捕收剂概述

捕收剂概述

书山有路勤为径,学海无涯苦作舟

捕收剂概述

广,易于制取;(2)价格低,便于使用,即易溶于水,无臭,无毒,成分稳定、不易变质等;(3)捕收作用强,具有足够的活性;(4)有较高的选择性,最好只对某一种矿物具有捕收能力。按照捕收剂的分子结构,可将捕收剂分为异极性捕收剂、非极性油类捕收剂和两性捕收剂等三类。异极性捕收剂是异极性物质。常见的异极性捕业剂如,黄药(R,OCSSNa)、脂肪酸(R-COOH)胺类(R—NH2)等。这类捕收剂的分子是由极性基(—OCSSNa,—COOH,—NH2)和非极性基(R-)两部分组成。在极性基中不

是全部的原子价都被饱和,因而有剩余亲和力,它们决定了极性基的作用活性。它与矿物表面作用时,固着在矿物表面上,故也叫亲固基。在非极性基中,全部原子价均被饱和,因此,具有很低的化学活性,不被水所润湿,也不易与其他化合物反应,对矿物表面起疏水作用。图1 用火柴图代表黄药分子(R-OCSSNa)及与矿物表面的作用关系:图1 黄药分子及与矿物表面作用示意图

由于黄药分子选择性地在矿物表面上吸附或发生化学固着,它有一定的取

向,即以极性基朝向矿物,以非极性基朝向水,因而在矿物表面形成一层疏水性薄膜。异极性捕收剂根据其是否可解离为离子,划分为离子型和非离子型捕收剂(如:多硫化物)。离子型捕收剂又根据起捕收作用的离子的电性,区分

为阴离子捕收剂与阳离子捕收剂。

图2 捕收剂的分类

捕收剂的另一大类,是非极性油类捕收剂,其化学通式为R—H ,例如,煤油,变压器油等。由于油类捕收剂分子内各原子之间以极强的共价键相互结合,对外则呈现为弱分子键的非极性矿物,因而易附着于表面同样呈弱分子键

黄药在选矿中的应用副本

黄药在选矿中的应用副本 This manuscript was revised by the office on December 10, 2020.

黄药在选矿中的应用 摘要:随着当前矿物分选业的发展和对分选矿物要求的提高,矿用浮选剂的种类越来越多,对矿物的分离效果要求也越来越高,其中黄药主要用作浮选类选择性捕收剂,黄药是一种磺酸根与相应离子作用的巯基类矿用浮选剂,本文主要是介绍黄药、黄药分类、黄药的物理化学性质、制备及其黄药在硫化矿、重金属等分选选矿中的应用。 关键字:黄药黄药的制备黄药的应用。 Abstract:With the mineral separation industry development and improvement of mineral separation requirements, more and more kinds of ore flotation agent, the separation effect of mineral requirements are also getting higher and higher which xanthate is mainly used as selective flotation collector, xanthate is a sulfonic acid and the corresponding ion as with the thiol ore flotation agent, this paper is mainly xanthate, xanthate classification, xanthate, physical and chemical properties, preparation of xanthate and its application in mineral processing in sulfide mineral, heavy metal equal selection are introduced in this paper. Keywords: preparation of xanthate xanthate xanthate application

各种重金属捕集剂对比实验报告

北京弱水无极环保科技有限公司 四种重金属捕集剂对Cu2+去除对比实验报告 2013年5月18日

1 实验材料 陕西福天宝集团生产的DTCR3,上海丰信环保科技有限公司生产的PNT630,广州纳森化工有限公司生产的MCP4,北京弱水无极环保科技有限公司生产的 RS100。 2 仪器与试剂 分光光度计、天平及相应的器材。硝酸铜,天津市大茂化学试剂厂,分析纯;铜试剂(二乙基二硫代氨基甲酸钠),国药集团化学试剂有限公司,分析纯;浓氨水,国药集团化学试剂有限公司,分析纯。 3 试剂配制 10mg/L铜标准溶液配制:称取硝酸铜固体37.99mg溶于800ml去离子水至 1L容量瓶中,定容至1L,即得到10mg/L铜标准溶液。 50mg/L铜溶液配制:称取硝酸铜固体379.9mg溶于1600ml去离子水至2L 容量瓶中,定容至2L,即得到50mg/L铜溶液配制。 27mg/L铜试剂配制:称取35.51mg二乙基二硫代氨基甲酸钠(铜试剂)溶于800ml去离子水至1L容量瓶中,定容至1L,即得到27mg/L铜试剂。 1%质量分数重金属捕获剂溶液配置:称取四家公司生产的重金属捕集剂各 1g,加入99g去离子水,得到质量分数为1%的重金属捕集剂溶液,其浓度约为10mg/ml。 4 实验方法 4.1铜标准曲线的绘制 向1~8号100ml容量瓶中依次加入0.4,0.8,1.6,4.0,8.0,12.0,16.0,30.0ml 10mg/L铜标准溶液,加入过量的铜试剂标准溶液,用分析纯氨水调节pH值到9左右,用去离子水定容,在452nm处测定溶液的吸光度值,绘制标准曲线,得出线性回归方程及R2值。 4.2 捕集剂对水中铜离子的去除实验 用烧杯取500ml 50mg/L铜溶液3杯,向其中投入10,15,30,45,60ml 1%重金属捕集剂溶液,在室温下搅拌10min,沉淀5min,取上清液10ml过滤膜。 以上步骤重复四次。 4.3 水中剩余铜离子浓度检测实验

重金属捕捉剂

简介:首先,根据重金属含量和络合剂种类计算用量。根据重金属离子用量列表计算。 材料:①重金属捕捉剂②PAC ③PAM 方法: ①首先,根据重金属含量和络合剂种类计算重金属捕捉剂的用量。根据重金属离子用量列表计算。(对于铜,重捕剂的用量是铜的3-6倍左右(重量比);对于镍,重捕剂的用量是镍的 7.5倍左右,实际用量依具体情况而定。 ②用自来水将重金属捕捉剂溶解成2%的溶液。 ③调整废水的PH值,重金属捕捉剂适应的PH为2-14,最佳PH=8-9。具体的起始PH根据水质情况来定。 ④在快速搅拌下(>150转/分),加入计量的重金属捕捉剂溶液,反应时间2-5分钟。若废水有强络合剂(如EDTA),反应时间适当延长到10-15分钟。 ⑤取反应后的少许废水过滤, A.定性检测滤液重金属的去除情况。检测方法:在滤液中加入重金属捕捉剂溶液,如变色或有沉淀产生,说明重金属离子尚未除净,继续在废水加重金属捕捉剂溶液;如不变色或无沉淀产生,证明重金属已除净。 B.定性测重金属捕捉剂是否过量。方法:在滤液里加入原始的废水,变色或有沉淀产生,说明重金属捕捉剂过量;如不变色或无沉淀产生,证明重金属捕捉剂用量刚好。 进行下一步操作。 ⑥加入2%PAC溶液,用量是重金属捕捉剂的0.7-1.2倍。如果PAC的用量<100ppm,一般要加大PAC用量,使PAC用量>100ppm,这样在后续工序的矾花就会粗大,沉降速度也更快。在快速搅拌情况下,反应时间3-8分钟。 ⑦加入0.05%PAM(阴离子)溶液,用量为废水的5ppm,慢速搅拌(<10转/分),絮凝3-5分钟。沉淀30-60分钟,取上层清液测重金属离子含量。 备注:注意按照化学操作规范

浮选捕收剂的分类及应用

教学题目:浮选捕收剂的分类及应用 Title:Classification and Application of Collectors 目录 1、目的和意义Purpose and Significance 2、捕收剂结构与分类Structure and Classification of collectors 3、阴离子捕收剂Anionic collectors 4、阳离子捕收剂Cationic collectors 5、非离子性捕收剂Non-ionizing collectors 1、目的意义Purpose and Significance (1) 目的和意义: Without reagents there would be no flotation, and without flotation the mining industry, as we know it today, would not exist [By SRDJAN M.BULATOVIC]. 因此,学习和掌握浮选药剂的分类和应用非常重要,是学习浮选乃至选矿的基础,而浮选捕收剂又是浮选药剂中最重要的一种。 (2) 学习要求: 熟练掌握浮选捕收剂的分类方法和每一类捕收剂的浮选性能;掌握捕收剂适用的矿物类型;了解常用捕收剂的合成方法。 (3) 重难点: 同一类捕收剂结构、性质的异同点(尤其硫化矿捕收剂);捕收剂极性基按照结构的细分:中心核原子、亲固原子和连接原子。 (4) 参考书籍: ①浮选剂作用原理及应用[M].王淀佐,湖南:中南工业大学出版社. ②浮选药剂的化学原理[M].朱建光,湖南:中南工业大学出版社.

重金属捕捉剂 安全说明

重金属捕捉剂安全说明书 第一部分:化学品名称 化学品名称:重金属捕捉剂 别名:重金属捕集剂重金属螯合剂 第二部分:产品简单介绍 重金属捕捉剂,通常也被叫做重金属离子捕捉剂、重金属去除剂、重金属捕集剂、重金属螯合剂、重金属离子析出剂,重金属沉淀剂等。该药剂是一种能与重金属离子强力螯合的化工产品。采用接枝合成工艺,其枝链上的螯合基团能螯合重金属形成稳定不溶物而沉淀。 第三部分:重金属捕捉剂作用机理 重金属捕捉剂通过多种螯合基团对重金属离子螯合,产生疏水性结构而沉淀;同时,在体型结构的高分子作用下,通过絮集和网捕作用显著提高沉淀速度和去除率,从而摆脱了线性螯合沉淀的缺点。 第四部分:重金属捕捉剂产品特点 1、能在常温和很宽的PH条件范围内完成反应过程,且不受重金属离子浓度高低的影响; 2、能较好的沉淀废水中各种重金属离子,即使所处理废水中含有络合物成份,废水也能处理达标排放; 3、和市场同类产品比较,该药剂在重金属离子的去除、COD的去除、污泥的减少、絮凝效果等具有明显优势; 4、处理成本较低、处理效果优良、操作使用简便、环保无毒等特点。 5、使用范围广泛:适用于任何重金属离子的络合盐如柠檬酸、酒石酸、EDTA、氰、NH3、络合铜废水的处理。 第五部分:适用于以下各类型水质 金属电镀或表面处理加工工艺废水 生产线路板所产生的废水 复试杂质中包含的金属 来自焚烧炉或洗器废水 垃圾渗透液里的重金属

第六部分:重金属捕捉剂性能指标 第七部分:使用注意事项以及安全说明 1、先用PH 复合碱调整废水PH 值,检测调整PH 值后的废水中重金属离子的含量,根据废水中重金属离子浓度计算所需的用量。 2、该产品请稀释后使用,一般稀释比例可控制在5%~15%左右,稀释时请选用自来水或其他不含重金属离子水,切勿使用地下水。 3、药剂经稀释后建议投加在中和后,以节约产品,减少处理费用。在螯合沉淀工序后可投加无机或有机絮凝剂提高处理效果。

黄药在选矿中的应用01 - 副本

黄药在选矿中的应用 摘要:随着当前矿物分选业的发展和对分选矿物要求的提高,矿用浮选剂的种类越来越多,对矿物的分离效果要求也越来越高,其中黄药主要用作浮选类选择性捕收剂,黄药是一种磺酸根与相应离子作用的巯基类矿用浮选剂,本文主要是介绍黄药、黄药分类、黄药的物理化学性质、制备及其黄药在硫化矿、重金属等分选选矿中的应用。 关键字:黄药黄药的制备黄药的应用。 Abstract:With the mineral separation industry development and improvement of mineral separation requirements, more and more kinds of ore flotation agent, the separation effect of mineral requirements are also getting higher and higher which xanthate is mainly used as selective flotation collector, xanthate is a sulfonic acid and the corresponding ion as with the thiol ore flotation agent, this paper is mainly xanthate, xanthate classification, xanthate, physical and chemical properties, preparation of xanthate and its application in mineral processing in sulfide mineral, heavy metal equal selection are introduced in this paper. Keywords: preparation of xanthatexanthatexanthate application 一、黄药 黄药是由英国化学家Keller发明于20世纪20年代,主要通过醇类、碱及二硫化碳反应生成。黄药学名为黄原酸盐,化学名称为羟基二硫代碳酸盐,具有如下通式: ROCSSMe( Me 为K + 或Na + ) 。通常使用的主要有两种: 一种是黄原酸钠盐,称钠黄药; 另一种是黄原

重金属离子捕捉剂使用与理解方面的一些误区

重金属离子捕捉剂使用与理解方面的一些误区 纳森化工技术部 摘要:本文针对高分子重金属离子捕捉剂市场状况和人们对重捕剂的认识误区,分析了以下几方面的问题:关于破络和处理六价铬的问题、关于重捕剂使用PH值范围的问题、关于用药量的问题、关于与其他混凝剂絮凝剂配合使用的问题、关于使用高分子重捕剂与其他的重金属废水处理方法的一些比较。 用高分子重金属离子捕捉剂处理重金属离子废水是一种效果非常好的方法,但目前来说重捕剂市场还很不规范,蛇龙混杂,人们对重捕剂的认识也存在一些误区。 在《重金属离子捕捉剂及其性能、合成技术分析论述》一文中,已对高分子重捕剂的合成技术、性能理解、成本分析等问题作了相关的论述。在此对高分子重金属离子捕捉剂应用方面的问题作一些分析。 1.关于破络和处理六价铬的问题; 破络指的是采用一定的方法破坏废水中的CN-、NH3、EDTA等络合剂,以利于重金属离子的进一步去除。MCP因为有极性极强的鳌合基团,能够直接从其他络合剂中竞争鳌合沉淀出重金属。因此可以不必先进行破络处理。 氰化物是一种剧毒物质,虽然高分子重金属离子捕捉剂能够从氰络合物中竞争出金属离子,但破氰还是必须的。 六价铬一般是经过先还原以后再处理。黄原酸酯类和DTC类高分子重金属离子捕捉剂都能够还原六价铬,但其前提条件还是要在酸性环境中,PH为4-5左右即可。从成本方面来考虑,用而硫代氨基甲酸盐类高分子重捕剂来还原六价铬是不经济的。 常规的六价铬废水处理方法是在较强的酸性条件下用还原剂将六价铬先还原为三价再调PH,使之形成氢氧化物沉淀形式。操作过程比较麻烦。 用固体重金属捕捉粉(黄原酸酯类)产品处理六价铬是一种比较好的选择,它能够在较高的PH 值(微酸性)条件下直接处理含六价铬废水,同时可以去除其他重金属。 2.关于使用的PH值范围问题; 高分子重金属离子捕捉剂能够在很宽的PH范围(PH3-12)内应用,在此PH范围内确实可以使用重捕剂处理且都能取得较好效果。但不调PH值而直接使用重捕剂处理在成本上来说是不经济的,一般应该先调PH值到一定范围,使一部分重金属离子以氢氧化物的形式沉淀,剩下的重金属不能形成氢氧化物的形式沉淀完全,再加重金属捕捉剂处理,从而减少重捕剂的使用量,降低处理成本。 3.关于用药量的问题; 对于任何一种水处理药剂来说,用药量都是一个关键问题,用药量关系到水处理成本和处理效果。

硫化矿浮选捕收剂黄药及其酯类捕收剂

书山有路勤为径,学海无涯苦作舟 硫化矿浮选捕收剂黄药及其酯类捕收剂 广泛,成本较低。5 个碳及以上的高级黄药如戊基黄药、己基黄药和幸基黄药捕收力强,比较适用于难选矿的浮选,对提高金属回收率具有良好作用。同碳数的黄药同分异构体,如正丁基黄药、异丁基黄药和仲丁基黄药,其浮选性能基本相同。 就矿物可浮性与黄药捕收剂的关系而言,矿物可浮性一般取决于该矿物的金属离子与黄原酸生成盐类的溶解度大小,溶解度愈大,可浮性愈差。例如,铜、铅、锌的黄原酸盐在水中的溶解度大小顺序为: Zn2+Pb2+Cu+,因此,以黄药为捕收剂,斑铜矿和方铅矿的可浮性要好于闪锌矿。斑铜矿和方铅矿采用乙基黄药就能浮选,而闪锌矿则需采用碳数较长的高级黄药才能浮选。 在金属硫化矿浮选中,黄药通常配制成质量浓度为10%的溶液使用,用量一 般为50~ 100g/t,浮选pH 值一般为8 ~ 11。黄药的消耗主要取决于三方面因素: 一是在浮游矿物表面吸附形成疏水层,二是与矿浆中金属离子发生化学反应,三是脉石矿物特别是矿泥对黄药产生的吸附。因此,对于氧化率高、矿浆中杂质金属离子多、矿泥含量大的矿石,黄药的用量要明显增大,有时会达到200~300g/t。在氧化矿的浮选中,黄药的用量可以高达1kg/t 以上。 近年来,随着矿产资源日趋贫、细、杂化以及对资源利用率的要求的提高, 长碳链高级黄药的研究深受重视,不仅戊基黄药、己基黄药等黄药产品在我国有色金属矿山得到愈来愈普遍的应用,一些更高碳数的长链黄药如C8 ~C10、C10~C12 的黄药也相继出现。值得注意的是,在长碳链黄药的应用中,混合黄药产品占据了重要地位,包括戊基与丁基混合黄药、己基与丁基混合黄药等等。与丁基与乙基混合黄药相类似,长碳链混合黄药在一定程度上可以发挥不同碳链黄药捕收剂的协同作用,同时也更有利于降低其销售价格,

重金属捕捉剂

重金属捕捉(集)剂 重金属捕集剂能在常温下与废水中的各种金属离子如:Hg 2+ 、Cd 2+ 、Cu 2+ 、Pb 2+ 、Mn 2+ 、Ni 2+ 、Zn 2+ 、Cr 3+ 、Cr 6+ 等迅速反应,生成水不溶性的螫合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。经有关单位试用证实:重金属捕集剂处理方法简单,处理费用低,能够做到在多种重金属离子共存的情况下,废水经一次处理后,即可达到环保要求。对于废水中重金属共存盐与络合盐如:EDTA 、NH3 、柠檬酸等也能充分发挥作用,并且具有絮凝体粗大、沉淀快、脱水快,后处理容易,污泥量少,无第二次污染等特点,可广泛应用于电镀工业、电子工业、石化工业、金属加工业、垃圾焚烧处理、电厂烟道气洗涤等行业的含重金属离子废水处理。 一、简介 重金属捕集剂是一种操作简便、液状的、含二硫代氨基甲酸盐的高分子有机化合物、可以迅速将废水中重金属离子完全去除的化学药剂。重金属捕集剂在常温下与废水中各种金属离子如:铬、镍、铜、锌、汞、锰、镉、钒及锡等迅速反应,生成水不溶性的高分子螯合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。 目前,传统化学沉淀法无法完全达到环保要求,而重金属捕集剂经有关单位试用证明:处理方法简单(可在原化学沉淀法装置上直接投放),费用低,能做到多种重金属离子共存的情况下一次处理后,即可达到环保要求,即使对废水中重金属共存盐与络合盐(如:EDTA 、NH3 、柠檬酸等)也能充分发挥作用,并具有絮凝体粗大、沉淀快、脱水快、后处理容易、污泥量少且稳定无毒、没有二次污染等特点。 二、特点 1 .处理方法简单 只要投放重金属捕集剂即可除去重金属离子,方法简单,且不增加设备费用。 2 .去除效果好 重金属捕集剂与重金属离子强力螯合生成不溶物,形成絮凝,且达到去除重金属离子的目的。 a 、不论废水中的重金属离子浓度高低,均能发挥去除效果。 b 、无论是单一或多种重金属离子共存,均能一次处理,同时去除。 c. 、对重金属以络合盐形式(EDTA 、柠檬酸等)存在的情况,也能发挥良好的去除效果。 d 、胶质重金属也能去除。 e 、不受共存盐类的影响。 3 .絮凝效果佳。 因为重金属捕集剂是高分子制品,所以能生成良好的絮凝,以致沉降快速,过滤性好。 4 .污泥量少且稳定 污泥中的重金属不会再溶出(强酸条件除外),没有二次污染,后处理简单。 5 .安全性高 本产品无毒,可放心使用。 6 .污泥脱水容易。 传统化学沉淀法和低分子捕集沉淀剂处理时,大量使用助沉剂,致使污泥量增多,不易脱水,甚至粘在脱水机滤带上,造成脱水困难,而重金属捕集剂无此类现象。 三、使用重金属捕集剂法与传统化学沉淀法的比较

如何对比实验各类重金属捕捉剂

如何对比实验各类重金属捕捉剂 本经验对各类重金属捕集剂进行对比 工具/原料 ●重金属捕集剂 方法/步骤 1、10mg/L铜标准溶液配制:称取硝酸铜固体37.99mg溶于800ml去离子水至1L 容量瓶中,定容至1L,即得到10mg/L铜标准溶液。 2、50mg/L铜溶液配制:称取硝酸铜固体379.9mg溶于1600ml去离子水至2L容量瓶中,定容至2L,即得到50mg/L铜溶液配制。 3、27mg/L铜试剂配制:称取35.51mg二乙基二硫代氨基甲酸钠(铜试剂)溶于800ml去离子水至1L容量瓶中,定容至1L,即得到27mg/L铜试剂。 4、1%质量分数重金属捕获剂溶液配置:称取四家公司生产的重金属捕集剂各1 g,加入99g去离子水,得到质量分数为1%的重金属捕集剂溶液,其浓度约为10 mg/ml。 5、2.1如何绘制铜标准曲线:向1~8号100ml容量瓶中依次加入0.4,0.8,1.6,4.0,8.0, 12.0,16.0,30.0ml 10mg/L铜标准溶液,加入过量的铜试剂标准溶液,用分析纯氨水调节pH值到9左右,用去离子水定容,在452nm处测定溶液的吸光度值,绘制标准曲线,得出线性回归方程及R2值。 6、2.2 怎么样使用捕集剂对水中铜离子的去除实验:用烧杯取500ml 50mg/L铜溶液3杯,向其中投入10,15,30,45,60ml 1%重金属捕集剂溶液,在室温下搅拌10min,沉淀5min,取上清液10ml过滤膜。

7、以上步骤重复四次。 8、2.3接着检测水中剩余铜离子浓度实验:向10ml上清液中加入10ml左右的铜试剂标准溶液,用分析纯氨水调节pH=9左右,在452nm处测定溶液的吸光度值,代入铜标准曲线方程得到水中剩余铜离子浓度。 9、得出结论:铜标准曲线,中剩余铜离子浓度检测实验结果,重金属捕集剂加入体积与水中剩余Cu2+浓度相关关系图 实验结果分析: 如②所示,右边为重金属捕集剂对含铜重金属废水的处理效果,左边为某典型液体重金属捕集剂对相同含量铜废水处理效果,明显可以看出,经处理后的废水矾花成长情况较好,不需要投加混凝剂和助凝剂能获得较好沉淀效果,而液体重金属捕集剂废水絮凝效果较差,水中颗粒很难沉淀下来,在水中形成悬浮胶体。另外,500ml 50mg/L水中含有铜离子25mg,由实验结果可看出加入15ml 1% ,②已经能够将水中剩余Cu2+控制在0.1mg/L以下,比①中重金属捕集剂要达同样效果需要更多的量。

黄药的分析方法总结

浮选溶液中黄药及其分解产物的分析现状 摘要:本文综述了国内外对选矿水溶液中黄原酸盐的分析测定方法。阐述了紫外分光光度 法、化学滴定法、气相色谱法、高效液相色谱法、毛细管电泳法的基本原理,优缺点及测定效果。并指出黄原酸盐测试技术将向多种药剂同时测定的方向发展,对选矿厂药剂合理利用和分配具有重要的意义。 关键词:综述;黄原酸盐;测试技术; 前言 自1925年Keller首次在浮选过程中使用黄药作为捕收剂以来[1],关于黄药在浮选溶液中的变化规律,赋存状态的研究就倍受关注,因为这关系到黄药在浮选过程中的合理用量[2],自动化检测和控制,以及在选矿废水处理过程中具有重要的意义。但由于矿浆中成分复杂,溶液中干扰因素多,黄药在浮选过程中分解产物繁多,仪器设备的限制,加上实验操作的精确性,使得分析过程难上加难,分析结果不尽人意。近年来,随着现代科技的不断创新,技术的不断改进,对黄药及其衍生物测定的仪器方法更加精确和成熟。本文总结了目前国内外对黄药及其衍生物在溶液中常用的测试手段,并对各方法进行了比较,对捕收剂等微量药剂在溶液中的测定具有重要的意义。 一紫外可见分光光度法 紫外可见分光光度法在浮选研究中主要用于测定溶液中的低浓度浮选药剂,研究药剂与矿物作用产物的组成,某些调整剂在浮选过程中的作用,以及药剂吸附动力学等。 李文艳等[3]利用紫外可见分光光度计测定生产废水中乙基黄原酸钾的含量。先过滤出废水中的不溶性物质后,以待测废水为背景样进行校正,直接测定吸光度,有效的消除了干扰,该方法检出限为0.01mg /L,方法的线性范围为0.04—18mg /L,水样测定的相对标准偏差为1.63%。 贺心然等[4]采用紫外分光光度(UV)法测定待测水样中丁基黄原酸浓度,用待测水样作为背景校正,并通过对不溶性物质,可溶性物质如硝酸盐,亚硫酸盐,以及金属离子的干扰实验,使得实际水样的测定相对标准偏差小于5.76%,检出限为0.006 mg/ L、测定上限为12.00 mg/ L,利用不同方法对样品进行分析测试,无明显差异。 F. Hao, K.J. Davey, W.J. Bruckard, J.T. Woodcock等[5]进行了黄药在实验室浮选过程中的在线监测研究。通过紫外可见分光光度计等技术对黄药的浓度进行了实时测量,检出限达0.001mmol,利用HPLC对实时分析结果进行了比对,发现不同种类黄药的浓度与在线监测时相一致。研究有利于在选矿厂在浮选过程中药剂制度的改善,从而节省药剂用量。 松全元[6]曾利用紫外光谱研究钛铁矿表面苄基胂酸吸附动力学曲线。其将钛铁矿纯矿物置于数毫升苄基胂酸溶液中,在一定pH条件下搅拌后,溶液移入离心试管,离心分离得清液,用分光光度计测溶液的吸光度, ,即可求出钛铁矿吸附后苄基胂酸的剩余浓度。由相应公式可算得矿物表面的吸附密度,从而得到吸附动力学曲线。由于药剂吸附量一般在10-8一10-10mol/cm2数量级,这用常规分析方法是难以测定的,但利用紫外可见分光光度计通过测定与矿物作用后溶液中药剂浓度的变化,从而推算矿物表面的吸附量,是比较简单的。 余雪花等[7]研究了纯乙基黄药对纯黄铁矿相互作用行为的紫外光谱研究,在黄铁矿经硫酸铜活化后与黄药作用,除产生双黄药和一价铜的黄原酸盐外,还有二价铜的黄原酸盐,后者在高浓度的硫酸铜用量时较为显著。同时研究了随着pH的增加,乙黄药与黄铁矿作用后产生的双黄药原来越少,pH达11.7时,双黄药的生成量为0,在碱性条件下pH>9时黄铁矿表面

重金属捕捉剂

重金属捕捉剂(液体) 【产品概述】 重金属捕捉剂是运用高分子合成技术而制成的重金属离子废水专用处理药剂。该药剂利用自身分子中极性基产生的强烈负电场螯合废水中的Cu2+、Ni2+、Zn2+、Cr3+、Pb2+、Cd2+等重金属离子,生成不溶于水的絮状沉淀物。废水中重金属共存盐与络合盐(如: EDTA 、NH3 、柠檬酸等)也能充分发挥作用,并具有絮凝体粗大、沉淀快、脱水快、后处理容易、污泥量少且稳定无毒、没有二次污染等特点。 【产品特点】 1.方法简单,且不增加设备费用。 2.废水中的重金属离子浓度的高低、离子种类的多少,本产品都能一次性处理。 3.对重金属以络合盐形式( EDTA 、柠檬酸等)存在的情况,也能发挥良好的去 除效果。 4.絮凝效果佳。SEMT-1是高分子制品,所以能生成良好的絮凝,以致沉降快速, 过滤性好。 5.污泥量少且稳定,污泥中的重金属不会再溶出(强酸条件除外),没有二次污 染,后处理简单。 6.安全性高,本产品无毒,可放心使用。 7.污泥脱水容易。 【产品指标】

【产品使用方法】 1、小试方法 1)取一定量的重金属废水 2)用PH 中和粉调节水样的PH 值至10左右,检测水样中重金属离子的浓度,根据所检测到的重金属离子的浓度,来确定重金属捕捉剂的添加量。 3)添加重金属捕集剂,充分的混合。 2、、现场使用 1)将重金属捕捉剂直接添加于含重金属离子废水中瞬时反应,最佳的方法是每隔10min 搅拌一次; 2)对于废水中不确定的重金属浓度,须通过实验室实验来确定加入量。 3)对于不同浓度的含重金属离子废水的处理,重金属捕集剂的加入量可以通过ORP 来自动控制。 3、重金属捕捉剂与各种离子反应的颜色 4、每克重金属捕捉剂能够处理的重金属离子的量 【现场案例】 珠海某电子有限公司污水站的线路板废水,其废水中的铜离子含量高。 该厂主要处理情况如下:

黄药

黄药 xanthate huangyao 黄药(xanthate)硫化矿浮选常用的一种筑基S / 捕收剂。学名为烃基黄原酸盐,通式RO一C一S一Na (K),R为CZ_5烷基。醇与苛性碱和二硫化碳作用,生成黄药其基本反应式为S / ROH+MeOH+CS:一ROC一SMe+HZO+热性质黄药为黄色晶体或粉末,不纯品常为黄绿色或橙色的胶泥状物,有刺激性臭味,中等毒性,因此,生产黄药时应注意保护人体和防止环境污染。短碳链黄药易溶于水,易燃,稳定性差,合成黄药含水分多,保存期为半年。放置时间过长则结块变质,干燥黄药则比较稳定,能较长时间存放。黄药在水中水解成黄原酸,溶液呈碱性: SS Z/ ROC一SNa一ROC一S一十Na个SS // RO C一S一十HZO二二=乏ROC一SH+OH- 在酸性介质中黄原酸分解成醇和二硫化碳: S / ROC一SH节二二二亡ROH+CSZ 黄药与重金属离子作用生成难溶性盐: SS // ZROC一S Na+Mez十一(ROC一S)ZMe十+ZNa十式中MeZ+为CuZ+、PbZ+、ZnZ+、FeZ+……等。黄药被氧化则生成双黄药: S / 4ROC一SNa+02十ZHZO一SS 尹尹ZROC一S一S一C一OR+4NaOH 合成方法黄药早在1782年即已被合成,用作分析试剂,直至1925年才用于浮选作捕收剂。合成工艺有多种,如直接合成法、水溶液法、稀释剂法、部分稀释剂法、过量醇法、蒸汽法、碱金属醇淦法等。中国采用直接合成法生产,利用强烈搅拌的捏和机及在冷冻的条件下,将理论比例量的醇与氢氧化钠粉末互相作用,再缓慢加入二硫化碳,进行黄原酸化反应,得合成黄药,经干燥得干燥黄药;也可以采用“反加料法”,即先将醇与二硫化碳混合,再慢慢有控制地加入氢氧化钠粉末制成黄药。应用黄药用j兔甚广,迄今已有近70年的使用历史,在浮选工业中黄药用作硫化矿捕收剂,橡胶工业中用作硫化促进剂,分析化学中用乙基黄原酸钠作铜镍等金属离子的沉淀剂及比色剂,冶金工业中用黄药从溶液中沉淀钻镍,纤维素黄药用于制造人造纤维。黄药适用于浮选铜、铅、锌等金属硫化矿时用作捕收剂,对某些氧化矿,如氧化铜矿、氧化铅锌矿,用硫化钠硫化后也可以黄药作捕收剂进行浮选。浮选用的黄药有钾黄药和钠黄药两大类,在浮

重金属螯合剂

一:重金属螯合剂的概要 重金属螯合剂在无需经过任何破络合处理的情况下能够与镍铜强力螯合生成不溶于水的无害污泥重金属螯合剂能够将铜降低到0.3mg/L,镍降低到0.1mg/L以下。 二:重金属螯合剂特性及优势 经过分子结构层面的系统设计,在性能方面有了更大的优势,分子极性增加,与重金属离子的作用力提高,因而具有更强的重金属螯合能力,电荷布局更科学,能够自组装成更复杂的架桥结构,因而絮凝效果显著提高。以铜为例,重金属螯合剂可将含铜废水的铜离子浓度降至0.1ppm以下 而重金属螯合剂自身无毒性,在使用过程中不会产生硫化氢等有毒有害物质,使用量也不会增加废水COD.重金属螯合剂与重金属的螯合物在高温(不高于250℃)及强酸强碱条件下不分解,因此由重金属螯合剂稳定化处理的重金属土壤不会产生二次污染。 三:注意事项 1.管道投加要注意防堵 2. 人工投加要做好保护措施:戴口罩、手套 3. 包装与储存 4. 25KG/袋,牛皮纸包装 5. 存放于阴凉、干燥、通风处,不可与酸类物质一起存放 四:重金属螯合剂使用方法 1.首先,根据重金属含量和络合剂种类计算重金属螯合剂的用量。根据重金属离子用量列表计算。(对于铜,重金属螯合剂的用量是铜的3-6倍左右(重量比);对于镍,重金属螯合剂的用量是镍的7.5倍左右,实际用量依具体情况而定。 2.用自来水将重金属螯合剂溶解成2%的溶液。 3.调整废水的PH值,重金属螯合剂适应的PH为2-14,最佳PH=8-9。具体的起始PH根据水质情况来定。 4.在快速搅拌下(>150转/分),加入计量的重金属捕集剂重金属螯合剂溶液,反应时间2-5分钟。若废水有强络合剂(如EDTA),反应时间适当延长到10-15分钟。 5.取反应后的少许废水过滤, A.定性检测滤液重金属的去除情况。检测方法:在滤液中加入重金属螯合剂溶液,如变色或有沉淀产生,说明重金属离子尚未除净,继续在废水加重金属螯合剂溶液;如不变色或无沉淀产生,证明重金属已除净。 B.定性测重金属螯合剂是否过量。方法:在滤液里加入原始的废水,变色或有沉淀产生,说明重金属螯合剂过量;如不变色或无沉淀产生,证明重金属螯合剂用量刚好。进行下一步操作。 6.加入2%PAC溶液,用量是重金属螯合剂的0.7-1.2倍。如果PAC的用量<100ppm,一般要加大PAC用量,使PAC用量>100ppm,这样在后续工序的矾花就会粗大,沉降速度也更快。在快速搅拌情况下,反应时间3-8分钟。 7.加入0.05%PAM(阴离子)溶液,用量为废水的5ppm,慢速搅拌(<10转/分),絮凝3-5分钟。沉淀30-60分钟,取上层清液测重金属离子含量。

捕收剂知识介绍

捕收剂知识介绍 一、捕收剂的作用: 改变矿物表面的疏水性,使欲浮游的矿物粘附在气泡表面上浮起,以达到矿物分选的目的。 二、捕收剂的作用机理: 捕收剂与矿物表面的作用分为:物理吸附、化学吸附、表面化学反应。具体方式有各种看法,其中最主要的方式:非极性分子的物理吸附、双电层吸附、同名离子的交换吸附、分子吸附、化学吸附、捕收剂在矿物表面或矿浆中反应产物的吸附及表面化学反应等。 三、捕收剂的分类: 根据捕收剂的性质与矿物作用的极性基的成分和构造等,捕收剂分为非极性油类捕收剂、异极性的离子型捕收剂,其中分为阴离子型、阳离子型和两性捕收剂、非离子型的酯类捕收剂,以及络合(或螯合)剂型捕收剂。 非极性烃类油捕收剂最早用于矿物浮选,早在公元400年就有运用,直到1898年后在工业中运用全油浮选。1925~1926年,黄药和黑药运用到硫化矿的浮选中。我国在五十年代就生产了液体乙基黄药、固体乙基黄药、液体丁基黄药和白药、固体丁基黄药及25号黑药、精制大豆油脂肪酸、戊基黄药及混合基黄药、31号黑药等。60年代生产了阳离子型捕收剂—混合脂肪胺、试生产了羟肟酸钠和新型酯类捕收剂。到目前为止,我国已能够生产黄药、黑药、硫氮9号、硫氨酯、混合脂肪酸、混合甲苯胂酸、羟肟酸、羟肟酸钠、大豆油脂

肪酸硫酸化皂、氧化石蜡皂、油酸、油酸钠、十二胺等捕收剂。 四、磷矿浮选捕收剂: 在磷矿浮选中,国内外普遍采用氧化石钠皂、塔尔油等脂肪酸类捕收剂,其选择性差,对硬水及低温的适应性差。磷矿捕收剂采用的就是非硫化矿捕收剂。常用的有阳离子捕收剂和阴离子捕收剂、两性捕收剂。 1.阳离子捕收剂: 阳离子捕收剂主要为有机胺类,解离后,产生带有疏水烃基的胺基,是有色金属氧化矿、石英、长石等铝硅酸盐的有效捕收剂,对硅质、钙质、硅钙质磷矿都有分选性。阳离子捕收剂除了具有捕收性能外,还具有起泡性。特点:具有起泡性、选择性差、捕收能力强、对矿泥敏感。代表性药物:十二胺。 2.阴离子捕收剂: 阴离子捕收剂多为各种烃基含氧酸。羧酸盐类:油酸、氧化石钠皂、塔尔油和环烷酸等。磺酸盐类:石油磺酸、磺化煤油、十二烷基磺酸钠等,和脂肪酸相比,磺酸盐的水溶好,耐低温性能好,抗硬水能力强、起泡性强,其捕收能力和相同碳原子的脂肪酸比稍低,有时有较好的选择性。实际使用时可以考虑与脂肪酸混合使用。 3.两性捕收剂: 两性捕收剂的选择性好,一般在选别过程中只需要使用一种捕收剂,与脂肪酸捕收剂相比,它的适应性较强,尤其在硅钙质磷矿中。两性捕收剂有α-氨基脂肪酸、烷基磷酸酯(盐)、烷胺丙酸、氧乙烯

重金属捕集剂

重金属捕集剂 重金属捕集剂能在常温下与废水中的各种金属离子如: Hg 2+ 、 Cd 2+ 、 Cu 2+ 、 Pb 2+ 、Mn 2+ 、 Ni 2+ 、 Zn 2+ 、 Cr 3+ 、 Cr 6+ 等迅速反应,生成水不溶性的螫合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。经有关单位试用证实:重金属捕集剂处理方法简单,处理费用低,能够做到在多种重金属离子共存的情况下,废水经一次处理后,即可达到环保要求。对于废水中重金属共存盐与络合盐如: EDTA 、 NH3 、柠檬酸等也能充分发挥作用,并且具有絮凝体粗大、沉淀快、脱水快,后处理容易,污泥量少,无第二次污染等特点,可广泛应用于电镀工业、电子工业、石化工业、金属加工业、垃圾焚烧处理、电厂烟道气洗涤等行业的含重金属离子废水处理。 一、简介 重金属捕集剂是一种操作简便、液状的、含二硫代氨基甲酸盐的高分子有机化合物、可以迅速将废水中重金属离子完全去除的化学药剂。重金属捕集剂在常温下与废水中各种金属离子如:铬、镍、铜、锌、汞、锰、镉、钒及锡等迅速反应,生成水不溶性的高分子螯合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。 目前,传统化学沉淀法无法完全达到环保要求,而重金属捕集剂经有关单位试用证明:处理方法简单(可在原化学沉淀法装置上直接投放),费用低,能做到多种重金属离子共存的情况下一次处理后,即可达到环保要求,即使对废水中重金属共存盐与络合盐(如: EDTA 、 NH3 、柠檬酸等)也能充分发挥作用,并具有絮凝体粗大、沉淀快、脱水快、后处理容易、污泥量少且稳定无毒、没有二次污染等特点。 二、特点 1 .处理方法简单 只要投放重金属捕集剂即可除去重金属离子,方法简单,且不增加设备费用。 2 .去除效果好 重金属捕集剂与重金属离子强力螯合生成不溶物,形成絮凝,且达到去除重金属离子的目的。 a 、不论废水中的重金属离子浓度高低,均能发挥去除效果。 b 、无论是单一或多种重金属离子共存,均能一次处理,同时去除。 c. 、对重金属以络合盐形式( EDTA 、柠檬酸等)存在的情况,也能发挥良好的去除效果。 d 、胶质重金属也能去除。 e 、不受共存盐类的影响。 3 .絮凝效果佳。 因为重金属捕集剂是高分子制品,所以能生成良好的絮凝,以致沉降快速,过滤性好。 4 .污泥量少且稳定 污泥中的重金属不会再溶出(强酸条件除外),没有二次污染,后处理简单。 5 .安全性高 本产品无毒,可放心使用。 6 .污泥脱水容易。 传统化学沉淀法和低分子捕集沉淀剂处理时,大量使用助沉剂,致使污泥量增多,不易脱水,甚至粘在脱水机滤带上,造成脱水困难,而重金属捕集剂无此类现象。

捕收剂概述

书山有路勤为径,学海无涯苦作舟 捕收剂概述 广,易于制取;(2)价格低,便于使用,即易溶于水,无臭,无毒,成分稳定、不易变质等;(3)捕收作用强,具有足够的活性;(4)有较高的选择性,最好只对某一种矿物具有捕收能力。按照捕收剂的分子结构,可将捕收剂分为异极性捕收剂、非极性油类捕收剂和两性捕收剂等三类。异极性捕收剂是异极性物质。常见的异极性捕业剂如,黄药(R,OCSSNa)、脂肪酸(R-COOH)胺类(R—NH2)等。这类捕收剂的分子是由极性基(—OCSSNa,—COOH,—NH2)和非极性基(R-)两部分组成。在极性基中不 是全部的原子价都被饱和,因而有剩余亲和力,它们决定了极性基的作用活性。它与矿物表面作用时,固着在矿物表面上,故也叫亲固基。在非极性基中,全部原子价均被饱和,因此,具有很低的化学活性,不被水所润湿,也不易与其他化合物反应,对矿物表面起疏水作用。图1 用火柴图代表黄药分子(R-OCSSNa)及与矿物表面的作用关系:图1 黄药分子及与矿物表面作用示意图 由于黄药分子选择性地在矿物表面上吸附或发生化学固着,它有一定的取 向,即以极性基朝向矿物,以非极性基朝向水,因而在矿物表面形成一层疏水性薄膜。异极性捕收剂根据其是否可解离为离子,划分为离子型和非离子型捕收剂(如:多硫化物)。离子型捕收剂又根据起捕收作用的离子的电性,区分 为阴离子捕收剂与阳离子捕收剂。 图2 捕收剂的分类 捕收剂的另一大类,是非极性油类捕收剂,其化学通式为R—H ,例如,煤油,变压器油等。由于油类捕收剂分子内各原子之间以极强的共价键相互结合,对外则呈现为弱分子键的非极性矿物,因而易附着于表面同样呈弱分子键

选矿药剂汇总--捕收剂

1、羟肟酸类选矿药剂 烷基羟肟wò酸具有2种同时存在的互变异构体:氧肟酸和异羟肟酸。 烷基7-9羟肟酸(RCONHONa)为红棕色油状液体,含烷基羟肟酸60-65%,脂肪酸15-20%,水分15-20%,易溶于热水,有毒性。在有无机酸存在时,羟肟酸容易水解成羟氨和羧酸。可用来浮选锡石、氧化铁矿、稀土、磷酸盐矿、黑钨矿、白钨矿、重晶石、氧化铅锌矿等,是一种选择性良好的捕收剂。 苯甲羟肟酸,红棕色固体,捕收能力较烷基羟肟酸弱,选择性好,主要用于铁矿石正浮选。 品名:水杨羟肟酸(同名:水杨氧肟酸) 主要成份:水杨基羟肟酸(水杨基氧肟酸) 分子式: C6H4OHCONHOH 性状: 产品为粉红至桔红色固体粉末,微溶于水,可溶于碱溶液,性质稳定,带有水杨酸气味。 主要用途: 水杨羟肟酸能与锡、钨、稀土、铜、铁等金属形成稳定的螯合物,而与碱土金属及碱

金属形成不稳定的螯合物,所以,水杨羟肟酸具有较好的选择性。特别是水杨羟肟酸与锡石螯合时不仅能形成多种形式的外络盐,而且还能形成不同构成的内络盐,因此,水杨羟肟酸对锡的选择性较强。该品在锡石选矿中通常与P86配套使用,并具有一定的起泡性。该品还具有毒性低(是卞基胂酸的十六分之一,故此品的应用还可以使环保问题得到大大改善)、用药量少、适用性强等特点,具有较高的推广应用价值。 2、磷酸酯、膦酸类选矿药剂 烷基磷酸酯分磷酸单酯、磷酸二酯、磷酸三酯,用作捕收剂时,单酯最好,二酯次之,三酯不能单独用作捕收剂,需与别的捕收剂混合使用,作为辅助捕收剂。 烷基磷酸酯作为锡石、铀矿、磷灰石、赤铁矿捕收剂。 烃基膦酸与烷基磷酸酯不同,烃基膦酸分子中的磷原子直接与烃链上的碳原子相连。有机膦酸作为捕收剂的主要是苯乙烯膦酸,为白色结晶,可溶于水,且溶解度随温度的升高而增大,与Sn、Fe离子形成难溶盐,与钙、镁离子在高浓度时形成盐,故对含钙、镁的矿物捕收能力较弱。选择性比甲苯胂酸稍差,但毒性小,无起泡性,用来浮选锡石、黑钨矿等。 膦酸捕收锡石的作用机理:膦酸在锡石表面形成化合物而固着。 3、胂酸类选矿药剂 砷酸的衍生物,如烷基胂酸,混合甲苯胂酸(邻,对2种异构体混合物)。烷基胂酸一般为无色晶体,具有毒性,能与许多重金属阳离子作用生成难溶盐,但对钙镁离子不敏感;混合甲苯胂酸为白色或浅黄色粉末,易溶于热水或碱性溶液,难溶于冷水。对黑钨矿,锡石,金红石稀土矿等有捕收作用。但工业品中含有砒霜,有毒,现已基本被膦酸或羟肟酸取代。

重金属捕集剂应用概述

重金属捕集剂应用概述 (上海轻工业研究所有限公司研发中心杨林) 摘要:本文介绍了重金属捕集剂在处理重金属离子的原理,以及目前应用较多的重金属捕集剂类别和研究现状,重点介绍了应用最为广泛的DTC类重金属捕集剂的应用范围和特点,同时与化学沉淀法经济性进行对比。 关键词:重金属捕集剂处理种类 DTC 应用 前言 重金属捕集剂是一种操作简便、液状的、高分子有机化合物、可以迅速将废水中重金属离子沉淀去除的化学药剂。重金属捕集剂在常温下与废水中各种金属离子如:铬、镍、铜、锌、汞、锰、镉、钒及锡等迅速反应,生成水不溶性的高分子螯合盐,并形成絮状沉淀,从而达到去除重金属离子的目的。 目前,传统化学沉淀法无法完全达到环保要求,而重金属捕集剂经有关应用证明:处理方法简单(可在原化学沉淀法装置上直接投放),费用低,能做到多种重金属离子共存的情况下一次处理后,即可达到环保要求,即使对废水中重金属共存盐与络合盐(如:EDTA、NH3、柠檬酸等)也能充分发挥作用,并具有絮凝体粗大、沉淀快、脱水快、后处理容易、污泥量少且稳定无毒等特点。可广泛应用于电镀工业、电子工业、石化工业、金属加工业、垃圾焚烧处理、电厂烟道气洗涤等行业的含重金属离子废水处理。 1 重金属捕集剂作用原理 重金属捕集剂通常含有O、N、P、S等配位原子,如羟肟酸类重金属捕集剂主要是以O为配位原子,磷酸类重金属捕集剂主要以P为配位原子。由于S既是配位原子,又可以结合重金属离子形成硫化物沉淀;另外从酸碱理论上说,重金属离子一般属于弱酸或中间酸,而有机硫化物则属于软碱或中间碱,二者易结合生成稳定的络合物。因此市售的很多重金属捕集剂均为有机硫类。图1.1为常见有机硫类重捕剂基本结构及捕集重金属的原理。 2 重金属捕集剂种类与研究 2.1 DTC类重金属捕集剂 二硫代氨基甲酸盐(DTC:Dithiocarbamate),早在19世纪中期就已经实现实验室合成,但DTC衍生物作为重金属捕集剂的研究始于20世纪中叶,美国20年代

相关文档
最新文档