四川省2017中考数学专题突破复习题型专项五反比例函数综合题试题
中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
中考数学备考专题复习 反比例函数(含解析)(2021年整理)

2017年中考数学备考专题复习反比例函数(含解析)2017年中考数学备考专题复习反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习反比例函数(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习反比例函数(含解析)的全部内容。
1反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是( )A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3,y3)是反比例函数y= 上的三点,若x1<x2<x3 , y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2—OB2=( )A、—2B、2C 、—D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k2的值为()A 、—B 、—C、—3D、—67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m>0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O13与此图象交于点P,则点P的纵坐标是( )A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB 在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A 、B 、C 、D 、412、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2 , y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________。
中考数学——反比例函数的综合压轴题专题复习附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.4.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.【答案】(1)﹣2(2)3【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵ = ,∴ = = .令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x= ,即AO= .∵△AOB∽△AEC,且 = ,∴.∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.∵OE•CE=|﹣4|=4,即 b2=4,解得:b=3 ,或b=﹣3 (舍去).故答案为:3 .【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。
中考数学复习《反比例函数》专项练习题-带有答案

中考数学复习《反比例函数》专项练习题-带有答案一、选择题1.已知反比例函数y=−8x,下列结论错误的是()A.图象必经过点(−1,8)B.y随x的增大而增大C.图象在第二、四象限D.当x>1时2.已知点A(a,y1),B(a+1,y2)在反比例函数y=a2+1x(a是常数)的图象上,且y1<y2,则a的取值范围是()A.a<0 B.a>0 C.0<a<1 D.﹣1<a<03.若反比例函数y=kx(k≠0)的图象如图所示,则二次函数y=x2+kx−k的图象可能是().A.B.C.D.4.已知正比例函数y=kx与反比例函数y=−4x的图象交于A、B两点,若点A(m,4),则点B的坐标为()A.(1,-4)B.(-1,4)C.(4,-1)D.(-4,1)5.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线y=kx (x>0)于点D,若ABCD=13,则n的值()A.4 B.6 C.2 D.56.如图,在平面直角坐标系中,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴.函数y=kx(k>0,x>0)经过OA的中点D,且与AB交于点C,则ACBC的值为().A.32B.3 C.34D.47.如图,菱形OABC在第一象限内,∠AOC=45°,反比例函数y=kx(x>0)的图象经过点A,交BC边于点D,若△AOD的面积为√2,则k的值为()A.3 B.2 C.2√2D.√28.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若tan∠BAO=2,BC=3AC,则点D的坐标为()A.(2,3)B.(6,1)C.(1,6)D.(1,5)二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.的图象交13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x于A,B两点,则四边形MAOB的面积为.三、解答题(k为常数,k≠1);14.已知反比例函数y=k−1x(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.(x>0)的图象上有两点A(1,6),B(3,n).15.已知函数y=mx(1)求m,n的值.(2)已知直线y=kx+b与直线y=x平行,且直线y=kx+b与线段AB总有公共点,直接写出k值及b 的取值范围.(x>0)的图象交于点A(2n﹣1,6)(3,3n﹣1),16.如图,一次函数y=kx+b的图象与反比例函数y=mx与x轴交于点C.(1)求一次函数和反比例函数的表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出关于x的不等式:mx>kx+b的解集.17.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?18.如图,直线y=32x与双曲线y=kx(k≠0)交于A,B两点,点A的坐标为(m,−3),点C是双曲线第一象限分支上的一点,连结BC并延长交x轴于点D,且BC=2CD.(1)求k的值,并直接写出点B的坐标;(2)点G是y轴上的动点,连结GB,GC,求GB+GC的最小值和点G坐标;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案 1.B 2.D 3.A 4.A 5.B 6.B 7.D 8.C 9.k=-6 10.> 11.(-m ,-n ). 12.−4 13.1014.(1)解:∵点A(1,2)在这个函数的图象上,∴k−11=2,解得k =3.故答案是k =3.(2)解:在函数y =k−1x图象的每一分支上,y 随x 的增大而增大,∴k −1<0∴k <1.故答案是:k <1. 15.(1)解:将A (1,6)代入y =x 得m =6 ∴反比例函数为y =6x把B (3,n )代入y =6x 的n =63=2 ∴m =6,n =2(2)解:k =1,b 的取值范围为−1≤b ≤516.(1)解:∵反比例函数y =mx (x >0)的图象过点 A (2n-1,6)和点B (3,3n-1) ∴m =6(2n-1)=2(3n-1) ∴n =1∴m =6(2n-1)=6 ∴ A (1,6),B (3,2)把A 、B 的坐标代入y =kx+b 得{k +b =63k +b =2 解得:{k =−2b =8∴一次函数为y=-2x+8,反比例函数为y=6x;(2)解:令y=0,则-2x+3=0解得:x=4∴C(2,0)∴S△AOB=S△AOC−S△BOC=12×4×6−52×4×6=8;(3)解:观察图象,结合一次函数与反比例函数的交点坐标可得关于x的不等式mx>kx+b的解集为0<x<1或x>3.17.(1)解:设y与x之间的函数表达式为y=kx∴7=k2∴k=14∴y与x之间的函数表达式为y=14x;(2)解:当x=0.5时,y=140.5=28米∴当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28米;(3)解:当y≥35时,即14x≥35∴x≤0.4∴某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是0.4厘米.18.(1)解:将点A的坐标为A(m,−3)代入直线y=32x中得﹣3=32m解得:m=−2∴A(−2,−3)∴k=−2×(−3)=6B的坐标为(2,3)(2)解:如图,作BE⊥x轴于点E,CF⊥x轴于点F,则BE∥CF∵BE ∥CF ∴△DCF ∽△DBE ∴DC DB =CFBE∵BC =2CD ∴DC DB =CF BE =13 ∵B(2,3) ∴BE =3 ∴CF =1∴C(6,1)作点B 关于y 轴的对称点B ′,连接B ′C 交y 轴于点G ,则B ′C 即为BG +GC 的最小值∵B ′(−2,3),C(6,1)∴B ′C =√(−2−6)2+(3−1)2=2√17∴BG +GC =B ′C =2√17设B ′C 的解析式为y =kx +b∵B ′(−2,3),C(6,1){3=−2k +b 1=6k +b 解得:{k =−14b =52∴B ′C 解析式为y =−14x +52 当x =0时y =52 ∴G(0,52);(3)解:存在.理由如下:当点P在x轴上时,如图设点P1的坐标为(a,0),过点B作BM⊥x轴于点M∵四边形ABP1Q1是矩形∴∠OBP1=90°∴∠OMB=∠OBP1=90°,∠BOM=∠P1OB∴△OBM∽△OP1B∴OBOP1=OMOB∵B(2,3)∴OB=√22+32=√13,OM=2∴√13a=√13∴a=132经检验符合题意∴点P1的坐标为(132,0);当点P在y轴上时,过点B作BN⊥y轴于点N,如图2设点P2的坐标为(0,b)∵四边形ABP2Q2是矩形∴∠OBP2=90°∵∠ONB=∠P2BO=90°,∠BON=∠P2OB∴△BON∽△P2OB∴OBOP2=ONOB即√13b =√13∴b=133经检验符合题意∴点P2的坐标为(0,133)综上所述,点P的坐标为(132,0)或(0,133).。
四川省2017中考数学专题突破复习题型专项反比例函数综合题

题型专项(五) 反比例函数的综合题类型1 一次函数与反比例函数综合1.(2016·成都大邑县一诊)如图,直线l 1:y =x 与反比例函数y =kx 的图象相交于点A(2,a),将直线l 1向上平移3个单位长度得到l 2,直线l 2与c 相交于B ,C 两点(点B 在第一象限),交y 轴于点D. (1)求反比例函数的解析式并写出图象为l 2的一次函数的解析式; (2)求B ,C 两点的坐标并求△BOD 的面积.解:(1)∵点A(2,a)在y =x 上, ∴a =2.∴A(2,2). ∵点A(2,2)在y =kx 上,∴k =2×2=4.∴反比例函数的解析式是y =4x.将y =x 向上平移3个单位得l 2:y =x +3. (2)联立方程组⎩⎪⎨⎪⎧y =x +3,y =4x,解得⎩⎪⎨⎪⎧x 1=-4,y 1=-1或⎩⎪⎨⎪⎧x 2=1,y 2=4. ∴B(1,4),C(-4,-1).当x =0时,y =x +3=3,则D(0,3), ∴S △BOD =12×3×1=32.2.(2015·南充)反比例函数y =kx (k ≠0)与一次函数y =mx +b(m ≠0)交于点A(1,2k -1).(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式. 解:(1)把点A(1,2k -1)代入y =kx ,得2k -1=k.∴k =1.∴反比例函数的解析式为y =1x .(2)由(1)得k =1, ∴A(1,1). 设B(a ,0), ∴S △AOB =12·|a|×1=3.∴a =±6.∴B(-6,0)或(6,0).把A(1,1),B(-6,0)代入y =mx +b ,得⎩⎪⎨⎪⎧1=m +b ,0=-6m +b.解得⎩⎨⎧m =17,b =67.∴一次函数的解析式为y =17x +67.把A(1,1),B(6,0)代入y =mx +b ,得⎩⎪⎨⎪⎧1=m +b ,0=6m +b.解得⎩⎨⎧m =-15,b =65.∴一次函数的解析式为y =-15x +65.∴符合条件的一次函数解析式为y =-15x +65或y =17x +67.3.(2016·南充模拟)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D(0,4),B(6,0).若反比例函数y =k 1x (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F.设直线EF 的解析式为y =k 2x +b.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式k 2x +b -k 1x>0的解集.解:(1)∵四边形DOBC 是矩形,且D(0,4),B(6,0),∴C 点坐标为(6,4). ∵点A 为线段OC 的中点,∴A 点坐标为(3,2). ∴k 1=3×2=6.∴反比例函数解析式为y =6x.把x =6代入y =6x ,得x =1,∴F(6,1).把y =4代入y =6x ,得x =32,∴E(32,4).把F(6,1),E(32,4)代入y =k 2x +b ,得⎩⎪⎨⎪⎧6k 2+b =1,32k 2+b =4.解得⎩⎪⎨⎪⎧k 2=-23,b =5. ∴直线EF 的解析式为y =-23x +5.(2)S △OEF =S 矩形BCDO -S △ODE -S △OBF -S △CEF =4×6-12-12×6×4×32-12×(6-32)×(4-1)=454.(3)不等式k 2x +b -k 1x >0的解集为32<x <6.4.(2016·成都新都区一诊)如图,直线OA :y =12x 的图象与反比例函数y =kx (k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA +PB 最小.解:(1)设A 点的坐标为(a ,b),则b =ka ,∴ab =k.∵12ab =1,∴12k =1,∴k =2. ∴反比例函数的解析式为y =2x.(2)联立⎩⎨⎧y =2x,y =12x ,解得⎩⎪⎨⎪⎧x =2,y =1.∴A(2,1).设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,-1),由对称知识可得BC 与x 轴的交点P 即为所求. 设直线BC 的解析式为y =mx +n. 由题意可得:B 点的坐标为(1,2).∴⎩⎪⎨⎪⎧2=m +n ,-1=2m +n.解得⎩⎪⎨⎪⎧m =-3,n =5. ∴BC 的解析式为y =-3x +5. 当y =0时,x =53,∴P 点坐标为(53,0).5.(2015·泸州)如图,一次函数y =kx +b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3. (1)求该一次函数的解析式;(2)若反比例函数y =mx的图象与该一次函数的图象交于二、四象限内的A ,B 两点,且AC =2BC ,求m 的值.解:(1)∵一次函数y =kx +b(k <0)的图象经过点C(3,0), ∴3k +b =0①,点C 到y 轴的距离是3.∵一次函数y =kx +b 的图象与y 轴的交点是(0,b), ∴12×3×b =3.解得b =2. 将b =2代入①,解得k =-23.则函数的解析式是y =-23x +2.(2)过点A 作AD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E ,则AD ∥BE. ∵AD ∥BE ,∴△ACD ∽△BCE. ∴AD BE =ACBC=2.∴AD =2BE. 设B 点纵坐标为-n ,则A 点纵坐标为2n. ∵直线AB 的解析式为y =-23x +2,∴A(3-3n ,2n),B(3+32n ,-n).∵反比例函数y =mx 的图象经过A ,B 两点,∴(3-3n)·2n =(3+32n)·(-n).解得n 1=2,n 2=0(不合题意,舍去). ∴m =(3-3n)·2n =-3×4=-12.6.(2016·绵阳)如图,直线y =k 1x +7(k 1<0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y =k 2x (k 2>0)的图象在第一象限交于C ,D 两点,点O 为坐标原点,△AOB 的面积为492,点C 横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”.请求出图中阴影部分(不含边界)所包含的所有整点的坐标.解:(1)由题意得A(-7k 1,0),B(0,7),∴S △AOB =12|OA|·|OB|=12×(-7k 1)×7=492.解得k 1=-1.故直线方程为y =-x +7.当x =1时,y =6,故点C 坐标为(1,6), 将点C(1,6)代入y =k 2x ,解得k 2=6.∴反比例函数的解析式为y =6x .(2)由直线y =-x +7和反比例函数y =6x 在第一象限图象的对称性可知点D 与点C 关于直线y =x 对称,故点D 坐标为(6,1).当x =2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点(2,4); 当x =3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点(3,3); 当x =4时,反比例函数图象上的点为(4,32),直线上的点为(4,3),此时可得整点(4,2);当x =5时,反比例函数图象上的点为(5,65),直线上的点为(5,2),此时无整点可取.综上可知,阴影部分(不含边界)所包含的整点有(2,4),(3,3),(4,2). (方法二:联立直线和反比例函数解析式,求点D 坐标,请酌情评分.)类型2 反比例函数与几何图形综合7.(2016·绵阳涪城区模拟)如图,O 为坐标原点,点C 在x 轴的正半轴上,四边形OABC 是平行四边形,∠AOC =45°,OA =2,反比例函数y =kx 在第一象限内的图象经过点A ,与BC 交于点D.(1)求反比例函数的解析式; (2)若点D 的纵坐标为22,求直线AD 的解析式.解:(1)过点A 作AH ⊥x 轴于点H. ∵OA =2,∠AOH =45°, ∴OH =AH =OA·sin 45°=2×22= 2. ∴A(2,2). 又点A 在y =kx 图象上,∴k =2×2=2.∴反比例函数的解析式是y =2x .(2)∵点D 纵坐标是22,∴点D 横坐标是2 2. ∴D(22,22),A(2,2). 设直线AD 的解析式为y =ax +b ,则 ⎩⎪⎨⎪⎧22=22a +b ,2=2a +b.解得⎩⎨⎧a =-12,b =322. ∴直线AD 的解析式为y =-12x +322.8.(2016·成都高新区一诊)如图1,在△OAB 中,A(0,2),B(4,0),将△AOB 向右平移m 个单位,得到△O ′A ′B ′.(1)当m =4时,如图2,若反比例函数y =kx 的图象经过点A′,一次函数y =ax +b 的图象经过A′,B ′两点.求反比例函数及一次函数的解析式;(2)若反比例函数y =kx的图象经过点A′及A′B′的中点M ,求m 的值.解:(1)∵A′(4,2),B ′(8,0), ∴k =4×2=8. ∴y =8x.把(4,2),(8,0)代入y =ax +b ,得⎩⎪⎨⎪⎧4a +b =2,8a +b =0.解得⎩⎪⎨⎪⎧a =-12,b =4.∴经过A′,B ′两点的一次函数解析式为y =-12x +4.(2)当△AOB 向右平移m 个单位时,A ′点的坐标为(m ,2),B ′点的坐标为(m +4,0), 则A′B′的中点M 的坐标为(m +m +42,1).∵反比例函数y =kx 的图象经过点A′及M ,∴2m =m +m +42×1,解得m =2. ∴当m =2时,反比例函数y =kx 的图象经过点A′及A′B′的中点M.9.(2014·内江)如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,且AC =BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.解:(1)∵AC =BC ,CO ⊥AB ,A(-4,0), ∴O 为AB 的中点,即OA =OB =4.∴P(4,2),B(4,0).将A(-4,0),P(4,2)代入y=kx+b,得⎩⎨⎧-4k+b=0,4k+b=2,解得⎩⎪⎨⎪⎧k=14,b=1.∴一次函数解析式为y=14x+1.将P(4,2)代入反比例函数解析式得m=8.∴反比例函数解析式为y=8x.(2)存在这样的点D,使四边形BCPD为菱形,对于一次函数y=14x+1,令x=0,则y=1,∴C(0,1).∴直线BC的斜率为0-14-0=-14.设过点P,且与BC平行的直线解析式为y-2=-14(x-4),即y=-x+124,联立⎩⎨⎧y=-x+124,y=8x解得⎩⎨⎧x1=4,y1=2,⎩⎪⎨⎪⎧x2=8,y2=1.∴D(8,1).此时PD=(4-8)2+(2-1)2=17,BC=(4-0)2+(0-1)2=17,即PD=BC.∵PD∥BC,∴四边形BCPD为平行四边形.∵PC=(4-0)2+(2-1)2=17,即PC=BC,∴四边形BCPD为菱形,满足题意,∴反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).10.(2016·德阳中江模拟)如图,将透明三角形纸片PAB的直角顶点P落在第二象限,顶点A,B分别落在反比例函数y=kx图象的两支上,且PB⊥y轴于点C,PA⊥x轴于点D,AB分别与x轴,y轴相交于点E,F.已知B(1,3).(1)k=3;(2)试说明AE=BF;(3)当四边形ABCD的面积为4时,直接写出点P的坐标.解:(2)设点P 坐标为P(m ,3),则D(m ,0),C(0,3),A(m ,3m ),∵PC PB =-m 1-m =m m -1,PD PA =33-3m =m m -1, ∴PC PB =PD PA. 又∵∠P =∠P ,∴△PDC ∽△PAB. ∴∠PDC =∠PAB. ∴DC ∥AB.又∵AD ∥CF ,DE ∥CB ,∴四边形ADCF 和四边形DEBC 都是平行四边形. ∴AF =DC ,DC =BE. ∴AF =BE. ∴AE =BF.(3)S 四边形ABCD =S △APB -S △PCD =12PA·PB -12PC·PD =12(3-3m )(1-m)-12×3(-m) =4.解得m =-32.则P(-32,3).。
2017年全国中考数学真题《反比例函数》分类汇编解析

2017年全国中考数学真题《反比例函数》分类汇编解析2017年全国中考数学真题《反比例函数》分类汇编解析;;反比例函数;;考点一、反比例函数(3~10分); 1、反比例函数的概念一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质反比例函数)0(≠=k xky k 的符号k >0k <0图像yO xOx性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k >0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k <0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,y随x 的增大而增大。
4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xk y =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义如下图,过反比例函数)0(≠=k xk y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ?PN=xy x y =?。
k S k xy xky ==∴=,, 。
一、选择题1.(20172山东省菏泽市23分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6D.32.(20172山东省济宁市23分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.403.(20172福建龙岩24分)反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是()A.x1>x2 B.x1=x2 C.x1<x2 D.不确定4.(2017贵州毕节3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2D.25.(2017海南3分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.(2017河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.57. (20172黑龙江龙东23分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.68.(20172湖北荆州23分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B 的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8二、填空题1. (20172江西23分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.2. (20172辽宁丹东23分)反比例函数y=的图象经过点(2,3),则k =.3.(20172四川内江)如图10,点A 在双曲线y =5x上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积等于______.3.(20172山东省滨州市24分)如图,已知点A 、C 在反比例函数y=的图象上,点B ,D 在反比例函数y=的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=,CD=,AB 与CD 间的距离为6,则a ﹣b 的值是.4. (20172云南省昆明市23分)如图,反比例函数y =(k ≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为.5. (20172浙江省湖州市24分)已知点P 在一次函数y =kx +b (k ,b 为常数,且k <0,b >0)的图象上,将点P 向左平移1个单位,再向上平移2个单位得到点Q ,点Q 也在该函数y =kx +b 的图象上.(1)k 的值是;图10(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.6. (20172浙江省绍兴市25分)如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C 作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为.7.(2017广西南宁3分)如图,在434正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2017?南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.8.(20172黑龙江齐齐哈尔23分)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.9.(20172湖北荆门23分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是_______________ .10.(20172湖北荆州23分)若12x m ﹣1y 2与3xy n +1是同类项,点P (m ,n )在双曲线上,则a 的值为.三、解答题1. (20172湖北武汉28分)已知反比例函数xy 4=.(1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.2. (20172吉林27分)如图,在平面直径坐标系中,反比例函数y =(x >0)的图象上有一点A (m ,4),过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度得到点C ,过点C 作y 轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.3.(20172四川泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.4.(20172四川南充)如图,直线y=x+2与双曲线相交于点A (m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.5.(20172四川攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB =4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.6.(20172四川宜宾)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.7.(20172湖北黄石212分)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B 的一动点,过P作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)8.(20172青海西宁22分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.10..(20172贵州安顺210分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=m(m≠0)x的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.11. (20172浙江省湖州市)湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?12. (20172重庆市A卷210分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.13. (20172重庆市B卷210分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.14.(20172山东省菏泽市23分)如图,在平面直角坐标系xOy 中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.15.(20172山东省德州市24分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?16.(20172山东省东营市29分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =x m 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan ∠ABO =12,OB =4,OE =2.(1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.答案反比例函数一、选择题1.(20172山东省菏泽市23分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()。
中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在Rt △ABC 中AC =8,BC =4,AC ⊥x 轴,垂足为C ,AB 边与y 轴交于点D ,反比例函数y =kx (x >0),的图象经过点A .(1)若BD AB=14,求直线AB 和反比例函数的表达式;(2)若k =8,将AB 边沿AC 边所在直线翻折,交反比例函数的图象于点E ,交x 轴于点F ,求点E 的坐标. 2.如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12反比例函数y =kx的图象经过OA 的中点B ,与AC 交于点D .(1)求点C 坐标; (2)求k 值;(3)求△OBD 的面积.3.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x>0)的图象经过BC 上的点D 与AB 交于点E ,连接DE ,若E 是AB 的中点. (1)求点D 的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.(x>0)的图象与矩形OABC相交于D、E两点,点A、4.如图,在平面直角坐标系xOy中反比例函数y=kxC分别在x轴和y轴的正半轴上,点B的坐标为(8,6).连接DE.(1)连接OE,若△EOA的面积为8,则k=______;(2)连接AD,当k为何值时,△AED的面积最大,最大面积是多少?(3)连接AC,当k为何值时,以DE为直径的圆与AC相切(x>0)上一动点5.如图已知直线y=x−2与x轴交于A点与y轴交于B点P(m,n)为双曲线y=−2x过P点分别作x轴y轴的垂线垂足分别为C D射线PC交直线AB于点E射线PD交直线AB于点F.(1)当DF=PC时求m的值;(2)连接OE OF求证:∠EOF的度数为45°;(x>0)上有一点Q(不与点P重合)连接PQ有PQ∥AB将线段PQ沿直线AB翻折得(3)在双曲线y=−2x到线段P′Q′.若线段P′Q′与坐标轴没有交点求此时n的取值范围.(x>0)上一点分别连接MA MB.6.直线l:y=−2x+2m(m>0)与x y轴分别交于A.B两点点M是双曲线y=4x(1)如图当点A(2√30)时恰好AB=AM △MAB=90° 试求M的坐标;3(2)如图当m=3时直线l与双曲线交于C.D两点分别连接OC OD 试求△OCD面积;(3)如图在双曲线上是否存在点M 使得以AB为直角边的△MAB与△AOB相似?如果存在请直接写出点M 的坐标;如果不存在请说明理由.(k>0)的一点点D的纵坐标为6.7.在平面直角坐标系中点D是反比例函数y=kx(k>0)的图象交于A C (1)当一次函数y=ax+3(a>0)的图象与x轴交于点B(−6,0)与反比例函数y=kx两点点P(1,0)是x轴上一定点已知点A的纵坐标为4.求一次函数和反比例函数的解析式;(2)在(1)的条件下在线段AB上找点Q使得△PAQ的面积为7时求点Q的坐标;(3)如图2 在第一象限内在反比例函数上是否存在不同于点D的一点F满足∠ODF=90°且tan∠DOF=1若存在求出点D的坐标.若不存在请说明理由.4(k>0)的图象分别交矩形ABOC的两边8.如图1 平面直角坐标系xOy中A(4 3)反比例函数y=kxAC AB于E F两点(E F不与A重合)沿着EF将矩形ABOC折叠使A D两点重合.(1)AE=_______(用含有k的代数式表示);(2)如图2 当点D恰好落在矩形ABOC的对角线BC上时求CE的长度;(3)若折叠后△ABD是等腰三角形求此时点D的坐标.9.如图在平面直角坐标系xOy中△ABO的边AB垂直于x轴垂足为点B反比例函数的图象经过AO的中点C交AB于点D.若点D的坐标为(−4,n)且AD=3.(1)求反比例函数y=k的解析式;x(2)求经过C D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C D重合)过点E且平行于y轴的直线l与反比例函数的图象交于点F求△OEF面积的最大值.(k≠0)的图象相交于点A和点B(4,1)点M是y 10.如图直线y=mx+4(m≠0)的图象与双曲线y=kx轴上的一个动点.(1)求出点A的坐标.(2)连接AM,BM若△ABM的面积为3求此时点M的坐标.(3)点N为平面内的点是否存在以点A,B,M,N为顶点的四边形为菱形?若存在请直接写出相应的点N的坐标若不存在请说明理由.11.如图已知一次函数y=−x+4与反比例函数的图像相交于点C和点A(−2,a)(1)求反比例函数的表达式及点C的坐标.(2)根据图像回答在什么范围时一次函数的值大于反比例函数的值?(3)求△AOC的面积.的图像交于A B两点与x轴交于点C与y轴12.如图一次函数y=ax+b的图像与反比例函数y=kx交于点D.已知点A(2,1)点B(m,−4).(1)求反比例函数与一次函数的解析式;(2)点M是反比例函数图像上一点当△MAO与△AOD的面积相等时请直接写出点M的横坐标;(3)将射线AC绕点A旋转α度后与双曲线交于另一点Q若tanα=1请求出点Q的坐标.3(k>0)的图象经过点A(1,2)连接AO并延长交双曲线于点C以AC为对角线作13.如图反比例函数y=kx正方形ABCD AB与x轴交于点M AD与y轴交于点N连接OB以AB为直径画弧OA与线段OA围成的阴影面积为S1△OMB的面积为S2.(1)求k的值;(2)求OA的长度及线段OM的长度;(3)求S1+S2的值.14.如图在平面直角坐标系中四边形ABCD为正方形已知点A、D的坐标分别为(0,−6)、(3,−7)点B、C在第四象限内.(1)点B的坐标为;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移所得四边形记为正方形A′B′C′D′.若t秒后点B D的对应点B′D′正好落在某反比例函数在第一象限内的图像上请求出此时t值以及这个反比例函数的表达式;(3)在(2)的情况下是否存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四个点为顶点的四边形是平行四边形?若存在请直接写出符合题意的点Q的坐标;若不存在请说明理由.15.如图1 已知正比例函数和反比例函数的图象都经过点A(−1,−2)且点B(−2,−1)为反比例图象上的一点连接AB点M为坐标平面上一动点MN⊥x轴于点N.(1)写出正比例函数和反比例函数的解析式;(2)当点M在直线AO上运动时是否存在点M使得△OMN与△OAB的面积相等?若存在求出点M的坐标;若不存在请说明理由;(3)如图2 当点M在反比例函数图象位于第一象限的一支上运动时求以OB、OM为邻边的平行四边形BOMC周长的最小值并求此时点M的坐标.(x>0,k>0)图象与正比例函数图象y=ax(a>0)交于第16.如图在平面直角坐标系中反比例函数y=kx一象限内的点A(n,n)点B(2n,n−2)也在这个反比例函数图象上过点B作y轴的平行线交x轴与点C交直线y=ax(a>0)与点D.(1)求这两个函数的解析式及点D的坐标;(2)求:△AOB的面积;(3)过反比例函数图象上一点P作PE⊥直线y=ax(a>0)于点E过点E作EF⊥x轴于点F过点P作PG⊥EF于点G记△EOF的面积为S1,△PEG的面积为S2求S1−S2的值.与直线y=x相交于点A(2,a)B(b,−2)两点.17.如图1 在平面直角坐标系xOy中双曲线y=kx(1)求双曲线的函数表达式;(2)在双曲线上是否存在一点P使得△PAB的面积为6?若存在求出点P的坐标若不存在请说明理由;(3)点E是y轴正半轴上的一点直线AE与双曲线交于另一点C直线BE与双曲线交于另一点D直线CD与y轴交于点F求证:OE=EF.18.如图1 在平面直角坐标系xOy 中直线y =kx +52与双曲线y =12x交于A B 两点 直线AB 分别交x 轴 y轴于C D 两点 且S △COD =254.(1)求一次函数的解析式;(2)如图2 E 的坐标为(6,0) 将线段DO 沿y 轴向上(或向下)平移得线段D ′O ′ 在移动过程中是否存在某个位置使AD ′+EO ′的值最小?若存在 求出AD ′+EO ′的最小值及此时点O ′的坐标;若不存在 请说明理由; (3)如图3 在(2)的条件下 将直线OA 沿x 轴平移 平移过程中在第一象限交y =12x的图象于点M (M 可与A 重合) 交x 轴于点N .在平移过程中是否存在某个位置使以M N E 和平面内某一点P 为顶点的四边形为菱形且以MN 为菱形的边?若存在 请直接写出P 的坐标;若不存在 请说明理由.19.平面直角坐标系xOy 中横坐标为a 的点A 在反比例函数y 1△kx (x >0)的图象上 点A′与点A 关于点O 对称 一次函数y 2=mx+n 的图象经过点A′. (1)设a=2 点B (4 2)在函数y 1 y 2的图象上. ①分别求函数y 1 y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图① 设函数y 1 y 2的图象相交于点B 点B 的横坐标为3a △AA'B 的面积为16 求k 的值; (3)设m=12 如图② 过点A 作AD△x 轴 与函数y 2的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.20.已知直线y=−x+2k+6(k>0)与双曲线y=m(x>0)交于点M N且点N的横坐标为k. .x(1)如图1 当k=1时.①求m的值及线段MN的长;②在y轴上是否是否存在点Q使∠MQN=90° 若存在请求出点Q的坐标;若不存在请说明理由.(2)如图2 以MN为直径作△P当△P与y轴相切时求k值.参考答案:1.解:解:(1)Rt △ABC 中AC =8 BC =4 AC ⊥x 轴 垂足为C∴AC ∥OD BD AB =BO BC =14 ∴BO 4=14∴BO =1 ∴OC =3 ∴A (3,8)设直线AB 为y =ax +b∴{3a +b =8−a +b =0解得{a =2b =2∴直线AB 为y =2x +2∵反比例函数y =kx (x >0)的图像经过A∴k =3×8=24∴反比例函数的表达式为y =24x;(2)作EH ⊥x 轴于H 由题意可知CF =BC =4 ∴设A (a,8)∴OC =1 ∴OF =5设点E 的坐标为(x,8x )∴OH =x∴FH =5−x∵EH//AC∴EH AC =HF FC 即8x 8=5−x 4解得x 1=1∴点E 的坐标为(4,2).2.(1)解:△AC ⊥x 轴△AC =2OC△OA =2√5由勾股定理得:(2√5)2=OC 2+(2OC )2△OC =2,AC =4△A (2,4),C (2,0)(2)△B 是OA 的中点△B (1,2)△k =1×2=2;(3)当x =2时△D (2,1)△AD =4−1=3△S △OBD =S △OAD −S △ABD=12×3×2−12×3×1 =1.5.3.解:(1)先求出点E 的坐标,求出反比例函数解析式,再求出CD =1,即可得出点D 的坐标,(2) △FBC 和△DEB 相似可以分两种情况进行求解, ①当△FBC △△DEB 时,可得BD BE =BC CF ,求出CF,得出F 点的坐标,利用待定系数法可求出BF 的直线解析式,②当△FBC △△EDB 时,可得BD BE =CFBC ,求出C,F ,OF ,得出F 点坐标,利用待定系数法求出直线BF 的解析式.(1)△四边形OABC为矩形E为AB的中点点B的坐标为(2 3) △点E的坐标为.△点E在反比例函数上△k=3 △反比例函数的解析式为y=.△四边形OABC为矩形△点D与点B的纵坐标相同将y=3代入y=可得x=1 △点D的坐标为(1 3)(2)由(1)可得BC=2 CD=1 △BD=BC-CD=1.△E为AB的中点△BE=.若△FBC△△DEB 则=即=△CF=△OF=CO-CF=3-=△点F的坐标为;若△FBC△△EDB 则=即=△FC=3.△CO=3 △点F与点O重合△点F的坐标为(0 0).综上所述点F的坐标为或(0 0).4.解:(1)连接OE如下图.△E点在反比例函数的图像上且横坐标为8△E点纵坐标为k8即AE=8S△EOA=12×k8×8=8△k=16(2)连接AD如下图.△D在反比例函数图像上△D点的的横坐标为k6.BD=8−k 6S△AED=12×AE×BD=12×k8×(8−k6)=−196k2+12k即S△AED=−196k2+12k=−196(k−24)2+24296=−196(k−24)2+6△当k=24时△AED的面积最大最大面积是6.(3)如下图连接AC以DE为直径的圆与AC相切时设圆心为O切点为N自点D作AC的垂线垂足为M.为计算方便设反比例函数系数k=48b(0<b<1)则E点坐标为(8,6b)D点坐标为(8b,6).△BD=8−8b BE=6−6b.由勾股定理得:DE=√BD2+DE2=√[8(1−b)]2+[6(1−b)]2=10(1−b)∴OD=12DE=5(1−b)△BD BE =8−8b6−6b=43△BD BE =BCBA△DE∥AC.由O为圆心N为⊙O与AC切点可知ON⊥AC.又△DM⊥AC,ON⊥AC,OD=ON△四边形ODMN为正方形.△OD=DM由tan∠DCM=DMCD =ABAC△DM=ABAC ×CD=610×8b=245b.由OD=5(1−b)OD=DM得5(1−b)=245b.△b=2549.△k=48b=48×2549=120049.△当k=120049时以DE为直径的圆与AC相切5.(1)2(2)见详解(3)−2<n<−1【分析】(1)由题意易得四边形ODPC是矩形∠OBA=∠OAB=45°则有BD=DF=PC=−n然后可得OB=−2n=2进而问题可求解;(2)由题意可得E(m,m−2)m=−2n然后可得EP=PF=m−n−2,DF=DB=2+n进而可得OF2=FA⋅FE则有△AOF∽△OEF最后问题可求证;(3)假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点然后根据轴对称的性质及等腰直角三角形的性质可进行求解.【详解】(1)解:令y=0时则有x−2=0即x=2△A(2,0)即OA=2令x=0时则有y=−2△B(0,−2)即OB=2△OA=OB=2△∠OBA=∠OAB=45°由题意知:PC⊥x轴PD⊥y轴△四边形ODPC是矩形△DBF是等腰直角三角形△点P(m,n)△OD=PC=−n,DB=DF=PC=−n△OB=−2n=2△n=−1△m=−2−1=2;(2)证明:由题意得:E(m,m−2)△EP=m−n−2由(1)可知四边形ODPC是矩形△DBF是等腰直角三角形△BD=DF=2+n,OD=PC=−n△F(n+2,n)△∠DFB=∠EFP=45°,∠EPD=90°△EF=√2EP=√2m−√2n−2√2△A(2,0)△OF2=n2+(2+n)2=2n2+4n+4△AF⋅FE=−√2n⋅(√2m−√2n−2√2)=−2mn+2n2+4=−2⋅(−2n)n+2n2+4n=2n2+4n+4△OF2=FA⋅FE即OFEF =FAOF△∠OFA=∠EFO△△AOF∽△OEF△∠EOF=∠OAF=45°;(3)解:假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点如图所示:连接QQ′,PP′,PA,QB由轴对称的性质可知∠OAB=∠PAB=45°,∠OBA=∠QBA=45°△∠P′AP=∠QBQ′=90°△点P的横坐标为2 点Q的纵坐标为−2△把点P的横坐标代入反比例函数解析式得n=−1△若线段P′Q′与坐标轴没有交点则n的取值范围为−2<n<−1.【点睛】本题主要考查反比例函数与几何的综合相似三角形的性质与判定矩形的判定等腰直角三角形的性质与判定及轴对称的性质熟练掌握各个性质及判定是解题的关键.6.(1)(2√323√3);(2)3;(3)(4 1)(2 2)(√1025√10)(25√10√10).【分析】(1)把A的坐标代入直线的解析式即可求得m的值然后证明△OAB△△EMA 求得ME和AE的长则M 的坐标即可求解;(2)解一次函数与反比例函数的解析式组成的方程组 即可求得C 和D 的坐标 作DF△y 轴于点F CG△y 轴 根据S △OCD =S 梯形CDFG +S △OCG -S △ODF 求解;(3)分类讨论:以△BAM 和△ABM 为直角两种情况.①当△BAM=△BOA=90°时 作MH△x 轴于点H 先求得AM 的长 再根据相似三角形的性质求得AH 和MH 的长 进而求得M 的坐标 代入反比例函数关系式求出m 即可 ②当△ABM=90°时 过点M 作MH△y 轴于点H 同理可求出M 坐标. 【详解】(1)把A(2√33 0)代入y=−2x+2m 得:−4√33+2m=0 解得:m=2√33. 则直线的解析式是:y=−2x+4√33 令x=0,解得y=4√33则B 的坐标是(0,4√33). 如图所示 作ME△x 轴于点E.△△BAM=90°△△BAO+△MAE=90°又△直角△AEM 中,△AME+△MAE=90°△△BAO=△AME.在△OAB 和△EMA 中{∠AOB=∠AEM ∠BAO=∠AME AB=AM△△OAB△△EMA(AAS)△ME=OA=2√33,AE=OB=4√33. △OE=OA+AE=2√3则M 的坐标是(2√3 23√3);(2)当m=3时 一次函数的解析式是y=−2x+6.解不等式组{y =−2x +6y =4x得{x =1y =4 或{x =2y =2则D 的坐标是(1,4),C 的坐标是(2,2).如图 作DF△y 轴于点F CG△y 轴,则F 和G 的坐标分别是(0,4) (0,2).则S △OCG =S △ODF =12×4=2 S 梯形CDFG =12×(1+2)×(4−2)=3 则S △OCD =S 梯形CDFG +S △OCG −S △ODF =3;(3)如图 作MH△x 轴于点H.则△AOB △ABM △AMH 都是两直角边的比是1:2的直角三角形.①当△BAM=△BOA=90°时 OA=m OB=2m 得: AM=12AB=√52m MH=12OA=m 2;从而得到点M 的坐标为(2m, m 2). 代入双曲线解析式为:42m =m 2解得:m=2,则点M 的坐标为(4,1);同理当△BAM=△OBA 时,可求得点M 的坐标为(√10 2√105).②当△ABM=90°时过点M作MH△y轴于点H则△AOB △ABM △BMH都是直角边的比是1:2的直角三角形;当△AMB=△OAB时OB=m OA=2m得:AH=2OB=2m MH=2OA=4m从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m×4m=4解得:m=12,点M的坐标为(2,2);同理,当△AMB=△OBA时,点M的坐标为(2√105,√10).综上所述满足条件的点M的坐标是:(4 1)(2 2)(√1025√10)(25√10√10).【点睛】本题考查反比例函数与几何的综合题熟练掌握反比例函数的性质全等三角形的判定以及相似三角形的性质是解决本题的关键注意分类讨论思想的运用.7.(1)一次函数的表达式为y=12x+3反比例函数的解析式为y=8x(2)Q(−2,2)(3)存在满足题意的点D的横坐标为(3+3√654,6)或(−3+3√654,6)【分析】(1)将点B坐标代入直线AC的解析式中求出a进而得出一次函数解析式进而求出点A坐标最后将点A坐标代入反比例函数解析式中即可求出反比例函数解析式;(2)设点Q(m,12m+3)利用△PAQ的面积为7 建立方程求解即可得出答案;(3)根据题意分两种情况①当点F在D下方时过点D作DE⊥y轴于点E这点F作FN⊥ED于点N②当点F在点D上方时过点D作DG⊥x轴于点G过点F作FM⊥DG于点M分别求解即可.【详解】(1)△点B(−6,0)在直线y=ax+3上.△−6a+3=0△a=12△一次函数的解析式为y=12x+3;△点A在直线y=12x+3上且点A的纵坐标为4△12x+3=4△x=2△A(2,4).△点A在双曲线y=kx上△k=2×4=8.△反比例函数的解析式为y=8x;(2)由(1)知直线AC的解析式为y=12x+3设点Q(m,12m+3)如图1△P(1,0),B(−6,0)△BP=7△△PAQ的面积为7△1 2BP⋅(y A−y P)=12×7×(412m−3)=7△m=−2△Q(−2,2);(3)需要分两种情况:①当点F在D下方时.如图过点D作DE⊥y轴于点E这点F作FN⊥ED于点N △∠OED=∠DNF=90°△∠ODF =90°△∠ODE +∠DOE =∠ODE +∠FDN =90°△∠DOE =∠FDN△△ODE ∽△DFN .△OD:DF =OE:DN =DE:FN△tan∠DOF =14△DF:OD =1:4△OD:DF =OB:DN =DB:FN =4△OE =6 △DN =32设点D 的横坐标为n 则BD =n△FN =14n △D(n,6),F (n +32,6−14n)△6n =(n +32)(6−14n)解得n =−3±3√654(负值舍去). 即此时点D 的坐标为:(−3−3√654,6).②当点F 在点D 上方时 如图 过点D 作DG ⊥x 轴于点G过点F 作FM ⊥DG 于点M△∠OGD =∠DMF =90°△∠ODF =90°△∠ODG +∠DOG =∠ODG +∠FDM =90°△∠DOG =∠FDM△△ODG ∽△DFM△OD:DF =OG:DM =DG:FM△tan∠DOF =14△DF:OD =1:4△OD:DF =OG:DM =DG:FM =4△DG =6.△FM =32设点D 的横坐标为t 则OG =t△DM =14t△D(t,6),F (t −32,6+14t).△6t =(t −32)(6+14t). 解得t =3±3√654(负值舍去). 即此时点D 的横坐标为:(3+3√654,6). 综上 满足题意的点D 的横坐标为:(3+3√654,6)或(−3+3√654,6). 【点睛】本题是反比例函数综合题 主要考查了待定系数法 三角形的面积公式 相似三角形的性质 正确理解题意是解题的关键.8.(1)4−k3(2)CE =2(3)D 点坐标为(238,32)或(115,35)【分析】(1)根据点A 的坐标可得点E 的纵坐标为3 则E (k 3,3) 可得CE =k 3 从而得AE 的长; (2)求出AE AF =AC AB =43 证明△AEF △△ACB 推出EF ∥BC 再利用平行线的性质和等腰三角形的判定和性质证明AE =EC =2即可;(3)连接AD 交EF 于M 过D 点作DN △AB 于N 由折叠的性质得AD △EF 分三种情况讨论:①当BD =AD 时 ②当AB =AD =3时 ③当AB =BD 时 分别计算DN 和BN 的长确定点D 的坐标即可解答.【详解】(1)解:△四边形ABOC 是矩形 且A (4 3)△AC =4 OC =3△点E 在反比例函数y =k x 上 点E 的纵坐标为3△E(k3,3)△CE=k3△AE=4−k3;故答案为:4−k3;(2)解:△A(4 3)△AC=4 AB=3△AC AB =43△点F在y=kx上△F(4,k4)△AE AF =4−k33−k4=43△AE AF =ACAB=43又△△A=△A△△AEF△△ACB△△AEF=△ACB△EF∥BC△△FED=△CDE△△AEF△△DEF△△AEF=△DEF AE=DE△△FED=△CDE=△AEF=△ACB△CE=DE=AE=12AC=2;(3)连接AD交EF于M过D点作DN△AB于N 由折叠的性质得AD△EF①当BD=AD时如图3△△AND=90°△AN=BN=12AB=32△DAN+△ADN=90°△△DAN+△AFM=90°△△ADN=△AFM△tan∠ADN=tan∠AFM=AEAF =43△AN DN =43△AN=32△DN=98△4−98=238△D(238,32 );②当AB=AD=3时如图4在Rt△ADN中△AN DN =43△AN AD =45△AN=45AD=45×3=125△BN=3−AN=3−125=35△DN=34AN=34×125=95△4−95=115△D(115,35 );③当AB=BD时△△AEF△△DEF△DF=AF△DF+BF=AF+BF即DF+BF=AB△DF+BF=BD此时D F B三点共线且F点与B点重合不符合题意舍去△AB≠BD综上所述所求D点坐标为(238,32)或(115,35).【点睛】本题属于反比例函数综合题考查了反比例函数的性质相似三角形的判定和性质翻折的性质矩形的性质解直角三角形等知识等腰三角形的性质解题的关键是正确寻找相似三角形解决问题学会用分类讨论的思想思考问题属于中考压轴题.9.(1)反比例函数解析式为y=−4x(2)直线CD的解析式为y=12x+3(3)最大值为14【分析】本题是反比例函数综合题 主要考查了待定系数法 线段的中点坐标公式:(1)先确定点A 的坐标 进而求得点C 的坐标 将点C D 坐标代入反比例函数中即可得出结论;(2)由n =1 求出点C D 坐标 利用待定系数法即可得出结论;(3)设出点E 坐标 进而表示出点F 坐标 即可建立面积与m 函数关系式 即可得出结论;建立S △OEF 与m 的函数关系式是解题的关键.【详解】(1)解:△AD =3△A (−4,n +3)△点C 是OA 的中点△C (−2,n+32)△点C D 在双曲线y =kx 上△{k =−2×n+32k =−4n△{k =−4n =1 △反比例函数解析式为y =−4x ; (2)解:由(1)知 反比例函数解析式为y =−4x△n =1△C (−2,2)设直线CD 的解析式为y =ax +b△{−2a +b =2−4a +b =1△{a =12b =3△直线CD 的解析式为y =12x +3; (3)解:如图 由(2)知 直线CD 的解析式为y =12x +3设点E (m,12m +3) 由(2)知 C (−2,2)△−4<m <−2△EF ∥y 轴交反比例函数的图像y =−4x 于F△F (m,−4m )△EF =12m +3+4m△S △OEF =12(12m +3+4m )×(−m )=−12(12m 2+3m +4)=−14(m +3)2+14△−4<m <−2△m =−3时 S △OEF 最大 最大值为14. 10.(1)(43,3);(2)(0,74)或(0,254); (3)存在 (83,1+2√213)或(83,1−2√213)或(163,509).【分析】(1)利用代数系数法求出一次函数和反比例函数解析式 联立函数式 解方程组即可求解;(2)分M 在AB 下方和M 在AB 上方两种情况解答即可求解;(3)设M (a,0) 以A 、B 、M 、N 四点为顶点的四边形是菱形时 分AB 为边和对角线三种情况讨论 根据勾股定理和菱形的性质可计算点M 的坐标.【详解】(1)解:△点B (4,1)△4m +4=1△m =−34△直线的关系式为:y =−34x +4 反比例函数的关系式为:y =4x联立得{y =−34x +4y =4x 解得x =43或4△点A 的坐标为(43,3);(2)解:① M 在AB 下方时 过B 作BC ⊥y 轴于C 过A 作AD ⊥BC 于D设M (0,m )△点A 的坐标为(43,3)∵S △ABM =S 梯形AMCD +S △ABD −S △BCM =3△12×43(m −1+3−1)+12×(4−43)×(3−1)−12×4(m −1)=3解得m =74 △点M 的坐标为(0,74); ② M 在AB 上方时设M (0,m ) 直线AB 交y 轴于N△点A 的坐标为(43,3)△S △ABM =S △MBN +S △AMN =3△12×4(m −4)−12×43(m −4)=3解得m =254△点M 的坐标为(0,254); 综上 点M 的坐标为(0,74)或(0,254);(3)解:设M (a,0)△点A 的坐标为(43,3)△AB 2=(4−43)2+(3−1)2=1009AM 2=(43)2+(m −3)2=169+(m −3)2 BM 2=42+(m −1)2=16+(m −1)2①以AB 为边 AM =AB 时169+(m −3)2=1009 解得m =3+2√213或m =3−2√213 △点M 的坐标为(0,3+2√213)或(0,3−2√213) △点A 的坐标为(43,3)△点N 的坐标为(83,1+2√213)或(83,1−2√213); ②以AB 为边 BM =AB 时16+(m−1)2=1009无解△此种情况不存在;③以AB为对角线时AM=BM如图169+(m−3)2=16+(m−1)2解得m=−149△点M的坐标为(0,−149)△点A的坐标为(43,3)△点N的坐标为(163,509);综上所述点N的坐标为(83,1+2√213)或(83,1−2√213)或(163,509).【点睛】本题考查了菱形的性质反比例函数与一次函数的交点问题三角形面积公式待定系数法求函数的解析式运用分类讨论的思想解答是解题的关键.11.(1)反比例函数的表达式为y=−12x点C的坐标为(6,−2)(2)x<−2或0<x<6(3)16【分析】本题考查一次函数与反比例函数的交点问题注意数形结合思想的应用是解题的关键.(1)把A(−2,a)代入一次函数可求得a的值再代入反比例函数解析式可求得k的值联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标根据S△AOC=S△AOB+S△BOC利用三角形的面积公式即可求出△AOC的面积.【详解】(1)解:将A(−2,a)代入一次函数y =−x +4得:a =−(−2)+4=6 ∴ A(−2,6)设反比例函数的表达式为y =kx (k ≠0)将A(−2,6)代入y =k x (k ≠0) 得k =−2×6=−12 ∴反比例函数的表达式为y =−12x 联立{y =−12x y =−x +4解得{x =−2y =6 或{x =6y =−2∴点C 的坐标为(6,−2);(2)解:根据图象可知当x <−2或0<x <6时 一次函数图象在反比例函数图象的上方 ∴当x <−2或0<x <6时 一次函数的值大于反比例函数的值;(3)解:令y =−x +4=0 得x =4∴点B 的坐标为(4,0)∴ OB =4∴ S △AOC =S △AOB +S △BOC=12OB ⋅|y A |+12OB ⋅|y C | =12×4×6+12×4×2 =16.12.(1)反比例解析式为y =2x 一次函数的解析式为y =2x −3 (2)x =3±√13或−3±√13(3)(−17,−14)或(−1,−2)【分析】(1)由待定系数法即可求解;(2)当点M 在AO 下方时 过点D 作DM∥OA 交反比例函数图象于M 得到直线DM 为y =12x −3 即可求解;当点M 在AO 上方时 同理可解;(3)当射线AC 逆时针旋转时 用解直角三角形的方法求出ND =√5m =10 即可求解;当射线AC 顺时针旋转时同理可解.【详解】(1)解:把A(2,1)代入y=kx得k=2则反比例解析式为y=2x;把点B(m,−4)代入y=2x得△−4=2m解得:m=−12△B(−12,−4)把A与B坐标代入一次函数解析式得{2a+b=1−12a+b=−4解得{a=2b=−3△一次函数的解析式为y=2x−3;(2)解:在y=2x−3中令y=0解得:x=−3则D的坐标是(−3,0).即OD=3.则S△AOD=12×3×2=3.设直线OA的解析式为y=kx△点A(2,1)△k=12△直线OA为y=12x过点D作DM∥OA交反比例函数图象于M△直线DM为y=12x−3解{y =12x −3y =2x得:x =3±√13 即点M 的横坐标为:x =3±√13;在AO 上方取点N 使ON =OD 过点N 作直线n∥OA 则直线n 和抛物线的交点也为点M (M ′) 同理可得 点M ′的横坐标为x =−3±√13;综上 点M 的横坐标为:x =3±√13或x =−3±√13; (3)解:当射线AC 逆时针旋转时 如下图: 由点A D 的坐标得设直线AQ 交y 轴于点N 过点N 作NH ⊥AB 于点H 则tan∠NAH =tanα由直线AD 的表达式知 tan∠OCD =2 则tan∠ODC =12在△ADN 中设HN =m 则DH =2m 则ND =√5m 则tanα=HN AH=2√5+2m=13解得:m =2√5 则ND =√5m =10 则点N(0,−13)由点A N 的坐标得 直线AN (AQ )的表达式为:y =7x −13 联立y =7x −13和反比例函数表达式得:7x −13=2x解得:x=−17或2(舍去)则点Q(−17,−14);当射线AC顺时针旋转时同理可得:AQ的表达式为:y=x−1联立y=x−1和反比例函数表达式得:x−1=2x解得:x=−1或2(舍去)则点Q(−1,−2)综上点Q的坐标为:(−17,−14)或(−1,−2).【点睛】本题考查的是反比例函数综合运用涉及到解直角三角形图象的旋转平行线的性质等分类求解是本题解题的关键.13.(1)k=2;(2)OA的长度为√104πOM=53;(3)S1+S2=58π−512.【分析】(1)利用待定系数法即可求解;(2)设AO所在圆的圆心为O1连接OO1利用正方形性质求出OA的半径r=√102即可求出OA的长度过点B作BE⊥x轴于E过点A作AF⊥y轴于F证明△BOE≌△AOF求出B(2,−1)设直线AB的解析式为y=ax+b求出直线AB的解析式即可求解;(3)利用S1+S2=14πr2+S△O1OB−S△AOM解答即可求解.【详解】(1)解:△A(1,2)在反比例函数y=kx的图象上△k=1×2=2;(2)△四边形ABCD为正方形且AC为对角线△OA=√12+22=√5AB=√10∠AOB=90°如图设AO所在圆的圆心为O1连接OO1△OA=OB△OO1⊥AB△∠AO1O=∠BO1O=90°△AB 为直径 △OA 的半径r =√102△OA 的长度为14×2π×r =√104π 过点B 作BE ⊥x 轴于E 过点A 作AF ⊥y 轴于F 则∠OEB =∠OFA =90° △∠AOF +∠AOM =90° △∠BOE =∠AOF 在△BOE 和△AOF 中{∠OEB =∠OFA =90°∠BOE =∠AOF BO =AO△△BOE ≌△AOF (AAS ) △BE =AF =1 △B (2,−1)设直线AB 的解析式为y =ax +b 把A (1,2) B (2,−1)代入得{2=a +b −1=2a +b解得{a =−3b =5直线AB 的解析式为y =−3x +5 当y =0时 △M (53,0)△OM =53;(3)解:△S 1+S 2=14πr 2+S △O 1OB −S △AOM△S1+S2=14π×(√102)2+12×√102×√102−12×53×2=58π−512.【点睛】本题考查了反比例函数的几何综合应用正方形的性质勾股定理全等三角形的判定和性质待定系数法求函数解析式一次函数与x轴的交点求不规则图形面积求出点B的坐标是解题的关键.14.(1)(1,−3)(2)此时t的值为92;反比例函数解析式为y=6x;(3)存在满足要求点Q的坐标为(34,8)或(32,4)或(−32,−4)【分析】(1)过点D作DE⊥x轴于点E过点B作BF⊥x轴于点F由正方形的性质结合同角的余角相等即可证出△ABE≌△DAF从而得出DE=AF AE=BF再结合点A D的坐标即可求出点B的坐标;(2)设反比例函数为y=kx根据平行的性质找出点B′D′的坐标再结合反比例函数图象上点的坐标特征即可得出关于k t的二元一次方程组解方程组解得出结论;(3)先求出点B′D′的坐标再分三种情况利用平行四边形的对角线互相平分建立方程求解即可得出结论.【详解】(1)如图过点B作BE⊥y轴垂足为点E过点D作DF⊥y轴垂足为点F则∠AEB=DFA= 90°∵点A的坐标为(0,6)D的坐标为(3,−7)∴DF=3∵四边形ABCD是正方形∴AB=AD∴∠DAF+∠BAE=∠DAF+∠ADF=90°∴∠BAE=∠ADF∴△ABE≌△DAF∴DF=AE=3∴OE=OA−AE=3所以点B的坐标为(1,−3);(2)由题意得正方形ABCD沿y轴向上平移了2t个单位长度.∵点B的坐标为(1,−3)D的坐标为(3,−7)∴B′和D′的坐标分别为B′(1,−3+2t)设点B′D′落在反比例函数y=kx(k≠0)的图像上则k=1×(−3+2t)=3×(−7+2t)解得t=92所以解得k=6即这个反比例函数的表达式为y=6x;(3)存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四点为定点的四边形是平行四边形.设P(n,0)由(2)知B′和D′点的坐标分别为B′(1,6)当B′D′为平行四边形的边时则PQ△B′D′∴点Q的坐标为(n+2,4)或(n−2,−4)把Q(n+2,4)代入y=6x 中得4(n+2)=6解得n=−12∴点Q的坐标为(32,4)把Q(n−2,−4)代入y=6x 中得4(n−2)=−6解得n=12∴点Q的坐标为(−32,−4);当B′D′为平行四边形的对角线时则B′D′的中点坐标为(2,4)∴PQ的中点坐标为(2,4)∴Q点的坐标为(−4−n,8)把Q点坐标带入y=6x 中得8(−n−4)=6解得n=−194∴点Q的坐标为(34,8)综上所述满足要求的点Q的坐标为(34,8)或(32,4)或(−32,−4)【点睛】本题考查了是反比例函数与正方形结合的综合题主要考查了反比例函数的图象与性质待定系数法全等三角形的性质与判定平行四边形的性质解题的关键是证明全等三角形和分情况讨论.15.(1)y=2x(2)存在(√62,√6)或(−√62,−√6).(3)(√2,√2)【分析】本题考查反比例函数与一次函数的综合应用正确的求出函数解析式利用数形结合的思想进行求解是解题的关键.(1)待定系数法求函数解析式即可;(2)分割法求出△OAB的面积设点M为(m,2m)利用面积公式列式计算即可;(3)根据OM最小时平行四边形的周长最小进行求解即可.【详解】(1)解:设正比例函数的解析式为y=kx反比例函数的解析式为y=mx△正比例函数和反比例函数的图象都经过点A(−1,−2)△−k=−2,m=−1×(−2)=2△k=2△正比例函数的解析式为y=2x反比例函数的解析式为y=2x.(2)△A(−1,−2)△S△OAB=2×2−12×1×2×21×1×1=32设点M为(m,2m)则:12|m|×|2m|=32△m=±√62所以点M的坐标为(√62,√6)或(−√62,−√6).(3)△B(−2,−1)△OB=√12+22=√5△当OM最短时平行四边形的周长最小设点M为(x,y)则:xy=2△OM=√x2+y2≥√2xy=2△平行四边形BOMC的周长最小是2(√5+2)=2√5+4此时点M的坐标为(√2,√2).16.(1)y=16x(2)12(3)8【分析】本题考查了反比例函数与一次函数的综合题目涉及求函数解析式两函数交点问题等腰直角三角形的判定和性质熟练掌握知识点是解题的关键.(x>0,k>0)求出n的值进而得出A点坐标(1)将点A(n,n)点B(2n,n−2)代入反比例函数y=kx利用待定系数法即可求函数解析式再根据过点B作y轴的平行线可得点B D的横坐标相同代入正比例函数解析式求解即可;(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M根据S△AOB=S梯形AONM−S△ONB−S△ABM求解即可;(3)设E(t,t)则OF=EF=t进而证明△OEF是等腰直角三角形△PEG是等腰直角三角形设EG= PG=k则P(t+k,t−k)将其代入反比例函数解析式可得t2−k2=16进而求解即可.(x>0,k>0)图象上【详解】(1)△点A(n,n)点B(2n,n−2)反比例函数y=kx△k=n2=2n(n−2)解得n=4或0(舍去)△A(4,4),B(8,2),k=16△反比例函数解析式为y=16x将A(4,4)代入y=ax(a>0)得a=1△正比例函数解析式为y=x△过点B作y轴的平行线△点B D的横坐标相同当x=8时△D(8,8);(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M。
中考数学压轴题专题反比例函数的经典综合题含详细答案

∴
,得 t=
∴ t= 或 t=
③∵ 点 P 的坐标为(﹣1,5t﹣ )
∴ yP=5t﹣ 当 1≤t≤6 时,yP 随 t 的增大而增大 此时,点 P 在直线 x=﹣1 上向上运动
∵ 点 F 的坐标为(0,﹣
)
∴ yF=﹣ ∴ 当 1≤t≤4 时,随者 yF 随 t 的增大而增大 此时,随着 t 的增大,点 F 在 y 轴上向上运动 ∴ 1≤t≤4 当 t=1 时,直线 MN:y=x+3 与 x 轴交于点 G(﹣3,0),与 y 轴交于点 H(0,3)
(2)解:观察图象可知,在第二象限内,当 0<x<3 时,反比例函数值大于正比例函数 值;
(3)解:∵ 点 D(m,n)是 OB 的中点,又在反比例函数 y= 上, ∴ OE= OA= ,点 D( ,2), ∴ 点 B(3,4), 又∵ 点 F 在正比例函数 y= x 图象上, ∴ F( , ), ∴ DF= 、BC=3、EA= , ∴ 四边形 DFCB 的面积为 ×( +3)× = . 【解析】【分析】(1)利用待定系数法把 C 坐标代入解析式即可;(2)须数形结合,先 找出交点,在交点的左侧与 y 轴之间,反比例函数值大于正比例函数值.(3)求出 DF、 BC、EA,代入梯形面积公式即可.
所以 DE 最小值为 8,此时 S 四边形 ADFE=
(4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。
(2)根据直角三角形的性质得出 CO=a+b,CD= 立时的条件。
,再由(1)中的结论即可得出等号成
(3)过点 A 作 AH⊥x 轴于点 H,根据 S 四边形 ADFE=S△ ADE+S△ FDE , 可知当 DH=EH 时 DE 最 小,由此可证得结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型专项(五) 反比例函数的综合题类型1 一次函数与反比例函数综合1.(2016²成都大邑县一诊)如图,直线l 1:y =x 与反比例函数y =kx 的图象相交于点A(2,a),将直线l 1向上平移3个单位长度得到l 2,直线l 2与c 相交于B ,C 两点(点B 在第一象限),交y 轴于点D. (1)求反比例函数的解析式并写出图象为l 2的一次函数的解析式; (2)求B ,C 两点的坐标并求△BOD 的面积.解:(1)∵点A(2,a)在y =x 上, ∴a =2.∴A(2,2). ∵点A(2,2)在y =kx 上,∴k =2³2=4.∴反比例函数的解析式是y =4x.将y =x 向上平移3个单位得l 2:y =x +3.(2)联立方程组⎩⎪⎨⎪⎧y =x +3,y =4x,解得⎩⎪⎨⎪⎧x 1=-4,y 1=-1或⎩⎪⎨⎪⎧x 2=1,y 2=4. ∴B(1,4),C(-4,-1).当x =0时,y =x +3=3,则D(0,3), ∴S △BOD =12³3³1=32.2.(2015²南充)反比例函数y =kx (k≠0)与一次函数y =mx +b(m≠0)交于点A(1,2k -1).(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式. 解:(1)把点A(1,2k -1)代入y =kx ,得2k -1=k.∴k =1.∴反比例函数的解析式为y =1x .(2)由(1)得k =1, ∴A(1,1). 设B(a ,0),∴S △AOB =12²|a|³1=3.∴a =±6.∴B(-6,0)或(6,0).把A(1,1),B(-6,0)代入y =mx +b ,得⎩⎪⎨⎪⎧1=m +b ,0=-6m +b.解得⎩⎪⎨⎪⎧m =17,b =67.∴一次函数的解析式为y =17x +67.把A(1,1),B(6,0)代入y =mx +b ,得⎩⎪⎨⎪⎧1=m +b ,0=6m +b.解得⎩⎪⎨⎪⎧m =-15,b =65. ∴一次函数的解析式为y =-15x +65.∴符合条件的一次函数解析式为y =-15x +65或y =17x +67.3.(2016²南充模拟)如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D(0,4),B(6,0).若反比例函数y =k 1x (x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F.设直线EF 的解析式为y =k 2x +b.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式k 2x +b -k 1x>0的解集.解:(1)∵四边形DOBC 是矩形,且D(0,4),B(6,0),∴C 点坐标为(6,4). ∵点A 为线段OC 的中点,∴A 点坐标为(3,2). ∴k 1=3³2=6.∴反比例函数解析式为y =6x.把x =6代入y =6x ,得x =1,∴F(6,1).把y =4代入y =6x ,得x =32,∴E(32,4).把F(6,1),E(32,4)代入y =k 2x +b ,得⎩⎪⎨⎪⎧6k 2+b =1,32k 2+b =4.解得⎩⎪⎨⎪⎧k 2=-23,b =5. ∴直线EF 的解析式为y =-23x +5.(2)S △OEF =S 矩形BCDO -S △ODE -S △OBF -S △CEF =4³6-12-12³6³4³32-12³(6-32)³(4-1)=454.(3)不等式k 2x +b -k 1x >0的解集为32<x <6.4.(2016²成都新都区一诊)如图,直线OA :y =12x 的图象与反比例函数y =kx (k≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA +PB 最小.解:(1)设A 点的坐标为(a ,b),则b =ka ,∴ab =k.∵12ab =1,∴12k =1,∴k =2. ∴反比例函数的解析式为y =2x .(2)联立⎩⎪⎨⎪⎧y =2x ,y =12x ,解得⎩⎪⎨⎪⎧x =2,y =1.∴A(2,1).设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,-1),由对称知识可得BC 与x 轴的交点P 即为所求. 设直线BC 的解析式为y =mx +n. 由题意可得:B 点的坐标为(1,2).∴⎩⎪⎨⎪⎧2=m +n ,-1=2m +n.解得⎩⎪⎨⎪⎧m =-3,n =5. ∴BC 的解析式为y =-3x +5. 当y =0时,x =53,∴P 点坐标为(53,0).5.(2015²泸州)如图,一次函数y =kx +b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3. (1)求该一次函数的解析式;(2)若反比例函数y =mx的图象与该一次函数的图象交于二、四象限内的A ,B 两点,且AC =2BC ,求m 的值.解:(1)∵一次函数y =kx +b(k <0)的图象经过点C(3,0), ∴3k +b =0①,点C 到y 轴的距离是3.∵一次函数y =kx +b 的图象与y 轴的交点是(0,b), ∴12³3³b=3.解得b =2. 将b =2代入①,解得k =-23.则函数的解析式是y =-23x +2.(2)过点A 作AD⊥x 轴于点D ,过点B 作BE⊥x 轴于点E ,则AD∥BE. ∵AD ∥BE ,∴△ACD ∽△BCE. ∴AD BE =ACBC=2.∴AD=2BE. 设B 点纵坐标为-n ,则A 点纵坐标为2n. ∵直线AB 的解析式为y =-23x +2,∴A(3-3n ,2n),B(3+32n ,-n).∵反比例函数y =mx 的图象经过A ,B 两点,∴(3-3n)²2n=(3+32n)²(-n).解得n 1=2,n 2=0(不合题意,舍去). ∴m =(3-3n)²2n=-3³4=-12.6.(2016²绵阳)如图,直线y =k 1x +7(k 1<0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y =k 2x (k 2>0)的图象在第一象限交于C ,D 两点,点O 为坐标原点,△AOB 的面积为492,点C 横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”.请求出图中阴影部分(不含边界)所包含的所有整点的坐标.解:(1)由题意得A(-7k 1,0),B(0,7),∴S △AOB =12|OA|²|OB|=12³(-7k 1)³7=492.解得k 1=-1.故直线方程为y =-x +7.当x =1时,y =6,故点C 坐标为(1,6), 将点C(1,6)代入y =k 2x ,解得k 2=6.∴反比例函数的解析式为y =6x.(2)由直线y =-x +7和反比例函数y =6x 在第一象限图象的对称性可知点D 与点C 关于直线y =x 对称,故点D 坐标为(6,1).当x =2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点(2,4); 当x =3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点(3,3);当x =4时,反比例函数图象上的点为(4,32),直线上的点为(4,3),此时可得整点(4,2);当x =5时,反比例函数图象上的点为(5,65),直线上的点为(5,2),此时无整点可取.综上可知,阴影部分(不含边界)所包含的整点有(2,4),(3,3),(4,2). (方法二:联立直线和反比例函数解析式,求点D 坐标,请酌情评分.)类型2 反比例函数与几何图形综合 7.(2016²绵阳涪城区模拟)如图,O 为坐标原点,点C 在x 轴的正半轴上,四边形OABC 是平行四边形,∠AOC =45°,OA =2,反比例函数y =kx 在第一象限内的图象经过点A ,与BC 交于点D.(1)求反比例函数的解析式; (2)若点D 的纵坐标为22,求直线AD 的解析式.解:(1)过点A 作AH⊥x 轴于点H. ∵OA =2,∠AOH =45°, ∴OH =AH =OA²sin 45°=2³22= 2. ∴A(2,2).又点A 在y =kx 图象上,∴k =2³2=2.∴反比例函数的解析式是y =2x .(2)∵点D 纵坐标是22,∴点D 横坐标是2 2. ∴D(22,22),A(2,2). 设直线AD 的解析式为y =ax +b ,则 ⎩⎪⎨⎪⎧22=22a +b ,2=2a +b.解得⎩⎪⎨⎪⎧a =-12,b =322.∴直线AD 的解析式为y =-12x +322.8.(2016²成都高新区一诊)如图1,在△OAB 中,A(0,2),B(4,0),将△AOB 向右平移m 个单位,得到△O ′A ′B ′.(1)当m =4时,如图2,若反比例函数y =kx 的图象经过点A′,一次函数y =ax +b 的图象经过A′,B ′两点.求反比例函数及一次函数的解析式;(2)若反比例函数y =kx的图象经过点A′及A′B′的中点M ,求m 的值.解:(1)∵A′(4,2),B ′(8,0), ∴k =4³2=8. ∴y =8x.把(4,2),(8,0)代入y =ax +b ,得⎩⎪⎨⎪⎧4a +b =2,8a +b =0.解得⎩⎪⎨⎪⎧a =-12,b =4.∴经过A′,B ′两点的一次函数解析式为y =-12x +4.(2)当△AOB 向右平移m 个单位时,A ′点的坐标为(m ,2),B ′点的坐标为(m +4,0), 则A′B′的中点M 的坐标为(m +m +42,1).∵反比例函数y =kx 的图象经过点A′及M ,∴2m =m +m +42³1,解得m =2.∴当m =2时,反比例函数y =kx 的图象经过点A′及A′B′的中点M.9.(2014²内江)如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,且AC =BC. (1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.解:(1)∵AC=BC ,CO ⊥AB ,A(-4,0), ∴O 为AB 的中点,即OA =OB =4. ∴P(4,2),B(4,0).将A(-4,0),P(4,2)代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =0,4k +b =2,解得⎩⎪⎨⎪⎧k =14,b =1.∴一次函数解析式为y =14x +1.将P(4,2)代入反比例函数解析式得m =8.∴反比例函数解析式为y =8x.(2)存在这样的点D ,使四边形BCPD 为菱形, 对于一次函数y =14x +1,令x =0,则y =1,∴C(0,1).∴直线BC 的斜率为0-14-0=-14.设过点P ,且与BC 平行的直线解析式为 y -2=-14(x -4),即y =-x +124,联立⎩⎪⎨⎪⎧y =-x +124,y =8x解得⎩⎪⎨⎪⎧x 1=4,y 1=2,⎩⎪⎨⎪⎧x 2=8,y 2=1. ∴D(8,1).此时PD =(4-8)2+(2-1)2=17,BC =(4-0)2+(0-1)2=17,即PD =BC. ∵PD ∥BC ,∴四边形BCPD 为平行四边形.∵PC =(4-0)2+(2-1)2=17,即PC =BC , ∴四边形BCPD 为菱形,满足题意,∴反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时D 点坐标为(8,1).10.(2016²德阳中江模拟)如图,将透明三角形纸片PAB 的直角顶点P 落在第二象限,顶点A ,B 分别落在反比例函数y =kx 图象的两支上,且PB⊥y 轴于点C ,PA ⊥x轴于点D ,AB 分别与x 轴,y 轴相交于点E ,F.已知B(1,3).(1)k =3;(2)试说明AE =BF ;(3)当四边形ABCD 的面积为4时,直接写出点P 的坐标.解:(2)设点P 坐标为P(m ,3),则D(m ,0),C(0,3),A(m ,3m ),∵PC PB =-m 1-m =m m -1,PD PA =33-3m =m m -1, ∴PC PB =PD PA. 又∵∠P=∠P, ∴△PDC ∽△PAB. ∴∠PDC =∠PAB. ∴DC ∥AB.又∵AD∥CF,DE ∥CB ,∴四边形ADCF 和四边形DEBC 都是平行四边形.∴AF =DC ,DC =BE. ∴AF =BE. ∴AE =BF.(3)S 四边形ABCD =S △APB -S △PCD =12PA²PB-12PC²PD =12(3-3m )(1-m)-12³3(-m) =4. 解得m =-32.则P(-32,3).。