新能源汽车的驱动及传动系统概述

合集下载

《新能源汽车概论》 认知电机驱动系统

《新能源汽车概论》 认知电机驱动系统

1.电机驱动系统组成
永磁同步步电机结构
优点:
缺点:
1.高效、高控制精度、高转矩密度。
1.功率范围较小
2.良好的转矩平稳性及低振动噪声
2.电机及其控制系统成本较高
知识储备
(4)开关磁阻电机
优点: 1.构简单坚固、可靠性 高、质量轻、成本低、 效率高、温升低、易于 维修 2.直流调速系统的可控 性好的优良特性 3.适用于恶劣环境
汽车减速/制动状态下的能量传递
知识储备
2. 新能源汽车电驱系统动力传递路线
2.2 混合动力汽车动力传递路线
复合式动力分配行星组件是混合 动力运作的中心,发动机和电动机 MG2动力的合理分配、发动机的起动、 发动机动力输出的无级调节都是靠行 星齿轮组来完成的。
行星齿轮组与发动机、MG1和MG2连接关系示意图
知识储备 (2)交流异步电动机
交流异步电机结构
1.电机驱动系统组成
优点: 1.结构简单,运行可靠耐 用,维修方便 2. 效率高、比功率较大、 适合于高速运转
缺点: 1.速运转的情况下电机的 转子发热严重. 2. 控制系统复杂,电机 本体成本偏高, 3.效率和功率密度偏低
知识储备 (3)永磁同步电动机
1.电机驱动系统组成
减速器总成结构组成
知识储备
1.3 动力分配装置 ——DCT变速箱
1.电机驱动系统组成
比亚迪秦变速箱
知识储备
1.3 动力分配装置 ——变速箱组成
1.电机驱动系统组成
比变速箱结构图(比亚迪秦)
知识储备
1.4 电驱冷却系统 ——电驱冷却系统功用
1.电机驱动系统组成
电驱系统中的驱动电机 和电机控制器,在运行过程 中会产生大量的热,这些热 量会对电驱系统的正常工作 和使用寿命造成不良影响。

电动汽车电驱系统分类、技术趋势和主流电驱系统介绍

电动汽车电驱系统分类、技术趋势和主流电驱系统介绍

4、电驱动系统的结构形式
(6)外转子电动轮驱动系统
a.采用低速外转子电动机,可完全去掉变速装置。 b.电动机外转子直接安装在车轮轮缘上,电动机转速和车轮转速相等,车轮转速和车速控制完全取决于电动 机的转速控制。 c.低速外转子电动机结构简单,无需齿轮变速传动机构,但其体积大、质量大、成本高。
5、驱动电动机的选择及功率匹配
(1)同步电动机:转子转速与定子旋转磁场的转速 相等。又分为绕线式和永磁式。 (2)异步电动机:转子转速不等于定子旋转磁场的 转速。 优点:结构简单,价格便宜,运行可靠,维护方便, 效率较高。 缺点:功率因数低。 电动汽车用交流异步电动机具有以下特点: ( 1 )高速低转矩时运转效率高。( 2 )低速时有高 转矩,并有宽泛的速度范围。(3)易实现转速超过 10000r/min的高速旋转。(4)小型轻量化。(5) 高可靠性。( 6 )制造成本低。( 7 )控制装置的简 单化。
7、交流电动机分为:
异步电动机的特点:成本低,可靠性高,广泛应用于大型高速电动汽车中。三相鼠笼式异步电动机功率容量覆盖 面很大,冷却自由度高,环境适应性好,可再生制动,效率高,重量轻。 电动机在10000r/m以上高速运转时,采用一级齿轮减速。 汽车驱动电动机需用新方法设计。 冷却方式:风冷,水冷 异步电动机是多变量系统,电压、电流、频率、磁通、转速相互影响。 异步电动机的调速控制:矢量控制,直接转矩控制,转速控制,变频恒压控制,自适应控制,效率优化控制等。 永磁电动机的分类 根据输入电动机接线端的电流种类可分为: (1)永磁直流电动机 (2)永磁交流电动机(永磁无刷电动机,没有电刷、滑环或换向器) 根据输入电动机接线端的交流波形永磁无刷电动机可分为: (1)永磁同步电动机 (2)永磁无刷直流电动机

新能源汽车驱动电机与控制系统 第一章 电机基础知识

新能源汽车驱动电机与控制系统 第一章 电机基础知识

任务1:电机基础知识
信息交互
规划决策
16
(三)电磁学基础知识
励磁绕组:根据其供电方式可以分为直流励磁绕组和交流励磁绕组。直流励磁绕组的优点在于其 可靠性高,但需要使用整流器,转子上也存在集电环与刷子摩擦产生火花等安全隐患。而交流励 磁绕组相对来说更为简单,不需要整流器,且不存在集电环和刷子的问题。但其缺点在于其输出 磁通较弱,需要使用铁心轴,增加铁损
B
磁滞损耗 由磁滞所产生的能量损耗称为磁滞损耗Ph
10 任务1:电机基础知识
(一)新能源汽车驱动系统概述
传动机构 传动机构指的是将电机输出的扭矩和转 速传递到汽车的主轴上,从而驱动汽车 行驶的机构,主要包含减速器和差速器 的两个部件。
11 任务1:电机基础知识
(一)新能源汽车驱动系统概述
电机的分类
12 任务1:电机基础知识
(二)新能源汽车对驱动电机的性能要求
任务1:电机基础知识
信息交互
规划决策
17
(三)电磁学基础知识
电枢绕组:由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感 生电动势,产生电磁转矩进行机电能量转换的部分。 电枢绕组分直流电枢绕组和交流电枢绕组两大类。它们分别用于直流电机和交流电机。
任务1:电机基础知识
信息交互
规划决策
(1)电机结构紧凑、尺寸小,封装尺寸有限,必须根据具体产品进行特殊设计。
(2)重量轻,以减轻车辆的整体重量。应尽量采用铝合金外壳,同时转速要高,以减轻整车的质
量,增加电机与车体的适配性,扩大车体可利用空间,从而提高乘坐的舒适性。
(3)可靠性高、失效模式可控,以保证乘车者的安全。
(4)提供精确的力矩控制,动态性能较好。

新能源汽车驱动系统的设计与控制

新能源汽车驱动系统的设计与控制

新能源汽车驱动系统的设计与控制随着人们对环境保护意识的不断加强,新能源汽车的市场需求不断增长,成为一个全新的发展领域。

新能源汽车的驱动系统是实现车辆动力输出和运行控制的核心部件,一定程度上决定着车辆的性能和车主的使用体验。

本文将围绕新能源汽车的驱动系统进行探究,明确系统的设计与控制方法。

一、新能源汽车驱动系统概述新能源汽车的驱动系统相比传统化石燃料汽车有很大不同,其动力来源多为电池,通过电机传递力量来驱动车辆。

然而,一般来讲,新能源汽车的驱动系统主要包括马达、电池、变速器和控制系统。

1、电驱马达电驱马达是新能源汽车驱动系统的核心部件,其功率大小直接影响着汽车的动力和续航能力。

通常,电驱马达按转子结构可以分为内转子和外转子型;按磁场型式又可分为永磁同步电机、感应电机、永磁直线电机以及开关磁阻电机等,具体型号要根据车辆的性能和用途来定。

2、电池电池是新能源汽车驱动系统的重要部分,其能量密度高、无污染、寿命长以及续航能力强,但也存在着储能方面的限制。

常见的电池有锂离子电池、钛酸锂电池、铅酸电池和超级电容器等,经过比较锂离子电池因能量和安全性因素表现更为突出。

3、变速器变速器是控制驱动力和车速的重要部分。

由于电驱动马达具有较宽的转速范围,采用传统的机械式变速器不再适用。

所以,新能源汽车采用的多是单速和多档位的电子变速箱,被称为电机控制系统和电机变速装置。

其中电子变速箱带有不断变速的转速系统,能够有效提高电机转速控制精度和响应速度。

根据传动形式,变速器又可分为同步齿轮电动车自动变速器、真空强度电子自动变速器等。

4、控制系统控制系统是新能源汽车驱动系统的关键部分,它支持不同器件之间的联动协作,通过驱动力系统的各个模块使驱动力的分配合理,使车辆的操作更加便捷。

其中,控制器就是实现各个模块协同工作的核心,由软件程序和控制模块组成。

大致包括:电池管理系统、电机控制单元、电子控制器和通讯总线等。

二、新能源汽车驱动系统设计要素新能源汽车驱动系统的设计要素与传统燃油汽车有很大不同,在此介绍其与设计要点。

《新能源汽车传动系统》课件

《新能源汽车传动系统》课件
项目二:新能源汽车传动系统
学习目标
能正确叙述汽车传动系统的作用; 能正确叙述传统汽车传动系统的组成与类别; 能正确叙述新能源汽车传动系统的组成与类别; 能根据提示进行传动系统故障检测与排除。
情景描述
梁先生的北汽EV200 轿车已使用了4年,本周 一准备开车上班时,出现挂挡后车辆不能行驶, 不得已通知4S店进行车辆检修。
学习内容
汽车传动系统的作用; 传统汽车传动系统的组成与类别; 新能源汽车传动系统的组成与类别;
一、传动系的作用
汽车发动机所发出的动力靠传动系传递到 驱动车轮。传动系具有减速、变速、倒车、中 断动力、轮间差速和轴间差速等功能,与发动 机配合工作,能保证汽车在各种工况条件下的 正常行驶,并具有良好的动力性和经济性。
二、传动系统的组成
传动系可按能量传递方式的不同,划分为机 械传动、液力传动、液压传动、电传动等。
机械式传动系组成
液力传动
电传动
三、新能源汽车传动系统的组成
电动汽车的驱动系统是电动汽车 的核心部分,其性能决定着电动汽车 运行性能的好坏。电动汽车的驱动系 统布置取决于电动机驱动系统的方式 ,
串联式混合动力系统
并联式混合动力系统混联式混 Nhomakorabea动力系统

新能源传动系统组成

新能源传动系统组成

新能源传动系统组成新能源传动系统是指利用新能源作为动力源,通过一系列的机械传动和控制装置,将能源转化为机械能,用于驱动车辆或其他设备的系统。

它是现代科技发展的产物,具有环保、高效、节能等优点。

本文将从新能源传动系统的组成、发展现状、技术挑战和未来发展等方面进行探讨。

一、组成新能源传动系统主要包括以下几个组成部分。

1. 新能源装置新能源装置是整个传动系统的核心部分,它包括太阳能电池板、燃料电池、储氢罐等。

太阳能电池板可以将太阳光转化为电力,并储存在电池中。

燃料电池则利用氢气和氧气进行反应产生电力,并以储氢罐中储存的氢气作为燃料。

2. 电机在新能源传动系统中,主要采用了直流无刷电机和交流异步驱动器。

直流无刷电机具有高效率、高转矩密度和长寿命等优点,在纯电驱动车辆中应用广泛。

交流异步驱动器则适用于混合动力和燃料电池车辆,它可以根据车辆的需求进行电能转换和能量回收。

3. 变速器新能源传动系统的变速器主要分为手动变速器和自动变速器。

手动变速器可以根据驾驶员的需求进行换挡操作,适用于传统燃油车辆。

自动变速器则可以根据车辆的工况和驾驶员的需求自主进行换挡,适用于新能源传动系统。

4. 控制系统控制系统是新能源传动系统中至关重要的一部分,它包括电控单元、传感器、执行机构等。

电控单元负责控制整个传动系统的工作状态,通过接收来自各个部件的信号,并做出相应的调整。

传感器则负责实时监测各个部件的工作状态,并将数据反馈给电控单元。

执行机构则负责执行电控单元下达的指令。

二、发展现状新能源传动系统是应对环境污染和资源短缺等问题而发展起来的一项重要技术。

目前,全球各国都在积极推广新能源汽车,并加大对新能源传动技术研发的投入。

特别是中国,作为全球最大的汽车市场,领导出台了一系列措施,推动新能源汽车的发展。

截至目前,中国已经成为全球新能源汽车最大的生产和销售国家。

在新能源传动系统的发展过程中,一些技术已经取得了重要突破。

例如,电池技术不断提升,电池容量和续航里程得到了大幅提高。

驱动电机系统简介

驱动电机系统简介

随着技术的不断进步,加上国家政策的大力扶持,新能源汽车已经成为了诸多汽车族的首选。

相比传统汽车,新能源汽车具有环保、节能、简单三大优势,以电动机代替燃油机,由电机驱动而非自动变速箱。

下面就给大家介绍一下新能源汽车的驱动电机系统。

传统的内燃机能高效产生转矩时的转速限制在一个窄的范围内,这就是为何传统内燃机汽车需要庞大而复杂的变速机构的原因;而电动机可以在相当宽广的速度范围内高效产生转矩,在纯电动车行驶过程中不需要换挡变速装置,操纵方便容易,噪音低。

与混合动力汽车相比,纯电动车使用单一电能源,电控系统大大减少了汽车内部机械传动系统,结构更简化,也降低了机械部件摩擦导致的能量损耗及噪音,节省了汽车内部空间、重量。

电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,驱动电机及其控制系统是新能源汽车的核心部件(电池、电机、电控)之一,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。

电动汽车中的燃料电池汽车FCV、混合动力汽车HEV和纯电动汽车EV三大类都要用电动机来驱动车轮行驶,选择合适的电动机是提高各类电动汽车性价比的重要因素,因此研发或完善能同时满足车辆行驶过程中的各项性能要求,并具有坚固耐用、造价低、效能高等特点的电动机驱动方式显得极其重要。

驱动电机系统是新能源车三大核心部件之一。

电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。

电动汽车的整个驱动系统包括电动机驱动系统与其机械传动机构两个部分。

电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成,结构如下图所示。

电动机驱动系统的基本组成框图电动机一般要求具有电动、发电两项功能,按类型可选用直流、交流、永磁无刷或开关磁阻等几种电动机,如图3。

功率转换器按所选电机类型,有DC/DC 功率变换器、DC/AC功率变换器等形式,其作用是按所选电动机驱动电流要求,将蓄电池的直流电转换为相应电压等级的直流、交流或脉冲电源。

新能源汽车电机驱动系统控制技术分析

新能源汽车电机驱动系统控制技术分析

新能源汽车电机驱动系统控制技术分析摘要:随着社会的发展,汽车已经成为了人们最主要的交通方式,随着科学技术的发展,新的能源汽车应运而生,它抛弃了传统的燃料和燃料,让汽车可以帮助人们更好的生活,也可以减少对环境的污染。

电机传动是新能源汽车的关键部件,对其进行优化和改进,可以有效地提升新能源汽车的质量,同时也可以通过优秀的电动机传动系统来提升企业在激烈的市场竞争中的核心竞争力。

关键词:新能源汽车;电机驱动系统;控制技术1.新能源汽车电机驱动系统控制技术概述新能源汽车的电机驱动系统中,电磁驱动器是实现电机驱动的关键部件,利用电机的转速来调整电机的转速,可以实现电机的驱动。

在永磁同步电动机中,三相的定子在一百二十度的角度上产生的磁场会在空气间隙内不停地转动,而由稀土永磁铁组成的正弦磁场可以维持转子的位置,当转子转动轴系与转动轴线系统重合时,定子磁场可以带动转子磁场转动,从而实现新型汽车电机的驱动控制器的解耦控制。

电动机的调速范围必须扩大,无论是恒功率区还是恒转距区都是一样,低速运行的横转距区可以在爬坡的时候有很大的转距来启动,而在高速度下的恒功率区低转距可以让新能源汽车在平台上快速地运行。

同时,新能源汽车还必须要有再生刹车的功能,这样才能让电池得到更多的电能,才能将新能源汽车的能量发挥到极致。

电机必须要能适应恶劣的环境,适合大规模的工厂制造,而且对电机的维护也很容易,而且价格也很便宜。

因此,用户在选购新能源汽车的电动机时,要考虑到电动机能否实现双向控制、电动机能否回收电能、刹车和再生能源。

2.新能源汽车电机驱动控制技术分类2.1直流电机驱动控制技术在新能源汽车的研制与生产中,首先被广泛采用的是直流电动机的驱动技术。

在晶闸管还没有研制出来之前,用电驱动的车辆,还得靠着机械来调整车速。

为了调节电动机电枢电压,采用了多组电池的串联数目。

很明显,这是一种比较死板、低效、不可靠的技术,而且在使用过程中,还会产生一些顿挫,影响到行车的舒适性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新能源汽车的驱动及传动系统概述摘要:随着人们可持续发展观念与节约能源意识的增强,新能源汽车动力系统逐步受到人们的青睐。

汽车能源将逐步由可再生能源取代传统的石化燃料,新能源将成为解决汽车能源危机的主要方法。

本文就新能源汽车驱动系统及传动系统进行简要概述。

关键词:新能源汽车驱动系统传动系统概述一、驱动系统国外在新能源汽车驱动系统研究方面作出的贡献较多,有很多典型的混合动力系统。

下面就其中的最具代表性的两种动力系统——英国米拉H4 V插电式混合动力系统、通用乘用车双模混合动力系统进行简单介绍。

英国米拉H4V插电式混合动力系统主要由以下几个部分组成:1. 4 L的H E E发动机,该发动机的功率为3 0 kV、两个35 kV的电机、两个33 0 V的锂离子蓄电池、转换器、智能电差速器、逆变器、发电机及一个蓄电池。

米拉H4 V插电式混合动力系统的核心技术是纳米技术,它主要将纳米粒子技术应用于蓄电池,研制出磷酸铁锂锂离子的蓄电池,以此来增强蓄电池的储存密度,从而储存更多的电力,为汽车提供更多的动力,汽车所行驶的路程也更远。

米拉H4V插电式混合动力系统有三个手提盒子,盒子里都装着蓄电池包,每个蓄电池包里都有蓄电池、管理系统与冷却系统。

在米拉H4V插电式混合动力系统中,最大的创新点是,蓄电池盒可以随时拆卸,能够快速地更换电池或者充电。

该汽车动力系统还具备能力回收的功能,能够将制动产生的能力及时储存起来,有效地降低能量的损耗。

装有米拉H4 V插电式混合动力系统的车辆,车上上装有充电插头,当蓄电池电量用完的时候,无需将蓄电池包卸下了,而可以直接外接电源进行充电。

装有米拉H4 V插电式混合动力系统的车辆,油耗量比较小,每一百公里仅消耗 4.4L,与常规的单燃料发动机相比,油耗量下降30%。

通用双模混合动力系统是目前最为先进与成熟的技术,该系统将电力驱动与机械驱动密切结合在一起,能够同时为汽车的运行提供充足的动力,该系统具有高效、环保的功能。

双模混合动力系统主要由发动机、变速器及蓄电池组成。

该系统中的变速器能够使三个齿轮组同时运转,并且能够发动四组离合器一起工作,这就能够保证汽车可以智能地快速切换低速模式与高速模式。

双模混合动力系统的驱动力由电能与机械能一起提供,发动机将机械能转为驱动力,电机将电能转为驱动力,该系统可以选择单模动力分配方式又可以使用双模动力分配方式,能够为汽车提供更大的驱动力,增强汽车的加速性能。

凯迪拉克凯雷德混合动力车是目前世界上仅有的一款装有双模混合动力系统的SU V豪华车,它具有较强的混合动力系统,与其他型号的汽车相比,能够节省4 0 %的耗油量,在一般情况下,一百公里的油耗量仅为11.1 L。

我国广汽集团汽车工程研究院与华南理工大学联手合作,共同研制出一种新型的清洁能源汽车动力系统,该系统主要使用燃料电池与蓄电池的混合动力联合供电模式。

清洁能源汽车动力系统主要使用车载催化重整制氢的模块将汽车燃料催化为氢气,在此基础上利用升压装置给蓄电池充电,蓄电池释放出的电力用来驱动汽车。

清洁能源汽车动力系统将燃料电池发动机与动力蓄电池结合起来,这样能够同时控制两大电池,充分发挥电池、电机及电力输送组织的作用。

在这一系统中,使用的燃料是液态燃料,它具有便于储存、运输及添加的优势,比氢燃料更加具有优势,汽车的安全性能也比较高。

在清洁能源汽车动力系统中,车载催化重整制氢模块与燃料电池是核心技术。

车载催化重整制氢模块的主要组成是甲醇与乙醇,含碳量比较低,能源的来源比较广,具有易获得、价格低的优点,因此广受人们的青睐。

广汽集团汽车工程研究院自主研发的车载催化重整制氢模块具有多种功能,例如蒸发、混合、水汽分离及散热等,发生反应作用耗费时间短、产生氢气的效率比较高,能够在短时间内产生大量的氢气,而且该系统产生出的氢气能够满足汽车五千瓦以上的发电需求。

该系统的载体主要以多孔泡沫材料为主,能够快速填满催化剂,使用时间长、稳定性与工作效率较高。

质子交换膜燃烧电池也是一项核心技术,该电池能够将空气与氢气保持在低压状态,在低压的状态下,气体的安全稳定性比较高、清洁能源汽车动力系统的操作控制也比较简单,发出的噪声也比较小。

清洁能源汽车动力系统使用特制的碳纸,碳纸比较赖用,使用寿命长,这就能够保证燃烧电池运行工作更加稳定,清洁能源汽车动力系统的运作效率较高。

二、传动系统1. 纯电动汽车传动方案电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动轮驱动时,传动装置的多数部件常常可以忽略。

因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器。

因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档。

当采用电动机无级调速控制时,电动汽车可以忽略传统汽车的变速器。

在采用电动轮驱动时,电动汽车也可以省略传统内燃机汽车传动系统的差速器。

1.1 机械传动系统方案早期的电动汽车都采用机械式传动系统,与传统汽车传动系统结构基本相同,只是用电动机取代了发动机,包含了离合器,变速器,主减速器,差速器和传动轴等。

这种与传统方案相似的传动系统由于采用了传统汽油汽车的变速器,档位较多,结构复杂,因此基本都采用控制简单,转矩小,转速高的驱动电机来满足汽车在不同工况下的行驶要求。

传统汽车传动方案已经趋于成熟,电动汽车采用机械传动系统时可直接在现有成熟底盘上直接用电动机替换发动机,设计周期短,改动小,造价低,现有技术条件就可以批量化生产,但是这种传动系统零部件多、较大的电动汽车总质量和较低的传动效率,很难满足电动汽车的使用性能要求和整体设计,不能充分发挥电动汽车的优势,因此这种传动系统方案只在早期的电动汽车上采用,现在已逐步被取代。

1.2 机电集成式传动系统方案这种传动方案将电动机和传动系统集成在一起,由半轴,差速器和单级减速器组成。

其中减速器选用传动比为8~16的2K-H型双排式的行星齿轮机构。

这种传动系统的主要特点是体积小、结构紧凑、质量轻、承载能力大、抗冲击和振动能力强、工作平稳、寿命长的优点。

但大功率高速行星齿轮传动结构较复杂,要求制造精度高。

相对其他减速器,行星减速器具有高刚性,高精度(单级可做到1分以内),高传动效率(单级在97%-98%),高的扭矩/体积比,终身免维护等特点。

因为这些特点,行星齿轮减速器可用来降低转速,提升扭矩,匹配惯量。

这种没有传动轴结构紧凑的传动方案,方便其他总成的布置,但是整车的通过性变差,维修不便。

按集成型式来分类,机电集成式传动系统常见有两种结构:一种传动系统直接与驱动电机输出轴连接,驱动桥轴线与驱动电机输出轴轴线垂直,是通过圆锥齿轮使旋转方向改变;另一种是整体驱动桥驱动系统,就是把半轴安装在空心的驱动电机输出轴里面,其一端通过螺栓与驱动轮轮毂连接,另一端半轴齿轮内花键连接,这种无需改变动力传递方向横置的驱动电机机构更加紧凑,但要求零件刚度、强度大,装配与加工精度高,具有良好的通用性和互换性。

1.3 电动桥的传动系统这种传动系统常见也有两种结构,其中一种如1.1中所述的机械传动系统方案,另一种是将两部驱动电机安装在驱动桥内,并安装差速器在输出齿轮之间。

这种安装差速器的传动方案和传统汽车的传动方案工作原理一样,汽车直线行驶时候,差速器不工作,汽车转弯是通过差速器控制左右轮的转速。

在驱动电机输出功率相同的情况下,双电机的外形尺寸比单电机小得多。

这种电动桥结构紧凑、机电集成度和传动效率高,整车的布置和结构设计简单。

由于汽车行驶工况复杂多变,对驱动电机本身而言就要求教宽的转矩变化范围,这就要求较高的控制和加工技术,电动桥内部的结构就变的复杂,成本也随之增加。

同时这种高集成度的传动方案维修不方便,一般要采用整体拆装来维修更换。

1.4 电动轮传动系统电动汽车轮毂式传动方式是在车轮轮毂中直接安装电机,使用高于传统电动机常规电压的宽范围系列阶梯电压来驱动特制的轮毂电机车轮,可以在一定范围内有效地解决当前研制电动汽车的这一难点,从而加速现代电动汽车早日大批量使用,造福于人类。

轮毂电动机汽车由于其特殊的结构,传统的几大总成都可以省略,整车结构比的相对简单,传动效率也大大提高,配备现代电子控制技术即可满足道路行驶的需要。

轮毂式驱动传动系统大多采用低速外转子和高速内转子电动机,这样对应着直接驱动式和带轮边减速器两种形式。

直接驱动式电动汽就是直接在车轮轮辋上安装了外转子,这样变速机构就可以省略了,车轮和电机组成了一个总成驱动汽车行驶。

这种系统主要的特点是电机集成度高,体积小,机构紧凑,整车布置相对容易,受限制较少。

安装高速内转子电机的电动汽车,必须在车轮轮辋和电机输出轴之间安装固定速比的减速器。

行星齿轮减速器的速比高,得到了较广的应用。

行星齿轮机构由于其紧凑性的,使得采用高速内转子的驱动系统比外转子系统在功率密度方面占有明显优势,另外内转子式更有利于汽车轻量化已经改善空气动力性,结构更加紧凑维修更加方便。

2. 混合动力电动汽车传动方案混合动力汽车的传动系统是指车上装有两个以上动力源:蓄电池、燃料电池、太阳能电池、内燃机车的发电机组,当前复合动力汽车一般是指内燃机车发电机,再加上蓄电池的汽车传动系统。

2.1 串联混合方式串联式混合动力传动系统由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。

小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。

当车辆处于启动、加速、爬坡工况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。

串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。

使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。

它的缺点是能量几经转换,机械效率较低。

2.2 并联混合传动方式并联混合传动方式有同轴和异轴并联混合方式,其中同轴混合方式电机通过差动齿轮和减速器驱动前或后轮轴,电机通过自动离合器与发动机同轴安装。

汽车在启动以及市内工况行驶时候,电池通过逆变器想电动机供电,在复杂的工况行驶时,通过离合器接通,内然机来驱动轮轴,这时电动机通过逆变器给电池充电。

在高速重负荷行驶时,内燃机和电动机同时驱动轮轴,这样可以获得较高的驱动功率。

异轴并联复合方式是前后轮轴分别由不同的能源驱动,比如前轮轴由电池组通过逆变器供电的电机驱动,后轮轴由燃油发动机直接驱动。

这两种动力系统时通过汽车的控制系统根据不同工况合理分配交替使用或者同时驱动,来获得最优化的驱动模式和最低的消耗以及排放。

相关文档
最新文档