减法运算电路设计

减法运算电路设计
减法运算电路设计

减法运算电路设计

一、实验目的

1、了解运算放大器在信号放大和模拟运算方面的应用。

2、掌握运算放大器的正确使用方法。

3、掌握基本放大电路的设计方法。

4、了解如何设计用两个集成运算放大器来设计加法器。

二、实验仪器

示波器、信号源、+12V和-12V的直流稳压电源、万用表。

三、实验器件

HA17741运放、电阻、导线。

四、实验原理

集成运算放大器是高增益的直流放大器,在它的输入端和输出端之间加上不同的反馈网络,就可以实现各种不同的电路功能。可实现放大功能及加、减、微分、积分、对数、乘、除等模拟运算功能及其他非线性功能;将正、负两种反馈网络相结合,还可以产生各种模拟信号的功能。

本实验着重以输入和输出之间施加线性负反馈网络后所具有的运算功能进行研究。理想运放在线性运用时具有以下重要性:

1.理想运放的同相和反相输入端电流近似为零,即I+=I-=0。

2..理想运放在线性放大时,两输入端电压近似相等,即U+=U-

在电路中我采用了如下图所示,两个运放电路,第一个是反向比例运放,第二个是加法电路,通过反向比例运放电压从U+变为U-,在通过加法电路进行叠加就构成了减法电路了。

减法电路的电压运算的推导:

根据理想运放的同相和反相输入端电流近似为零,即I+=I-=0和理想运放在线性放大时,两输入端电压近似相等,即U+=U-可得

U+=U-

I+=I-=0

U1—U-/R= U—U0/R f

第一个运放Uo1=-(Rf/R1*Ui1+Rf/R2*Ui2),

第二个运放Uo=-(Rf/R1*Ui1+Rf/R2(-Ui2))=Rf/R2*Ui2-Rf/R1*Ui1

其中R1=R2=Rf=30K

五、实验电路图

六、实验内容及步骤

用运算放大器HA17741完成本次实验的设计题目——减法器。HA17741的工作电压为+12V、-12V。

设计的加法器电路如图所示,其中取电阻R=20K R1=R2=Rf=30K R0=10K可得

U0=U i2-U i1

分别输入交流和交流信号、交流和直流信号、直流和直流信号,验证输出和输入是否满足关系U0=Ui2-Ui1,还有就是每种输入信号时输入较大的信号观察波形是否失真,失真时是否满足关系式U0=Ui2-Ui1。

应当注意的是:输入两个交流信号频率相同(使用滑动变阻器分压原理可以得到两个同频率信号)。

步骤:1.设计好本次试验所需的电路图;

2.检查电路是否连通,并在Multism软件上仿真出来观察其波形变化;

3.在试验箱上验证仿真的正确性,并记录下原始数据;

4.在未失真时测量三种信号的输入和输出,并记录数据(要求每种信

号各测量10组数据)。

七、实验数据记录及处理

交流-交流

直流-直流

八、实验误差分析

在对运算电路进行分析时,均认为集成运放为理想运放。然而在实际上,利用运放构成运算电路时,由于开环差模增益Aod、差模输入电阻rid和共模抑制比KCMR的存在,以及输入失调电压UIO、失调电流IIO以及它们的温漂d(UIO)/d(T)、d(IIO)/d(T)均不为零,必然造成误差。对于反向比例运算电路,开环差模增益Aod和差模输入电阻rid愈大,相对误差的数值愈小;对于同相比例运算电路,开环差模增益Aod和共模抑制比KCMR愈大,相对误差的数值愈小;在集成运放同相输入端和反向输出端外接电阻相同情况下,失调温漂愈小,输出电压愈大(不失真情况),相对误差的数值愈小。当然在测量数据时,由于元件和仪器本身也存在一定的误差,读数还存在偶然误差;导致最终结果存在一定的不可避免的误差。

九、实验总结

在做这个实验之前,我首先遇到的问题是如何来设计电路图,在模电课上老师给我们讲了可以用两个集成运放来设计加法、减法、比例等运算电路,但是真正当你自己来设计的时候往往不知道如何下手,于是我仔细的研读了课文中关于加法和减法器的原理和特性,并在同学的帮助之下设计出来了电路图。然后就是在电脑上面进行仿真,仿真的时候突然发现出来的图形跟自己想象的和书上的不一样,然后我就逐步减小输入的信号,调节输出波形的档位,渐渐地波形开始变化,数值也满足了关系式。总之做完这个实验体会挺多的,要做好一件事也不是一件容易的事,需要你花时间、需要你肯投入、需要你反复地去尝试。

电路仿真

交流-交流

直流-直流

交流-直流

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

加减法运算电路设计

电子课程设 ——加减法运算电路设计¥ 学院:电信息工程学院; 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月 19日

加减法运算电路设计 一、设计任务与要求 # 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: % 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 例如: 若选择加法运算方式,则(1001) 2+(0111) 2 =(10000) 2 十进制9+7=16, 并在七段译码显示器上显示16; 若选择减法运算方式,则(1001) 2-(0111) 2 =(00010) 2 十进制9-7=2, 并在七段译码显示器上显示02。 三、选择器件 ~ 1.器件种类: } ^ 表3-1 2.重要器件简介: (1)[ (2). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压:输出高电平电流:输出低电平电流: 8mA。 2).引脚图:

集成运算放大器的设计方法

集成运算放大器的设计方法 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

新型拓扑结构跨导反馈放大器

新型拓扑结构跨导反馈放大器 摘要:本文将提出一种新的拓扑结构的跨导反馈放大器(TFA)。这种拓扑结构提供的优点在于,它能够实现负的是标准的反相增益表达式。也就是,增益形式为:。我们也将表明,它可以实现标准的反相和同相增益,而同时在每个配置保持接近恒定带宽增益变化。第一个特征是使人们希望的拓扑结构滤波器有广泛的应用,因为TFA可以充当一个积分环节,从而使该放大器实现正面和负面的无损集成。不像以前的TFA配置,这种放大器还可以产生在第一和第四象限内的对数输入。通过实验证实这种放大器具有配置不同的增益,集成和对数的能力,设计的这种芯片采用台积电0.18umCMOS工艺的1.8 V单端电源。该芯片占用面积752.6um*581.2um的新的拓扑结构跨导反馈放大器和常规TFA作组成。这种新型TFA在单位增益配置是有15 MHz的频率带宽。 索引项:电流反馈放大器(CFA),运算放大器,跨导反馈放大器(TFA) 1、引言 在最近已经提出了跨导反馈放大器(TFA)是一个有吸引力的恒定带宽类放大器,如电流反馈放大器(CFAS)[1] - [6]。威尔逊的研究[1],[2]TFA可以认为由一个高增益环节,一个跨导环节和在两者间施加反馈回路组成。跨导级的输出端处的电压缓冲很像一个CFA,如图1(a)所示。需要注意的是有这种缓冲的存在,要确保有分压器作为负载的跨导元件,它产生的反馈电压成正比于跨导元件的输出电流。通过对电流反馈放大器(CFA)的非常规设计证明,即使不采用缓冲结构[7],[8],也等解决在CFA中的低电压问题。练习的重点是证明CFA不能通过常规设计实现。然而,在TFA和CFA之间存在若干不同之处。CFA结构如图1(b)所示。首先,在CFA的恒定带宽的设定是通过调节R2到某个优值实现的,而TFA的恒定带宽是通过调整R1实现的。在这两种情况下,改变R1和R2,TFA和CFA 的增益会分别变化。这两种放大器如图1,配置同相增益。其次,在CFA的闭环增益(LG)定义为[10],而在TFA中,闭环增益定义为[1],其中,,拓扑结构图如图1(a)所示。在图1(b)中,Z是由高输出阻抗的电流控制电流源和节点寄生电

设计一个一位十进制加减法++数字电路课程设计报告

课程设计报告 课程:微机系统与接口课程设计学号: 姓名: 班级: 教师:

******大学 计算机科学与技术学院 设计名称:设计一个一位十进制加减法器 日期:2010年1月 23日 设计内容: 1、0-9十个字符和“+”“-”分别对应一个按键,用于数据输入。 2、用一个开关控制加减法器的开关状态。 3、要求在数码显示管上显示结果。 设计目的与要求: 1、学习数字逻辑等电路设计方法,熟知加减法器、编码器、译码显示的工作原理及特点; 2、培养勤奋认真、分析故障和解决问题的能力。 设计环境或器材、原理与说明: 环境:利用多功能虚拟软件Multism8进行电路的制作、调试,并生成文件。器材:74LS283或者4008, 4个异或门(一片74LS86)(减法);74LS08,3输入或门(加法) 设计原理: 图1二进制加减运算原理框图 分析:如图1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 设计过程(步骤)或程序代码: 实验电路: 1:减法电路的实现: (1):原理:如图1所示(如下),该电路功能为计算A-B。若n位二进制 原码为N 原,则与它相对应的补码为N 补 =2n-N 原 ,补码与反码的关系式为N 补 =N 反 +1, A-B=A+B 补-2n=A+B 反 +1-2n (2):因为B○+1= B非,B○+0=B,所以通过异或门74LS86对输入的数B求 其反码,并将进位输入端接逻辑1以实现加1,由此求得B的补码。加法器相加的结果为: A+B 反 +1, (3):由于2n=24=(10000) 2 ,相加结果与相2n减只能由加法器进位输出信号完成。当进位输出信号为1时,它与2n的差为0;当进位输出信号为0时,它与2n差值为1,同时还要发出借位信号。因为设计要求被减数大于或等于减数,所以所得的差值就是A-B差的原码,借位信号为0。

mcos运算放大器版图的设计--毕业设计

摘要 集成电路掩膜版图设计是实现电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。 本文依据基本CMOS集成运算放大电路的设计指标及电路特点,绘制了基本电路图,通过Spectre进行仿真分析,得出性能指标与格元器件参数之间的关系,据此设计出各元件的版图几何尺寸以及工艺参数,建立出从性能指标到版图设计的优化路径。运算放大器的版图设计,是模拟集成电路版图设计的典型,利用Spectre 对设计初稿加以模拟,然后对不符合设计目标的参数加以修改,重复这一过程,最终得到优化设计方案。最后根据参数尺寸等完成了放大器的版图设计以及版图的DRC、LVS验证。 关键词:集成电路,运算放大器,版图设计,仿真

ABSTRACT Integrated circuit layout design is an essential design part to realize circuit mask manufacturing, it is not only related to the integrated circuit to function correctly, but also can greatly affect the performance of the integrated circuit, the cost and the power consumption.Based on the basic CMOS integrated operational amplifier circuit characteristic and design target, we have rendered the basic circuit diagram, and simulation by Spectre, the simulated results are derived parameters and their relationship between determining factors, thereby defining a line with the design target domain size and processing parameters, finally we builded an optimization from the performance index to layout design .Operational amplifier IC layout design, is the design model of analog integrated circuit layout . Here we used Spectre to design draft which should be simulated, then modified which do not comply with the design goals of the parameters , repeat the process, and finally get the optimization design scheme. Finally, according to the parameters such as size finished the amplifier layout design and the DRC, LVS verification. KET WORDS: Integrated circuit, Operational amplifier, layout design, Simulation

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

基于跨导运算放大器的基本网络综合方法

基于跨导运算放大器的基本网络综合方法 以常规电压运算放大器作为有源器件的有源RC滤波器存在以下缺点:工作频率不高,包含大量的无源RC网络,难以单片形成;性能参数一旦确定,不能再利用外部电信号进行调节。采用跨导运算放大器作为有源器件的滤波器则电路简单,可以不含电阻,只包含跨导运算放大器和电容,便于单片集成,高频性能好,可以工作在数十兆至百兆级领域;滤波器参数和跨导运算放大器的增益成线性关系,可以通过外部电信号进行调节。 一跨导运放的基本概念及应用原理 1.1 概述 从网络角度看,电子放大器是一种线性受控源,按照控制量、被控制量是电压还是电流进行划分,存在四种受控源,即人们熟知的电压控制电压源(VCVS),电压控制电流源(VCCS)、电流控制电流源(CCCS)和电流控制电压源(CCVS),与之对应的电子放大器也应该有四种类型,即电压型、跨导型、电流型和跨阻型。这四种放大器的关系是各有所长,各有所用,互相补充,形成一个完整的电子放大器家族。 跨导运算放大器(Operational Transconductance Amplifier,简称OTA)是一种电压输入、电流输出的电子放大器,增益称为跨导(gm)。其符号如图1所示。其中VI+、VI-分别为同向与反向输入电压,输入级的MOS晶体管工作在饱和区,为偏置输入电压,为输出电流: 其中。 图1

为跨导运算放大器跨导增益因子,其值由运算放大器的电路结构、CMOS管的几何尺寸和工艺参数决定。理想跨导放大器的条件是输入和输出电阻无穷大。现在已经有跨导放大器的产品,例如CA3060和 LM13600等等。由于跨导放大器内部只有电压-电流变换级和电流传输级,没有电压增益级,因此没有大幅度电压信号和米勒电容增倍效应,高频性能好,大信号下的转换速率也高,同时电路结构简单,电源电压和功率都比较低,这些高性能特点表明,在跨导放大器的电路中,电流模式部分起关键的作用。 跨导运算放大器的本质是线性电压控制电流源,具有下列特点:(1)输入电压控制输出电流,开环增益是跨导,输入级采 用外偏置方式,改变外偏置电流可以实现增益连续调 节。 (2)外偏置端如果加入数字信号可以起选通作用,实现对 主信号通道的开、关状态。 (3)电路结构简单、频率宽、高频性能好,而且可以灵活 的设计多端输入、多端输出电路。这种元件特别适合 于实现全集成连续时间滤波器。 跨导运算放大器分为双极型和MOS型两种,相对于双极型跨导运算放大器而言,CMOS跨导运算放大器的增益值较低,增益可调范围较小,但它的输入阻抗高、功耗低,容易与其他电路结合实现全CMOS集成系统。 跨导运算放大器的应用非常广泛,主要用途可以分为两方面:一方面,在多种线性和非线性模拟电路和系统中进行信号运算和处理;另一方面,在电压信号变量和电流模式信号处理系统之间作为接口电路,将待处理的电压信号变换为电流信号,再送入电流模式系统进行处理。 1.2 CMOS跨导运算放大器 (一)基本型CMOS跨导运算放大器 图2为基本CMOS跨导运算放大器。其中,M1,M2组成基本源耦差分跨导输入级,完成电压-电流变换;M3、M4是基本的电流镜,传输比为1,将外加偏置电流输送到差动输入级作尾电流,并控制其增益值;M5和M6、M7和M8、M9和M10组成3个基本电流镜,对输入级的差动输出电流移位和导向,以便提供推挽式单端输出电流。

加减法运算电路设计

电子课程设 ——加减法运算电路设计 学院:电信息工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月19日

加减法运算电路设计 一、设计任务与要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 3.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16,并在七段译码显示器上显示16; 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。 三、选择器件 1.器件种类: 表3-1 2.重要器件简介: (1) . 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压: 4.75V--5.25V 输出高电平电流: -0.4mA 输出低电平电流: 8mA 。 2).引脚图: 图3-1 引出端符号: A1–A4 运算输入端 B1–B4 运算输入端 C0 进位输入端 序号 元器件 个数 1 74LS283D 2个 2 74LS86N 5个 3 74LS27D 1个 4 74LS04N 9个 5 74LS08D 2个 6 七段数码显示器 4个 7 74LS147D 2个 8 开关 19个 9 LM7812 1个 10 电压源220V 1个 11 电容 2个 12 直流电压表 1个

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

减法运算电路

减法运算电路 减法运算电路有四种: 1、单运放减法电路。 2、差分输入组态电路。 在满足 21R R = [] 121 i i f o U U R R U -= f R R =3 方法一:依据法则列出 f I I =1 分别求出 ?=-U 根据+-=U U 32I I = ?=+U 得 出 o U 与输入量的关系 方法二:由迭加原理求出-U 和+U ?? ??????+-=+++=-f o i o f i f f R U R U R U R R R U R R R U 1111 11 f R R R //1=- 22 2323R U R U R R R U i i ?=+= ++ 32//R R R =+ +-=U U 1122R U R R U R R R U i f i f o ?-??= ∴-+ (可推广的例子) 当两输入端外电路平衡时,+-=R R ,则2 1 22 i f i f o U R R U R R U - = 当 f R R R ==21时, 则 12i i o U U U -= 3、加减混合运算电路 特点: 加量从同相端加入 减量从反相端加入 依据: 0==+ -i I U U 方法一:依据法则列出方程 f I I I =+21 然后求解?? ==+-U U 543I I I =+ 寻找出o U 与输入量的关系 方法二:利用迭加原理分别得到+-U U .或直接由推广式得出: ? ?????+-?? ????+?= - + 22114433R U R U R R U R U R R R U i i f i i f o

( 5215 42////////R R R R R R R R ==-+) 当两输入端外电路平衡时,. +-=R R 2 2 11 41 33i f i if i f i f o U R R U R R U R R U R R U - - + = 当f R R R R R R =====54321时, [] 21431 i i i i f o U U U U R R U --+= 当 f R R =1时, 1234i I i i o U U U U U --+= (实现了加减混合运算) 4、双运放减法电路 特点: 由两级运放组成 第一级的输出为第二级的一个输入信号 4 2211111i i f i f o U U R R U R R U =??? ???+-= ? ?? ???++-=?? ????+-=22211142332442332i f i f f i f i f i f o U R R U R R R R U R R U R R U R R U 可见,加减混合运算亦可由两级反相求和电路来完成。

加减运算电路设计

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:加减运算电路设计 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

根据反相与同相加法运算电路的运算关系,输出电压与各个输人电压的运算的关系为 单运放加减运算电路的外电路阻值不易计算和调整,双运放电路不仅克服了,上述缺点,而且对运放本身共模抑制比的要求也较低,如图6-2-2所示。 根据反相求和电路输出与输入关系,可得 若取RF1=R4,则

实验内容及步骤: 设计一个能完成的运算电路。要求选用单运放加减电路实现,其输出失调电压 1.电路形式及集成运算放大器的选择 电路形式如图6-2-1所示,集成运算放大器采用μA741,其输人失调电流=100~300nA 2.元器件参数的计算 (1)反馈电阻Rp的计算。Rp的最大值由运放允许的输出失调电压 和输人失调电流决定,即 其中,的大小按手册给定值或实测;为设计要求之一,包括输人失调电压,所引起的,而。与各电阻有关,故。为未知,所以只能按式(6-2-5) 取RF的值。 若未提此项要求,则Rr可在低于1MΩ内选取。RF值不宜过大,因为RF值越大,误差电压和噪声及漂移也越大; RF值也不宜过小,因为RF是负载的一部分,若过小,运放容易过载。 题意取,则 取RF=30kΩ (2)R1、R2、R3、R4的确定。设反向端、同向端各自输人信号为零时的直流等效电阻 RN、RP的值相等,可按反相求和原则计算R1、R2、R3、R4的值。

根据题目要求,则 (3)电阻R5的确定。R5是使RN=RP的平衡电阻,故首先计算在不包括R5时的反相端,同相端各自输入信号为零时的直流等效电阻RA和RB,即 4.电路的安装与调试 (1)静态的测试检查。 1)按电路图6-2-1搭接好实验电路,并细心检查运放组件各管脚位置的连接,切忌正负电源极性接反和输出端短路,否则会损坏集成块,确认无误后方可接通直电源。 2)将输入端接地,用万用表直流电压挡的相应量程测量输出端;此时,如果万用表显示不为零,则需要调整调零电位器旋钮,使输出端电压为零,在调零过程中,万用表的量程应从2V开始逐步变小,直至在毫伏级的量程下,测量输出为零时,结果最精确。此后的测量应保持电位器滑动端位置不变。 (2)动态测试。 1)当静态检查正常以后,将直流电源切断,输人端与“地”断开。 2)先对各输入信号电压进行初测,使其不超过规定的数值,然后

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

折叠式共源-共栅运算跨导放大器的设计

《IC课程设计》报告 折叠式共源-共栅运算跨导放大器的设计 姓名:王志伟 学号:U200713959 班级:0707 院系:控制系 专业:自动化 同组人姓名:田绍宇胡月

目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (2) 3.1 电路结构设计 (2) 3.2 主要电路参数的手工推导 (2) 3.2.1直流工作点分析 (2) 3.2.2带宽分析及原件参数计算 (3) 3.2.3直流增益的小信号模型分析 (4) 3.3 计算参数验证 (5) 4电路仿真 (5) 4.1交流特性仿真 (7) 4.2最大输出摆幅仿真 (9) 4.3共模输出的仿真验证 (11) 5讨论 (12) 6收获和建议 (13) 7参考文献 (14)

摘要:折叠式共源共栅结构的运算放大器不仅能提高增益、增加电源电压噪声抑制比、而且在输出端允许自补偿。 1设计目标 设计一款折叠式共源-共栅跨导运算放大器(Design a Folded Cascode OTA),其设计指标见表1,参考电路原理图如下图所示,用0.35um coms工艺。 图:折叠式共源-共栅跨导运算放大器 设计步骤与要点: 1.直流工作点的分析与设计(DC operation point design and analysis) 1) 假设所有的MOS管均工作在饱和区,VGS-VT=200mV,VDD=3V, VSS= 0V,计算OTA的最大输出摆幅。 2) 基于0.35 um CMOS工艺,计算和设计MOS管的尺寸,使OTA电路满 足最大输出摆幅的要求。 3) 以下数据可供设计参考 L1,2,3,4 = Lmin; Lmin= 1μm。 2.在HSpice电路仿真软件,对所设计的电路进行模拟仿真与设计

相关文档
最新文档