌Rt △AED (HL );(2)∵DC =DE =1,DE ⊥AB ,∴∠DEB =90°,∵∠B =30°,∴BD =2DE =236.【答案】见试题解答内容【解答】解:(1)∵在Rt △ABC 中,∠C =90°,∠A =30°, ∴AB =2BC ,∠CBD =60°.∵点D 是AB 中点,∴BD =BC ,∴△BCD 为等边三角形.故答案为:等边三角形.(2)∠DBF 的度数不变,理由如下:∵∠ACB =90°,点D 是AB 中点,∴CD =12AB =AD , ∴∠ECD =30°.∵△BDC 为等边三角形,∴BD =DC ,∠BDC =60°.又∵△DEF 为等边三角形,∴DF =DE ,∠FDE =60°,∴∠BDF +∠FDC =∠EDC +∠FDC =60°,∴∠BDF =∠CDE .在△BDF 和△CDE 中,{aa =aaaaaa =aaaa aa =aa ,∴△BDF ≌△CDE (SAS ),∴∠DBF =∠DCE =30°,即∠DBF 的度数不变.(3)∵△DEF 为等边三角形,∴∠DEF =∠DFE =60°.∵∠A =∠ECD =30°,∴∠ADE =∠CDF =30°,∴△CDF 、△ADE 为等腰三角形,∴CF =DF =EF =DE =AE ,∴DE =AE =13AC =2.。

福建省厦门市2018年中考数学模拟卷

福建省厦门市2018年中考数学模拟卷

2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)

2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。

在上,顶点C在。

的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。

以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学模拟试题五一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.计算20162018|-|+的结果是2.下列图案中,既是轴对称图形又是中心对称图形的是A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<-7.如右图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到 的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的 底面积之比为 8.反比例函数28k y x+=(其中k 为常数)图象上有两个点()11,x y ,()22,x y ,且1x < 2x ,其中,则1y ,2y 的大小关系是是9.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为10如图所示,它们的解析式可能分别是 A .y=k x ,y=kx 2-x B .y=k x ,y=kx 2+xC .y =-k x ,y=kx 2+xD .y =-k x,y=-kx 2-x11.如图,在矩形ABCD 中,65=BC AB ,点E 在BC 上,点F 在CD 上,且EC =61BC ,FC =53CD ,FG ⊥AE 于G ,则GE :AE 的值是A .1:3B .1:4C .1:5D .1:612.二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0)与(1,1y ),则y 1值的变化范围是 A B DGFE CBD A二、填空题(本大题共5小题,每小题填对得4分,共20分。

请填在答题卡上) 13.用科学计数法表示0.000028 = _______ . 14.32244a a b ab -+-= ________________ .15.在一次歌咏比赛中,某选手的得分情况如下:90, 94, 92, 95, 92, 93,这组数据的中位数是__ ______.16.如图,已知一次函数y=kx ﹣4的图象与x 轴、y 轴分别交于 A 、B 两点,与反比例函数y=在第一象限内.....的图象交于点C , 且△AOB 的面积是2,则点C 的坐标是 _________ .17.一组数据排列排列如下:52,13,65,54,78,95,811,136,914,177,……,请写出第十一个数据与第十二个数据的积可能是 _______ .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤) 18.(本题满分6分)关于x 的分式方程12-=-+x mx 有增根,求m 的值. 19.(本题满分8分)为迎接2017年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是 度;(3)若九年级共有600人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?20.(本题满分9分)• 《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过 70km/h ”,一辆小汽车在一条城市街道上由西向东行驶,在距路...边50m 处有“车速检测仪O ”, 测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为3s .该车是否超过限速? 请说明你的理由.1.4141.732)21.(本题满分9分)如图,等腰△ABC 中,AB =CD ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC ,垂足为E .(1)求证:DE 为⊙O 的切线; (2)若2an 3t CDE ∠=,且CD = ,试求⊙O 的周长22.(本题满分10分)为了进一步加强病症防控工作,某校利用周末对校园环境进行消毒,购买了甲、乙两种消毒液共80瓶,其中甲种10元/瓶,乙种15元/瓶.(1)第一次购买这两种消毒液共用1000元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液,使乙种瓶数是甲种瓶数的2倍(不包括已购买的80瓶),且本次病症防控消毒工作花费总额不超过1600元,求乙种消毒液最多能再购买多少瓶?23.(本小题满分10分)如图,△ABC 与△CDE 均为等边三角形,B 、C 、E 在同一直线上,AE 、BD 交于点G ,AC 交BD 于M ,CD 交AE 于N ,连接CG . (1)若AB = 2,DE = 5,求AE 的长. (2)求证:EG = CG + DG24.(本题满分12分)如图,知抛物线的顶点为原点O (0,0),且经过点A (-2,1),过A 点的射线(与x 轴不平行)在第一象限与抛物线交于点B ,交y 轴于点C ,以AB 为直径的圆经过原点O ,过A 、B 两点分别向y 轴作垂线,垂足分别为点M 、N .(1)求此抛物线的表达式; (2)求点B 的坐标;(3)延长AM 交抛物线于点F ,交⊙P 于点G ,①判断四边形NMGB 的形状并说明理由; ②求线段AF 与FG 的比值.2018中考数学模拟试题五参考答案一、选择题:(每小题3分;共36分) ADCDA DCDBB CC二、填空题:(每小题4分,共20分)13.52.810-⨯ 14. 2(2)a a b -- 15. 92.5 16.(2,4) 17.10568三、解答题:(本大题共7小题, 共64分) 18.解:∵ 方程12-=-+x mx 有增根,∴20x -= ,增根为2x = ……………… 2分 原方程去分母,得2x m x +=- ①……………………………… 4分把2x =代入①,得20m += ………………………………………5分 ∴2m =- ……………………………………………………6分19.解:(1)如右图.…………………………… 3分 (2)成绩类别为“优”的扇形所占的百分比=10÷50=20%, 所以表示成绩类别为“优”的扇形所对应的圆心角是: 360°×20%=72°;…………………………………… 6分 (3)600×20%=120(人),答:该校九年级共有120名学生的数学成绩可以达到优秀. ……………………………………………………… 8分20.答:小汽车没有超过限速.………………… 1分在Rt △AOC 中,AC =OC ·tan ∠AOC=50×tan 60°,在Rt △BOC 中,BC =OC ·tan ∠BOC =50×tan 30°m , ∴AB =AC -BC(m ),………………… 5分 ∴小汽车从A 到B3(m/s )≈173.29(m/s ),∵70km/h =701000175/36009m s ⨯=m/s , ∴173.29(m/s )<1759(m/s )……………… 8分∴小汽车没有超过限速.………………………… 9分 21.⑴证明: 连接AD , ∵AB 是⊙O 的直径 ∴∠ADB=90°又∵AB =CD ∴BD =CD∵点O 是AB 的中点 ∴OD ∥AC 又DE ⊥AC ∴OD ⊥DE∴DE 为⊙O 的切线 4分 (2) ∵2an 3t CDE ∠=,CD =,DE ⊥AC ∴设CE =2x,DE =3x, ………………………………… 5分∴222(2)(3)x x +=解得x=2,∴CE =4…………………………… 6分 连接AD , ∵AB 是⊙O 的直径 ∴∠ADC =90°=∠DEC 又∵∠C =∠C∴△CDE ∽△CAD …………………………………… 7分 ∴CD AC CE CD ==∴13AC =……………………………………………… 8分又∵AB AC =∴ ⊙O 的周长为13π………………………………………… 9分 22.解:(1)设购买甲、乙两种消毒液分别为x 瓶、y 瓶,由题意,得8010151000x y x y +=⎧⎨+=⎩,………………………… 3分 解得4040x y =⎧⎨=⎩,………………………… 4分则购买甲、乙两种消毒液分别为40瓶和40瓶。

………………………… 5分(2)由题意可列方程组2101516001000y xx y =⎧⎨+≤-⎩,…………………………8分解得1530x y ≤⎧⎨≤⎩,…………………………9分答:乙种消毒液最多能再购买30瓶. ………………………… 10分 23.解:(1)解:过A 作AP ⊥BE 于P 在等边三角形△ABC 中,BC =2∴,∵∴在Rt △APE 中, ……………………… 5分(2)证明:在EG 上截取FE =DG ,连接CF ……………………6分在等边△ABC 和等边△DCE 中AC =BC, CE =CD , ∠DCE =∠BCA =60° ∴∠DCE+∠DCM=∠BCA+∠DCM 即∠ACE =∠BCD∴△ACE ≌△BCD ……………………7分 ∴∠BDC =∠AEC在△DGC 和△EFC 中∴△DGC ≌△EFC ……………………8分 ∴CG =CF , ∠GCD =∠FCE ∵∠FCE +∠FCD =60° ∴∠GCD+∠FCD =60° 即∠GCF =60° ∴△GCF 为等边三角形 …………………………9分 ∴CG =GF ∴GE =GF +FE =GD +CG即EG =CG +DG ………………………… 10分24.(1)解:∵顶点为原点O(0,0),且经过点A (-2,1),∴ 设此抛物线的表达式为2y ax =,代入点A (-2,1),得2(2)1a -= ,解得14a = ∴此抛物线的表达式为214y x =………………………………………………3分(2) 作AD ⊥x 轴,垂足为点D ,作BE ⊥x 轴,垂足为点E , 则∠ADO =∠OEB =90°连接OA 、OB ,∵AB 为圆的直径, ∴ ∠AOB =90°,∠AOD =90°﹣∠BOE =∠OBE ∴△ADO ∽△OEB ……………………4分 ∴AD OD OE BE= , 设(0x ,2014x ), 则2001214x x =, (5)解得08x = ,∴2014x =16...............6即点B 的坐标为(8,16) (7)(3)①四边形NMGB ∵AM ⊥y 轴,BN ⊥y 轴∴∠NMG =∠MNB= 90° ∵AB 为圆的直径,点G 在圆上 ∴∠MGB= 90°∴四边形NMGB 是矩形 ……………………………………………………………9分 ②∵点A 的坐标是(-2,1),抛物线的对称轴为y 轴,点F 在抛物线上,且AF ⊥y 轴 ∴点F 的坐标是(2,1)∵四边形NMGB 是矩形,B 的坐标为(8,16)∴点G 的坐标是(8,1)…………………………………………………………10分 ∴AF =4,FG =6 ……………………………………………………………………11分∴S △AFB :S △BFG =12AF BG ∙: 12FG BG ∙=AF :FG =4:6=2:3 ……………12分。

相关文档
最新文档