(复习指导)1.2 简单不等式的解法含解析

合集下载

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

2025届高中数学一轮复习课件《一元二次不等式的解法》ppt

高考一轮总复习•数学
第27页
对点练 3 解关于 x 的不等式 x2-ax+1≤0.
解:由题意知,Δ=a2-4.
①当 a2-4>0,即 a>2 或 a<-2 时,方程 x2-ax+1=0 的两根为 x=a± a22-4,∴
原不等式的解集为x a-
2a2-4≤x≤a+
a2-4 2
.
②若 Δ=a2-4=0,则 a=±2.
高考一轮总复习•数学
第16页
解:(1)原不等式可化为 3x2+2x-8≤0,即(3x-4)(x+2)≤0,解得-2≤x≤43,
所以原不等式的解集为x-2≤x≤43
.
(2)原不等式等价于xx22--xx--22>≤04, ⇔xx22--xx--26>≤00, ⇔xx--23xx++12>≤00, ⇔
逆向思维,-1,2 是方程 ax2+bx+c=0 的两根.
b(x-1)+c>2ax 的解集是( )
A.{x|0<x<3}
B.{x|x<0 或 x>3}
C.{x|1<x<3}
D.{x|-1<x<3}
高考一轮总复习•数学
第30页
解析:由 a(x2+1)+b(x-1)+c>2ax,得 ax2+(b-2a)x+(a+c-b)>0. ①
高考一轮总复习•数学
第1页
第二章 不等式
第3讲 二次函数与一元二次不等式 第2课时 一元二次不等式的解法
高考一轮总复习•数学
第2页
复习要点 1.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的 联系.2.会解一元二次不等式和分式不等式.3.了解较简单的不等式恒成立问题的解法.
高考一轮总复习•数学
当 a>1 时,不等式的解集为x1a<x<1

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

简单不等式的解法

简单不等式的解法

简单不等式的解法一、绝对值不等式的解法在解绝对值不等式时,我们需要分类讨论。

假设有一个不等式|a| < b,我们可以将其分解为两个部分,即a < b和-a < b,然后分别求解这两个不等式。

例如:|2x - 3| < 5,我们可以将它分为两个不等式:1) 2x - 3 < 5,解得 x < 4;2) -(2x - 3) < 5,解得 x > -1。

所以,该不等式的解集为-1 < x < 4。

二、分式不等式的解法当我们遇到分式不等式时,我们可以通过消去分母的方式将其化简成为一个多项式不等式。

例如:(x + 3) / (x - 2) ≥ 0,我们可以通过以下步骤解决:1) 确定分式的定义域,即x ≠ 2,因为分母不能为0。

2) 我们可以通过乘法的方式消去分母,得到(x + 3) ≥ 0。

3) 解不等式(x + 3) ≥ 0,得到x ≥ -3。

所以,该分式不等式的解集为x ≥ -3,且x ≠ 2。

三、一次不等式的解法一次不等式是指不等式中只涉及到一次幂的情况,也就是不含有平方项、立方项等高次项。

例如:3x + 5 > 2x - 1,我们可以通过以下步骤解决:1) 整理不等式,将x的系数移到一边,得到 x > -6。

2) 解不等式 x > -6,得到 x > -6。

所以,该一次不等式的解集为 x > -6。

四、二次不等式的解法二次不等式是指不等式中含有二次项的情况,比如 x^2 + 3x - 10 > 0。

解二次不等式的方法有两种:一种是通过绘制图像来求解,一种是通过求解二次函数的根来求解。

例如:x^2 + 3x - 10 > 0,我们可以通过以下步骤解决:1) 求解二次方程 x^2 + 3x - 10 = 0,得到 x = -5 和 x = 2。

2) 绘制出二次函数的图像,根据图像可以确定不等式的解集为 x < -5 或 x > 2。

1.2不等关系及简单不等式的解法

1.2不等关系及简单不等式的解法

专题一
知识梳理
考点自测
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-8-
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”. (1)a>b⇔ac2>bc2. ( × )
(2)a>b>0,c>d>0⇒������ > ������. (
解析:∵集合
1-������
B.{x|-1<x<3} D.{x|-1<x<0 或 1<x<3}
������
1-������ ������
A={x|x2-2x-3<0}={x|-1<x<3},B=
<
0 ={x|x<0 或 x>1},
∴A∩B={x|-1<x<0 或 1<x<3}.故选 D.
5.函数 y= 3-2������-������ 2 的定义域是
������
������
)
(3)若关于x的不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0. ( ) ������-2 (4)不等式 ������+1≤0 的解集是[-1,2]. ( × ) (5)若关于x的方程ax2+bx+c=0(a≠0)没有实数根,则关于x的不等 式ax2+bx+c>0的解集为R. ( × )
专题一
考点一
考点二
1.2
不等关系及简单不等式的解法
考情概览备考定向 必备知识预案自诊 关键能力学案突破 关键能力学案突破
-14-

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

第一章第2讲简单不等式的解法

第一章第2讲简单不等式的解法

第2讲 简单不等式的解法, [学生用书P5])1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a ; (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.一元二次不等式的解集若a >0,则不等式|x |<a 的解集为{x |-a <x <a };不等式|x |>a 的解集为{x |x >a 或x <-a }.1.辨明三个易误点(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. 2.把握分式不等式的四个等价转化 (1)f (x )φ(x )>0⇔f (x )·φ(x )>0; (2)f (x )φ(x )≥0⇔⎩⎪⎨⎪⎧f (x )·φ(x )≥0φ(x )≠0;(3)f (x )φ(x )<0⇔f (x )·φ(x )<0; (4)f (x )φ(x )≤0⇔⎩⎪⎨⎪⎧f (x )·φ(x )≤0φ(x )≠0.1.教材习题改编 不等式x 2-3x +2<0的解集为( ) A .(-∞,-2)∪(-1,+∞) B .(-2,-1)C .(-∞,1)∪(2,+∞)D .(1,2)D [解析] 将x 2-3x +2<0化为(x -1)(x -2)<0,解得1<x <2.2.函数f (x )=1-xx +2的定义域为( ) A .[-2,1] B .(-2,1] C .[-2,1) D .(-∞,-2]∪[1,+∞)B [解析] 要使函数f (x )=1-xx +2有意义,则⎩⎪⎨⎪⎧(1-x )(x +2)≥0,x +2≠0,解得-2<x ≤1,即函数的定义域为(-2,1].3.教材习题改编 不等式|x -1|≥2的解集为( ) A .{x |x ≤-1或x ≥3} B .{x |-1≤x ≤3} C .{x |x ≤-3或x ≥1} D .{x |-3≤x ≤1}A [解析] 由|x -1|≥2得x -1≤-2或x -1≥2,即x ≤-1或x ≥3.故选A.4.教材习题改编 关于x 的不等式-12x 2+mx +n >0的解集为{x |-1<x <2},则m +n 的值为( )A .-12B .-32C .12D .32D [解析] -12x 2+mx +n >0,即为x 2-2mx -2n <0.由题意知,x 2-2mx -2n <0的解集为{x |-1<x <2}.所以⎩⎪⎨⎪⎧-1+2=2m ,-1×2=-2n .所以m =12,n =1.所以m +n =32,故选D.5.教材习题改编 若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则实数m 的取值范围是________.[解析] 由题意知:Δ=(m +1)2+4m >0. 即m 2+6m +1>0,解得:m >-3+22或m <-3-2 2.[答案] (-∞,-3-22)∪(-3+22,+∞)一元二次不等式的解法(高频考点)[学生用书P6]一元二次不等式的解法是高考的常考内容,且多与集合问题交汇考查,题型多为选择题或填空题,属容易题.高考对一元二次不等式解法的考查主要有以下两个命题角度: (1)解一元二次不等式; (2)已知一元二次不等式的解集求参数.[典例引领](1)(2016·高考全国卷乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B=( )A .⎝⎛⎭⎫-3,-32B .⎝⎛⎭⎫-3,32C .⎝⎛⎭⎫1,32D .⎝⎛⎭⎫32,3 (2)求不等式12x 2-ax >a 2(a ∈R )的解集.【解】 (1)选D.由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32,则A ∩B =⎝⎛⎭⎫32,3.选D. (2)因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0.令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-a 4,或x >a 3; ②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3,或x >-a 4. 综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-a 4,或x >a 3; 当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3,或x >-a 4.[题点通关]角度一 解一元二次不等式1.不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,-2x 2+7x -6<0的解集是( ) A .(2,3) B .⎝⎛⎭⎫1,32∪(2,3) C .⎝⎛⎭⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)B [解析] 因为x 2-4x +3<0,所以1<x <3.又因为-2x 2+7x -6<0, 所以(x -2)(2x -3)>0,所以x <32或x >2,所以原不等式组的解集为⎝⎛⎭⎫1,32∪(2,3).角度二 已知一元二次不等式的解集求参数2.已知关于x 的不等式ax 2+2x +c >0的解集为⎝⎛⎭⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.[解析] 依题意知,⎩⎨⎧-13+12=-2a ,-13×12=c a ,所以解得a =-12,c =2, 所以不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0, 解得-2<x <3.所以不等式的解集为(-2,3). [答案] (-2,3)简单的分式不等式的解法[学生用书P6][典例引领](1)不等式x -12x +1≤0的解集为( )A .⎝⎛⎦⎤-12,1 B .⎣⎡⎦⎤-12,1 C .⎝⎛⎭⎫-∞,-12∪[1,+∞) D .⎝⎛⎦⎤-∞,-12∪[1,+∞) (2)不等式x -2x +3≥2的解集为________.【解析】 (1)由不等式x -12x +1≤0可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝⎛⎦⎤-12,1. (2)原式变形为x -2x +3-2≥0,x -2-2(x +3)x +3≥0,即-x -8x +3≥0,x +8x +3≤0, 等价变形为⎩⎪⎨⎪⎧(x +8)(x +3)≤0x +3≠0,所以原不等式的解集为[-8,-3). 【答案】 (1)A (2)[-8,-3)解不等式-1<3x -1x +2<2.[解] 由-1<3x -1x +2<2,得⎩⎪⎨⎪⎧3x -1x +2>-1,3x -1x +2<2.由3x -1x +2>-1,得3x -1x +2+1>0,即4x +1x +2>0, 解得x >-14或x <-2.①由3x -1x +2<2, 得3x -1x +2-2<0,即x -5x +2<0, 解得-2<x <5.②由①②得:不等式-1<3x -1x +2<2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-14<x <5.简单的绝对值不等式的解法[学生用书P7][典例引领]设函数f (x )=|2x -3|-1. (1)解不等式f (x )<0;(2)若方程f (x )=a 无实数根,求a 的范围. 【解】 (1)f (x )<0即为|2x -3|<1. 即-1<2x -3<1.所以1<x <2.所以不等式f (x )<0的解集为{x |1<x <2}. (2)法一:方程f (x )=a 无实数根, 即|2x -3|=a +1无实数根, 因为|2x -3|≥0,所以a +1<0,即a <-1.所以当a <-1时,方程f (x )=a 无实数根. 法二:方程f (x )=a 无实数根,即函数f (x )=|2x -3|-1与y =a 的图象无交点(如图).所以a 的范围为a <-1.解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符的普通不等式;(2)当不等式两端均为正时,可通过两边平方的方法,转化为解不含绝对值符的普通不等式;(3)利用绝对值的几何意义,数形结合求解.[通关练习]1.不等式|2x -1|>3的解集为( ) A .{x |x <-2或x >1} B .{x |-2<x <1} C .{x |x <-1或x >2} D .{x |-1<x <2}C [解析] 由|2x -1|>3得2x -1<-3或2x -1>3,即x <-1或x >2,故选C. 2.不等式|2x -3|<3x +1的解集为________.[解析] 由|2x -3|<3x +1得⎩⎪⎨⎪⎧3x +1>0,-(3x +1)<2x -3<3x +1,解得⎩⎨⎧x >-13,x >25,即x >25.故不等式|2x -3|<3x +1的解集为{x |x >25}.[答案] {x |x >25}, [学生用书P299(独立成册)])1.不等式(x -1)(3-x )<0的解集是( ) A .(1,3) B .[1,3] C .(-∞,1)∪(3,+∞) D .{x |x ≠1且x ≠3} C [解析] 根据题意,(x -1)(3-x )<0,得(x -1)(x -3)>0,所以其解集为(-∞,1)∪(3,+∞).故选C.2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12B [解析] 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 3.不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}C [解析] 解x (x +2)>0,得x <-2或x >0;解|x |<1,得-1<x <1.因为不等式组的解集为两个不等式解集的交集,即解集为{x |0<x <1}.4.(2017·广东省联合体联考)已知函数f (x )=⎩⎪⎨⎪⎧|3x -4|,x ≤2,2x -1,x >2,则使f (x )≥1的x 的取值范围为( )A .⎣⎡⎦⎤1,53 B .⎣⎡⎦⎤53,3C .(-∞,1)∪⎣⎡⎭⎫53,+∞D .(-∞,1]∪⎣⎡⎦⎤53,3D [解析] 不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎡⎦⎤53,3,故选D.5.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]D [解析] 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3] D .[-1,3]B [解析] 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.7.不等式|x (x -2)|>x (x -2)的解集是________.[解析] 不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. [答案] {x |0<x <2}8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. [解析] 原不等式即(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a. [答案] ⎩⎨⎧x ⎪⎪⎭⎬⎫a <x <1a 9.定义符函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0则不等式(x +1)sgn(x )>2的解集是________.[解析] 由⎩⎪⎨⎪⎧x >0,x +1>2,解得x >1;由⎩⎪⎨⎪⎧x =0,0>2,解得x ∈∅;由⎩⎪⎨⎪⎧x <0,-(x +1)>2,解得x <-3,所以原不等式的解集是(-∞,-3)∪(1,+∞).[答案] (-∞,-3)∪(1,+∞) 10.(2017·大连模拟)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是________.[解析] 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝⎛⎭⎫-235,+∞. [答案] ⎝⎛⎭⎫-235,+∞ 11.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. [解] (1)因为f (x )=-3x 2+a (6-a )x +6,所以f (1)=-3+a (6-a )+6=-a 2+6a +3, 所以原不等式可化为a 2-6a -3<0, 解得3-23<a <3+2 3.所以原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,等价于⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.12.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则有( )A .a =3,b =4B .a =3,b =-4C .a =-3,b =4D .a =-3,b =-4D [解析] 法一:由题意得集合A ={x |x <-1或x >3},又A ∪B =R ,A ∩B =(3,4],所以集合B 为{x |-1≤x ≤4},由一元二次不等式与一元二次方程的关系,可得a =-3,b =-4.法二:易知A ={x |x <-1或x >3},又A ∩B =(3,4],可得4为方程x 2+ax +b =0的一个根,则有16+4a +b =0,经验证可知选项D 正确.13.解下列不等式: (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;(3)ax 2-(a +1)x +1<0(a >0).[解] (1)原不等式可化为3x 2+2x -8≤0,即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式等价于 ⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔ ⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示, 原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (3)原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a<x <1;当a =1时,解集为∅;当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 14.已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[解] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立, 只需f (x )min ≥a , 即2a +3≥a , 解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1,所以a 的取值范围是[-3,1].。

高中数学 不等式的解法举例解析

高中数学 不等式的解法举例解析

不等式的解法举例不等式渗透在中学数学各个分支中,应用范围十分广泛,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明.涉及不等式的内容的考题大致可分为以下几种类型:①解不等式;②证明不等式;③取值范围问题;④应用问题.试题主要有如下特点:(1)突出重点,综合考查.试题中不等式常与函数、数列、解析几何、三角等进行综合.(2)解含参数的不等式能较好地体现等价转化、分类整合、数形结合等数学思想.(3)除单独考查不等式的试题外,常在一些函数、数列、立体几何、解析几何等试题中涉及不等式的知识,加强了不等式作为一种工具作用的考查.1.不等式的解法不等式的解法,要加强等价转化思想的训练与复习.,通过等价转化可简化不等式(组),以快速、准确求解.(1)解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础. 简单的一元高次不等式的解法:标根法:其步骤是:①分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;②将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;③根据曲线显现的符号变化规律,写出不等式的解集。

(2)解高次不等式、分式不等式,分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

首先使不等式一边是零,一边是一次因式(一次项系数为正)或二次不完全平方式的积与商的形式(注意二次因式恒正恒负的情况),然后用数轴标根法写出解集(尤其要注意不等号中带等号的情形).(3)解绝对值不等式的常用方法:1)绝对值不等式的解法:①分段讨论法(最后结果应取各段的并集):如解不等式(答:);②利用绝对值的定义;③数形结合;如解不等式(答:)④两边平方:如若不等式对恒成立,则实数的取值范围为______。

2018届一轮 复习1.2 不等关系及简单不等式的解法

2018届一轮    复习1.2 不等关系及简单不等式的解法

1.2 不等关系及简单不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >a b };当a <0时,解集为{x |x <ab }. 2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”. 思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3}解析:在数轴上标出各根. -2 0 3答案:A2.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1. 又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3). 又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2. 答案:B4.不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1. ∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,x ≥-2.答案:{x |-2≤x ≤1}(文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310a ba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a , ∴a +b =-23或-3. 答案:-23或-3 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x x x+1<0,即322322--+-x x x x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围.剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f解得271+-<x <231+. 深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.答案:A2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n,则不等式f (x )·g (x )>0的解集是A.(m ,2n ) B.(m ,2n )∪(-2n,-m ) C.(2m ,2n )∪(-n ,-m ) D.(2m ,2n )∪(-2n ,-2m) 解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n). ∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n ,-2m), 即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ). 由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n<x <-m . 答案:B3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______. 解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根, ∴-212--m=0+2.∴m =1. 答案:14.已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________. 解析:当x +2≥0,即x ≥-2时. x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23. ∴-2≤x ≤23. 当x +2<0即x <-2时,x +(x +2)f (x +2)≤5⇔x +(x +2)·(-1)≤5⇔-2≤5, ∴x <-2.综上x ≤23.答案:(-∞,23] 5.定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1. ∴0<x <3.当x =0时,成立. 当x <0时,x +2>121-x . x -121-x +2>0. 1224122--+--x x x x >0.123322--+x x x >0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}. 6.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1; 由于a 2-(-1)=aa 2+,于是 当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1; 当a <-2时,-1≤x ≤a2. 综上,当a =0时,x ≤-1;当a >0时,x ≥a 2或x ≤-1;当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1;当a <-2时,-1≤x ≤a2. 培养能力7.解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0, 解得y <-3或0<y <3, 即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a 3}.8.有点难度哟!已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式. 解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立. 于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3, 令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25. ①若-k <-25,则不等式组的整数解集合就不可能为{-2}; ②若-25<-k ,则应有-2<-k ≤3. ∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2. ●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.拓展题例【例1】 解关于x 的不等式12-ax ax >x (a ∈R ).解法一:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0; 若a >0,则x <0或x >a1. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a1,+∞). 解法二:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾, ∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1. (2)当x <0时,得ax -1<0. 若a <0,则x >a 1,得a1<x <0; 若a =0,则-1<0,得x <0; 若a >0,则x <a1,得x <0. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,, 即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立. 故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 简单不等式的解法必备知识预案自诊知识梳理1.两个实数比较大小的方法 (1)作差法{a -b >0⇔a b ,a -b =0⇔a b ,a -b <0⇔a b .(2)作商法{ ab >1⇔a b (a ∈R ,b >0),ab =1⇔a b (a ∈R ,b ≠0),ab<1⇔a b (a ∈R ,b >0).2.不等式的性质(1)对称性:a>b ⇔b<a. (2)传递性:a>b ,b>c ⇒a>c.(3)可加性:a>b ⇔a+c>b+c ;a>b ,c>d ⇒a+c>b+d.(4)可乘性:a>b ,c>0⇒ac>bc ;a>b ,c<0⇒ac<bc ;a>b>0,c>d>0⇒ac>bd. (5)可乘方:a>b>0⇒a n >b n (n ∈N ,n ≥2). (6)可开方:a>b>0⇒√a n>√b n(n ∈N ,n ≥2). 3.三个“二次”之间的关系续 表判别式Δ>0Δ=0Δ<01.若a>b>0,m>0,则ba <b+m a+m ;b a>b -m a -m(b-m>0);a b>a+m b+m ;ab<a -mb -m(b-m>0).2.(x-a )(x-b )>0或(x-a )(x-b )<0型不等式的解法口诀:大于取两边,小于取中间.3.恒成立问题的转化:a>f (x )恒成立⇒a>f (x )max ;a ≤f (x )恒成立⇒a ≤f (x )min .4.能成立问题的转化:a>f (x )能成立⇒a>f (x )min ;a ≤f (x )能成立⇒a ≤f (x )max .5.恰成立问题的转化:a>f (x )在M 上恰成立⇔a>f (x )的解集为M ⇔{a >f (x )在M 上恒成立,a ≤f (x )在∁R M 上恒成立.另一转化方法:若x ∈D ,f (x )≥A 在D 上恰成立,等价于f (x )在D 上的最小值f (x )min =A ;若x ∈D ,f (x )≤B 在D 上恰成立,则等价于f (x )在D 上的最大值f (x )max =B.注:例如“恒、能、恰”成立:x+1>0在x>-5上是能成立的,在x>-1上是恰成立也是恒成立的.而在-1<x<9上是恒成立但不是恰成立.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)a>b ⇔ac 2>bc2. ( ) (2)a>b>0,c>d>0⇒a d>b c.( ) (3)若关于x 的不等式ax 2+bx+c<0的解集为(x 1,x 2),则必有a>0. ( ) (4)不等式x -2x+1≤0的解集是[-1,2].( )(5)若关于x 的方程ax 2+bx+c=0(a ≠0)没有实数根,则关于x 的不等式ax 2+bx+c>0的解集为R . ( )2.设a ,b ,c ,d ∈R ,且a>b ,c>d ,则下列结论中正确的是( ) A.ad >bcB.a-c>b-dC.ac>bdD.a+c>b+d3.实数x ,y 满足x>y ,则下列不等式恒成立的是( ) A.y x<1B .2-x <2-yC .lg(x-y )>0D .x 2>y 24.(2020安徽马鞍山二模,理1)已知集合A={x|x 2-2x-3≤0,x ∈Z },B={x||x|≤2,x ∈Z },则A ∩B=( )A.{-1,0,1}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-2,-1,0,1,2,3}5.设a ,b ,c 是任意实数,能够说明“若c<b<a 且ac<0,则ab<ac ”是假命题的一组整数a ,b ,c 的值依次为 .关键能力学案突破考点比较两个数(式)的大小【例1】(1)已知a 1,a 2∈(0,1),若M=a 1a 2,N=a 1+a 2-1,则M 与N 的大小关系是( ) A.M<N B.M>N C.M=N D.不确定 (2)若a=ln33,b=ln44,c=ln55,则( )A.a<b<cB.c<b<a D.b<a<c(式)大小常用的方法有哪些?解题心得比较大小常用的方法有作差法、作商法、构造函数法.(1)作差法的一般步骤:①作差;②变形;③定号;④下结论.变形常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.(2)作商法一般适用于分式、指数式、对数式,作商只是思路,关键是化简变形,从而使结果能够与1比较大小.(3)构造函数法:构造函数,利用函数的单调性比较大小.对点训练1(1)已知实数a ,b ,c 满足b+c=6-4a+3a 2,c-b=4-4a+a 2,则a ,b ,c 的大小关系是( )A.c ≥b>aB.a>c ≥bC.c>b>aD.a>c>b(2)已知a ,b 是实数,且e <a<b ,其中e 是自然对数的底数,则a b 与b a 的大小关系是 .考点不等式的性质及应用【例2】(1)(2020北京海淀一模,4)已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A.b-a<c+aB.c 2<abC.cb >caD.|b|c<|a|c(2)(2020山西太原三模,理3)已知a>b>1,c<0,则 ( )A.c a<c bB.c a <c bc c D.log a (b-c )>log b (a-c ),求由这些量组成的代数式的范围常用不等式的哪些性质?解题心得1.已知某些量的范围,在求由这些量组成的代数式的范围时,常用不等式同向可加性、同向同正可乘性;2.在应用可乘方性时要注意应用的条件,当不等式两边异号时,平方后不等号不确定;3.当ab>0时,对不等式a>b 两边取倒数,或两边同乘以1ab ,化简得1b >1a.对点训练2(1)(2020海南高三期末,4)已知实数a ,b 满足a>b>0,则下列不等式一定成立的有( )A.a 2<b 2B.-a<-bC.b a+a b≥2D.a+b>ab(2)(2020山东青岛5月模拟,9改编)设a ,b ,c 为实数,且a>b>0,则下列不等式中正确的是( )A.log 2(ab )<log 2b 2B.ac 2>bc 2C.b a <1<a bD.(12)a >(12)b考点一元二次不等式的解法 (多考向探究)考向1 常系数一元二次不等式的解法【例3】解下列不等式: (1)2x 2-3x-2>0; (2)-3x 2+6x-2>0; (3)4x 2-4x+1≤0; 2x+2>0.?解题心得对于常系数一元二次不等式,可以用分解因式法求解,即把不等式分解成(x-a )(x-b )>0或(x-a )·(x-b )<0型不等式,再依据“大于取两边,小于取中间”的口诀写出解集;对难于因式分解的不等式可采用判别式法求解,先计算对应方程的判别式,若判别式不小于零,求出相应的一元二次方程的根,画出对应函数的简图,由图象得出不等式的解集,若判别式小于零,直接根据对应函数的图象确定不等式的解集.对点训练3解下列不等式: (1)x 2-3x+2<0; (2)3x 2+5x-2>0; (3)-2x 2+3x+2≤0.考向2 含参数的一元二次不等式的解法【例4】解关于x 的不等式ax 2+2x+1<0.?解题心得含有参数的不等式的求解,需要对参数进行分类讨论,讨论有三层:第一,若二次项系数含参数,先讨论二次项系数是否为零,以确定不等式是一次不等式还是二次不等式;第二,当二次项系数不为零时,若不易分解因式,则依据判别式符号进行分类讨论;第三,对方程的根进行讨论,比较大小,以便写出解集.对点训练4解关于x 的不等式x 2-ax-2a 2<0.考点分式不等式的解法【例5】已知全集U=R ,集合A={x||x-1|<1},B={x |2x -5x -1≥1},则A ∩(∁U B )=( ) A.{x|1<x<2} B.{x|1<x ≤2} ≤x<2} D.{x|1≤x<4}思考解分式不等式的基本思路是什么?解题心得解分式不等式时,切忌直接去分母,一般先通过移项、通分,将分式不等式化简如化为f (x )g (x )>0或f (x )g (x )<0,再等价转化为整式不等式的形式(如化为{f (x )g (x )>0,g (x )≠0或{f (x )g (x )<0,g (x )≠0),即转化为一次、二次或高次不等式. 对点训练5不等式2x -33x -4≤2的解集为 .考点 一元二次不等式恒成立问题 (多考向探究)考向1 主元x 在R 上恒成立求参数范围【例6】若一元二次不等式2kx 2+kx-38<0对一切实数x 都成立,则k 的取值范围为( ) A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)考向2 主元x 在给定区间上恒成立求参数范围【例7】设对任意实数x ∈[-1,1],不等式x 2+ax-3a<0恒成立,则实数a 的取值范围是( ) A.a>0B.a>12C.a>0或a<-12D.a>14?考向3 给定参数范围的恒成立问题【例8】已知对任意的k ∈[-1,1],函数f (x )=x 2+(k-4)x+4-2k 的值恒大于零,则x 的取值范围是 .解题心得1.ax 2+bx+c ≥0(a ≠0)对任意实数x 恒成立的条件是{a >0,Δ≤0;ax 2+bx+c ≤0(a ≠0)对任意实数x 恒成立的条件是{a <0,Δ≤0.2.含参数的一元二次不等式在某区间内恒成立问题,常有两种解决方法:一是利用二次函数在区间上的最值来解决;二是先分离出参数,再通过求函数的最值来解决.3.已知参数范围求函数自变量的范围的一般思路是更换主元法.把参数当作函数的自变量,得到一个新的函数,然后利用新函数求解.对点训练6(1)已知a 为常数,∀x ∈R ,ax 2+ax+1>0,则a 的取值范围是( ) A.(0,4) B.[0,4) C.(0,+∞) D.(-∞,4)(2)已知函数f (x )=x 2+mx-1,若对于任意x ∈[m ,m+1],都有f (x )<0成立,则实数m 的取值范围是 .(3)已知不等式xy ≤ax 2+2y 2对x ∈[1,2],y ∈[2,3]恒成立,则实数a 的取值范围是 .1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一.作差法的主要步骤为作差—变形—判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.3.简单的分式不等式可以等价转化,利用一元二次不等式的解法进行求解.4.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情形转化为a>0的情形.5.(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.中学阶段解不等式的基本思想是转化与化归思想,对于含有参数的不等式,还要用到分类讨论思想、函数与方程思想以及数形结合的思想.根据以上基本思想,同学们有必要探究以下几种不等式的解法,以提高自己的数学素养.一含有绝对值的不等式1.绝对值的属性:非负性2.式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方去掉绝对值.3.若不等式满足以下特点,可直接利用公式进行变形求解: (1)|f (x )|>g (x )的解集与f (x )>g (x )或f (x )<-g (x )的解集相同; (2)|f (x )|<g (x )的解集与-g (x )<f (x )<g (x )的解集相同.4.对于其他含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理.【例1】解下列不等式: (1)|x 2+x|≤3x ; (2)|x-1|+|x+2|<5; 2x-1|-|x-2|<0.方法1)原不等式可转化为-3x ≤x 2+x ≤3x ,即{x 2+x ≥-3x ,x 2+x ≤3x ,解得{x ≥0或x ≤-4,0≤x ≤2.∴0≤x ≤2.(方法2)观察到若要使得不等式|x 2+x|≤3x 成立,则3x ≥0,即x ≥0,进而|x 2+x|内部恒为正数,绝对值直接去掉,即只需解x 2+x ≤3x 即可,解得0≤x ≤2,∴不等式的解集为[0,2].(2)含多个绝对值的问题,可通过“零点分段法”来进行分类讨论.令两个绝对值分别为零,解得x=-2,x=1,作出数轴,将数轴分为三部分,分类讨论: ①当x>1时,不等式变为x-1+x+2<5,解得x<2, ∴1<x<2.②当-2<x ≤1时,不等式变为1-x+x+2<5,解得3<5,∴-2<x ≤1时不等式均成立. ③当x ≤-2时,不等式变为1-x-x-2<5,解得x>-3,∴-3<x ≤-2. 综上所述,不等式的解集为(-3,2).(3)思路:本题依然可以仿照(2)的方式进行零点分段,再解不等式,但从另一个角度观察,所解不等式为|2x-1|<|x-2|,两边均是绝对值(非负数),所以还可以考虑两边平方(所用不等式性质:a>b ≥0⇒a 2>b 2)一次将两个绝对值去掉,再进行求解.∵|2x-1|<|x-2|,∴(2x-1)2<(x-2)2,4x 2-4x+1<x 2-4x+4, ∴3x 2<3,解得-1<x<1, ∴不等式的解集为(-1,1).归纳小结1.含绝对值的不等式要注意观察式子特点,选择更简便的方法.2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.二简单的高次不等式的解法【例2】解不等式:(x-1)(x+2)(x-3)>0.列表法):求得相应方程的根为-2,1,3. 列表如下:由上表可知,原不等式的解集为{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x 1)(x-x 2)…(x-x n )>0(<0)形式(各项x 的系数化为正数),令(x-x 1)(x-x 2)…(x-x n )=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n 个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号; ④看下面各因式积的符号写出不等式的解集. 穿根法):①(x-1)(x+2)(x-3)=0的根是-2,1,3,在数轴上表示这三个数. ②由右上方穿线,经过数轴上表示各根的点.③若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间; 若不等式是“<0”,则找“线”在x 轴下方的区间. 由图可知,原不等式的解集为{x|-2<x<1或x>3}. 小结:此法叫穿根法,解题步骤是:①将不等式化为(x-x 1)(x-x 2)…(x-x n )>0(<0)形式,并将各因式x 的系数化“+”; ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点;④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.【例3】解不等式:(x-2)2(x-3)3(x+1)<0. 检查各因式中x 的符号均正.②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根).③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图.④∴原不等式的解集为{x|-1<x<2或2<x<3}. 说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f (x )有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.对点训练解不等式:(x-3)(x+1)(x 2+4x+4)≤0.三无理不等式常见题型及等价转化:(1)√f (x )>√g (x )⇔{g (x )≥0,f (x )>g (x );(2)√f (x )>g (x )⇔{g (x )≥0,f (x )>g 2(x ),或{f (x )≥0,g (x )<0;(3)√f (x )<g (x )⇔{f (x )≥0,g (x )≥0,f (x )<g 2(x ).【例4】解不等式:√2x -1≤x-2. √2x -1≤x-2⇔{2x -1≥0,x -2≥0,2x -1≤(x -2)2,即{x ≥12,x ≥2,x ≤1或x ≥5,所以x ≥5,所以原不等式的解集为[5,+∞).√2x -1=t (t ≥0),则x=t 2+12, 所以原不等式化为t ≤t 2+12-2,所以t 2-2t-3≥0,即t ≤-1或t ≥3. 因为t ≥0,所以t ≥3,所以x ≥5. 【例5】解不等式:√2ax -a 2>a-x (a>0).√2ax -a 2>a-x ⇔①{2ax -a 2≥0,a -x ≥0,2ax -a 2>(a -x )2,或②{2ax -a 2≥0,a -x <0, 而①⇔{a -x ≥0,2ax -a 2>(a -x )2⇔{x ≤a ,x 2-4ax +2a 2<0⇔{x ≤a ,(2-√2)a <x <(2+√2)a⇔(2-√2)a<x ≤a (因为a>0). ②⇔{x ≥a2,x >a⇔x>a (因为a>0).所以原不等式的解集是((2-√2)a ,a ]∪(a ,+∞),即((2-√2)a ,+∞). 【例6】解不等式:(x-1)√x +2≥0.x-1)√x +2≥0⇔(x-1)√x +2>0,或(x-1)√x +2=0 ⇔{x -1>0,x +2>0,或{x -1=0,x +2≥0,或x+2=0 ⇔x>1或x=1或x=-2.所以原不等式的解集是[1,+∞)∪{-2}.归纳小结无理不等式的等价转化即由无理不等式转化为等价的有理不等式来求解,要求必须熟练掌握;其他解法要根据不等式的具体情况而定.1.2 简单不等式的解法必备知识·预案自诊知识梳理1.(1)> = < (2)> = <3.{x|x>x 2或x<x 1} {x|x 1<x<x 2} ⌀ ⌀考点自诊1.(1)× (2)√ (3)√ (4)× (5)×2.D ∵a ,b ,c ,d ∈R ,且a>b ,c>d ,根据同向不等式的可加性,得a+c>b+d ,故选D .3.B 由x>y ,得-x<-y.由y=2t 是增函数,得2-x <2-y .4.C 由题意,得A={-1,0,1,2,3},B={-2,-1,0,1,2},则A ∩B={-1,0,1,2},故选C.5.1,0,-1(答案不唯一) 由c<b<a 且ac<0,可取a 为正数,c 为负数,由命题为假命题,得ab<ac 不成立,即ab ≥0,所以a ,b ,c 可取的一组分别为1,0,-1.关键能力·学案突破例1(1)B (2)B (1)M-N=a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1).∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M-N>0. ∴M>N.(2)(方法1)易知a ,b ,c 都是正数,b a =3ln44ln3=log 8164<1,所以a>b ;b c =5ln44ln5=log 6251024>1, 所以b>c.故c<b<a.(方法2)对于函数y=f (x )=lnx x ,y'=1-lnx x 2,易知当x>e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c<b<a.对点训练1(1)A (2)a b >b a (1)∵c-b=4-4a+a 2=(a-2)2≥0,∴c ≥b.又b+c=6-4a+3a 2,∴2b=2+2a 2. ∴b=a 2+1.∴b-a=a 2-a+1=(a -12)2+34>0,∴b>a.∴c ≥b>a. (2)令f (x )=lnx x ,则f'(x )=1-lnx x 2,当x>e 时,f'(x )<0,所以f (x )在(e,+∞)上单调递减,因为e <a<b ,所以f (a )>f (b ),即lna a>lnb b⇒b ln a>a ln b ⇒a b >b a. 例2(1)D (2)C (1)(方法1)根据数轴可得c<b<a<0,且|c|>|b|>|a|,对于A:因为c<b ,a<0,所以c+a<c ,b-a>b ,则c+a<c<b<b-a ,即c+a<b-a ,故A 错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c 2>b 2>a 2,且b 2>ab ,所以c 2>b 2>ab ,即c 2>ab ,故B 错误;对于C:因为b<a<0,所以1b>1a,则c b<c a,故C 错误;对于D:因为|b|>|a|,且c<0,所以|b|c<|a|c ,故D 正确.(方法2)不妨令c=-5,b=-4,a=-1,则c+a=-6<b-a=-3,故A 错误;c 2=25>ab=4,故B 错误;cb =54<ca =5,故C 错误;|b|c=-20<|a|c=-5,故D 正确.故选D .(2)由于a>b>1,所以0<1a <1b ,又c<0,故ca >cb ,选项A 错误;当c=-2,a=4,b=3时,c a >c b ,故选项B 错误;由于a>b>1,c<0,故a c <b c ,选项C 正确;由于a>b>1,c<0,所以a-c>b-c ,故log a (b-c )<log b (a-c ),选项D 错误,故选C .对点训练2(1)B (2)C (1)因为a>b>0,于是a 2>b 2,故A 不正确;由a>b>0,得-a<-b ,故B 正确;由基本不等式可知ba +ab ≥2√b a ·ab =2,因为a>b ,所以等号取不到,故C 不正确;当a=3,b=2时,3+2<2×3,故D 不正确.故选B.(2)由a>b>0,得ab>b 2,所以log 2(ab )>log 2b 2,故A 不正确; 因为c 2≥0,当c 2=0时,ac 2=bc 2,故B 不正确;由a>b>0,两边同乘1b ,得ab >1,由a>b>0,两边同乘1a ,得ba <1,故C 正确;由a>b ,函数y=(12)x为减函数,得(12)a<12b,故D 不正确.故选C.例3解(1)由2x 2-3x-2=2(x-2)x+12>0,得不等式的解集是x x<-12或x>2.(2)不等式可化为3x 2-6x+2<0.因为3x 2-6x+2=0的判别式Δ=36-4×3×2=12>0,所以方程3x 2-6x+2=0的解是x 1=1-√33,x 2=1+√33.因为函数y=3x 2-6x+2是开口向上的抛物线,所以不等式的解集是x 1-√33<x<1+√33.(3)方程4x 2-4x+1=0的解是x 1=x 2=12,函数y=4x 2-4x+1是开口向上的抛物线,所以原不等式的解集是x x=12.(4)因为x 2-2x+2=0的判别式Δ<0,所以方程x 2-2x+2=0无解.又因为函数y=x 2-2x+2是开口向上的抛物线,所以原不等式的解集为R .对点训练3解(1)∵(x-1)(x-2)<0,∴1<x<2.故原不等式的解集为(1,2).(2)方程3x 2+5x-2=0的两解是x 1=-2,x 2=13.函数y=3x 2+5x-2的图象是开口向上的抛物线,与x 轴有两个交点(-2,0)和13,0.不等式的解集为x x<-2,或x>13.(3)原不等式化为2x 2-3x-2≥0,∵2x 2-3x-2=0的两解为x 1=-12,x 2=2,∴不等式的解集是x x ≤-12,或x ≥2.例4解(1)当a=0时,不等式的解集为x x<-12,(2)当a>0时,Δ=4-4a ,①Δ>0,即0<a<1时,不等式的解集为x -1-√1-a a <x<-1+√1-aa ;②Δ≤0,即a ≥1时,不等式的解集为⌀. (3)当a<0时,Δ=4-4a>0,不等式的解集为x x<-1+√1-aa,或x>-1-√1-a a.对点训练4解原不等式变形为(x-2a )(x+a )<0.①若a>0,则-a<x<2a ,此时不等式的解集为{x|-a<x<2a }; ②若a<0,则2a<x<-a ,此时不等式的解集为{x|2a<x<-a }; ③若a=0,则原不等式即为x 2<0,此时解集为⌀.例5C 由题意得A={x||x-1|<1}={x|-1<x-1<1}={x|0<x<2},B={x|2x -5x -1≥1}={x|x -4x -1≥0}={x|x<1或x ≥4},∴∁U B={x|1≤x<4},∴A ∩(∁U B )={x|1≤x<2}.故选C .对点训练5(-∞,54]∪(43,+∞) 由2x -33x -4≤2,得4x -53x -4≥0,解得x>43或x ≤54. 例6D 2kx 2+kx-38<0对一切实数x 都成立,则必有{2k <0,Δ=k 2-4×2k ×(-38)<0,解得-3<k<0.例7B (方法1)y=x 2+ax-3a 的对称轴是x=-a2.①当-a2≥1,即a ≤-2时,区间[-1,1]是函数y=x 2+ax-3a 的减区间, 当x=-1时,函数有最大值,所以1-4a<0,得a>14,与a ≤-2相矛盾. ②当0<-a 2<1,即-2<a<0时,当x=-1时,函数有最大值. 代入不等式得a>14,与-2<a<0矛盾.③当-1<-a 2≤0,即0≤a<2时,当x=1有最大值时,代入不等式得1-2a<0,即a>12,故12<a<2. 要使不等式x 2+ax-3a<0恒成立, ∴12<a<2.④当-a 2≤-1,即a ≥2时,区间[-1,1]是函数y=x 2+ax-3a 的增区间,x=1时有最大值,代入不等式得1-2a<0,a>12,∴a ≥2.综上所述,a>12.故选B .(方法2)设f (x )=x 2+ax-3a ,∵对任意实数x ∈[-1,1],不等式x 2+ax-3a<0恒成立, ∴{f (-1)=1-a -3a <0,f (1)=1+a -3a <0, 即{1-4a <0,1-2a <0,∴{a >14,a >12,故a>12.故选B .例8{x|x<1或x>3} x 2+(k-4)x+4-2k>0恒成立,即g (k )=(x-2)k+(x 2-4x+4)>0在k ∈[-1,1]时恒成立.只需g (-1)>0,且g (1)>0,即{x 2-5x +6>0,x 2-3x +2>0,解得x<1或x>3.对点训练6(1)B (2)(-√22,0) (3)[-1,+∞) (1)因为∀x ∈R ,ax 2+ax+1>0,所以必有{a >0,Δ=a 2-4a <0或a=0,即0≤a<4. (2)对于任意x ∈[m ,m+1],都有f (x )<0,则有{f (m )<0,f (m +1)<0,即{m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-√22<m<0.(3)因为不等式xy ≤ax 2+2y 2对任意的x ∈[1,2],y ∈[2,3]恒成立, 所以a ≥y x -2(y x )2对任意的x ∈[1,2],y ∈[2,3]恒成立.令t=y x ,由x ∈[1,2],y ∈[2,3],可知1≤t ≤3, 所以a ≥t-2t 2在区间[1,3]上恒成立. 令f (t )=-2t 2+t ,则f (t )=-2t 2+t=-2(t -14)2+18.因为f (t )在区间[1,3]上单调递减,所以f (t )max =f (1)=-1,所以a ≥-1.案例探究1 三类不等式的解法对点训练解①将原不等式化为(x-3)(x+1)(x+2)2≤0.②求得相应方程的根为-2(二重),-1,3. ③在数轴上表示各根并穿线,如图.④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.。

相关文档
最新文档