立体几何中球内切和外接问题完美版ppt课件

合集下载

8.3.2球的内接与外切类型总结课件(人教版)

8.3.2球的内接与外切类型总结课件(人教版)
和该长方体的5个面相切。
例如,装乒乓球的盒子
如果一个长方体有内切球,那么它一定是 正方体
类型二:长方体方体
长方体的外接球

=
+ +

长方体的(体)对角线等于球直径
设长方体的长、宽、高分别为a、b、c,
则a 2 b 2 c 2 (2 R) 2。
反馈练习
3、一个长方体的各顶点均在同一球面上,且
4 3
球的体积公式 :V R
3
2

R
球的截面问题
例1、一个距离球心为1的平面截球所得的圆面面积为π,则球的表

面积为_______。
解:作轴截面,如图所示,根据球的性质,可得OO′=1,设截
面圆的半径为r,球的半径为R,
因为截面圆的面积为π,所以可得πr2=π,解得r=1
又由R2=OO′2+r2=2,所以 R 2
同一个球面上,且CA CB CC1 a,
ACB 60,求该球的表面积。
O1
O
O2
结论2.直棱柱(圆柱)外接球半径
球心是上、下底面外接圆
圆心所连线段的中点;
o1 r
R
o
h 2
R r ( )
2
2

o2
2
(r为底面外接圆半径,h为体高)
1、已知一长方体的一个顶点处的三条棱长分别是 3, 3, 6
的直径与正方体的棱长是相等的,故可得球的直径为 2,所以球的半径为 1,
4

其体积是 ×π×13= .
3
3
5.圆柱内接于球,圆柱的底面半径为3,高为8,则球的表面积为
100π

内切球和外接球问题课件

内切球和外接球问题课件

• 结论1:正方体或长方体的外接球的球心其体对角 线的中点。
• 结论2:正棱柱的外接球的球心是上下底面中心的 连线的中点。
• 结论3:直三棱柱的外接球的球心是上下底面三角 形外心的连线的中点。
• 结论4:正棱锥的外接球的球心在其高上,具体位 置可通过计算找到。
• 结论5:若棱锥的顶点可构成共斜边的直角三角形, 则公共斜边的中点就是其外接球的球心。
正方体的内切球
例1
将棱长为2的正方体木块削成一个体积最 大的球,则这个球的表面积为 4
直棱柱的外接球
例2
已已知知直直三三棱棱柱柱AABBCCA1AB11BC11C的1的六六个个顶顶点点都在都在 球球OO的的球球面面上上,,若若AABBBCBC 1,1,ABACBC12012,0, AAAA11 22 33,,则则球球OO的的表表面面积积为为
几何体外接:一个几何体所有顶点都 在另一个几何体表面上。
正方体的内切球、棱切球、外接球
• 三、几何体的外接球与内切球问题:
• 1、外接球的问题: • 几何体外接球问题是立体几何中的难点和重要的
考点,此类问题实质是解决球的半径或确定球心0 的位置问题,其中球心的确定是关键。 • (1)由球的定义确定球心 • 在空间,如果一个定点与一个简单多面体的所有 顶点的距离都相等,那么这个定点就是该简单多 面体的外接球的球心。 • 由上述性质,可以得到确定简单多面体外接球的 球心的如下结论。
• 途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成 长方体或正方体.
• 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补 成长方体或正方体.
(3)由性质确定球心 利用球心与截面圆圆心的连线垂直于截面圆及球心与弦 中点的连线垂直于弦的性质,确定球心. 内切球的问题 对内切球有以下几点认识: 1、内切球球心到多面体各面的距离均相等,外接球球 心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重 合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

高考数学一轮复习第六章专题六几何体的外接球与内切球问题课件

)
A.4 3π
B.8π
C.12π
D.20π
解析:在底面△ABC 中,由正弦定理得底面△ABC 外接圆的
半径为
r=2sin B∠CBAC=2sin2
3π= 4
2.
直三棱柱 ABC-A1B1C1 的外接球的半径 R= ( 2)2+12= 3,
r2+A2A12=
则直三棱柱 ABC-A1B1C1 的外接球的体积为43πR3=4 3π.

λ=12时,cos〈E→B,E→G〉=2
3
2 .
∴cos〈E→B,E→G〉的最大值为2
3
2 .
∵A→C=(-1,1,0),A→F=(0,1,1), ∴E→B·A→C=E→B·A→F=0. ∴EB⊥AC,EB⊥AF. ∵AC∩AF=A,∴EB⊥平面 AFC. ∵E→B·E→G>0,∴cos〈E→B,E→G〉即为 EG 与平面 AFC 所成角
如图 6-7 所示,把四面体 S-ABC 补全为长方体 ABCD-SPMN, 其中 SA,AB,BC 为长方体中首尾相连且两两相互垂直的三条棱, 点 H 为 PM 中点.
图 6-7
∵GH∥AP,∴G,H 两点到平面 AEF 的距离相等.
设点 H 到平面 AEF 的距离为 d.
∵△APF 是边长为 2 2的等边三角形,
[例 1]已知一个圆锥底面半径为 1,母线长为 3,则该圆锥内
切球的表面积为( )
A.π
B.32π
C.2π
D.3π
解析:依题意,作出圆锥与球的轴截面,如图
6-1 所示.设球的半径为 r,易知轴截面三角形边 AB
上的高为 2 2,因为△SOD∽△SBE,所以SSOB=OBED,
即2 32-r=1r,解得 r= 22.所以圆锥内切球的表面

正方体内切球外接球棱切球图例演示ppt课件

正方体内切球外接球棱切球图例演示ppt课件
正方体的内切 球的半径是棱 长的一半
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正方体的棱切球
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正方体的内切球
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正方体的棱 切球半径是 面对角线长 的一半
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正方体的外接球
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
D A
D A11C BO Nhomakorabea1B1

空间几何体的外接球,内切球课件,公开课

空间几何体的外接球,内切球课件,公开课
例 10 若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求 球的表面积.
解2:补形法.
把正四面体放在正方体中,设正方体棱长为 x,
C

P
a=
2x,由题意 2R=
3x=

2a= 2
26a,

S
球=4π
R2=3πa2. 2
O

A
B
LOGO
S
O

A
C
B
锥体模型 侧面与底面垂直的几何体,外接球的球心在哪?
过PA,PD作轴截面,交BC边中点E, 连接OE,OF
∴PD=1,易知
, PE为斜高D,
由△POF∽△PED,得
r 1 r 3 23
,解得r=
1 3
3
3
S球=4πr2=
4 9
V球=
4 πr3=
3
4 81
A
轴截面法
作轴截面,球心在棱锥的高所在的直线上.
LOGO
P
O
C
D
E
B
P
rF
O
r
E D
探究新知 LOGO
的球心
16.已知三棱锥S ABC的所有顶点都在球O的球面上,
SC是球O的直径. 若平面SCA 平面SCB, SA AC ,
SB BC,三棱锥S ABC的体积为9, 则球O的表面积
为 36 . B
B
S
CS
OC
设OA r, 则 A
A
VA SBC
1 3
S△SBC
OA
1 3
1 2r r r 2
R2
r22
r12
(a)2 2

外接球、内切球模型总结专题课件-高三数学二轮复习备考课件

外接球、内切球模型总结专题课件-高三数学二轮复习备考课件
∴正三棱锥 − 的三条侧棱两两互相垂直
把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球
其直径为 =


=
1
2 + 2 + 2 + 2 + 2 + 2
2
=
1
2 + 2 + 2 =
2

1




2 + 2 + 2
半径为
6
2
4
球 = ×








找三条两两垂直的线段,直接用公式 2
即2 = 2 + 2 + 2 ,求出

2


= 2 + 2 + 2 ,


例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的
表面积是( C )
B. 20
A.16
C. 24
D. 32
= 2 ℎ = 16
则该四面体的外接球的表面积为( D )
A. 11
B. 7




1


C.
10

3
D.
40

3

��
2 = 2 + 2 − 2 ⋅ ⋅ cos120∘

=7
= 7

的外接球直径为
7 2 7

=
2 =
=
sin∠
3
3
2
∵ ⊥平面 ∴ ⊥ ∴ ∆是直角三角形
是这个球的外切多面体,这个球是这个多面体的内切球.

立体几何中的与球有关的内切外接问题分解课件

立体几何中的与球有关的内切外接问题分解课件
公式
设多边形的边数为$n$,则球的半径$r = frac{a}{2sinfrac{180^circ}{n}}$,其中$a$为多边形的外接圆半径。
球与圆柱体的内切总结词Fra bibliotek详细描述
当一个球完全内切于一个圆柱体时, 圆柱体的底面圆周和顶面圆周都与球 面相切,且圆柱的轴线通过球心。
设圆柱体的底面圆心为$O_1$,顶面 圆心为$O_2$,球心为$O$。由于球 内切于圆柱体,所以$OO_1 = OO_2 = r$,其中$r$为球的半径。同时, 圆柱体的底面圆周和顶面圆周都与球 面相切,所以底面圆心到球心的距离 等于底面圆的半径,顶面圆心到球心 的距离等于顶面圆的半径。
公式
设圆柱体的底面半径为$R_1$,顶面 半径为$R_2$,高为$h$,则球的半 径$r = frac{R_1 + R_2 + h}{2}$。
球与圆锥体的内切
总结词
当一个球完全内切于一个圆锥体时,圆锥体的底面圆周和侧面都与球面相切,且圆锥的轴 线通过球心。
详细描述
设圆锥体的底面圆心为$O_1$,球心为$O$。由于球内切于圆锥体,所以$OO_1 = r$, 其中$r$为球的半径。同时,圆锥体的底面圆周和侧面都与球面相切,所以底面圆心到球 心的距离等于底面圆的半径。
04
球的内切外接问题应用
球在几何题中的应用
球与多面体的内切和外接
在几何题目中,经常涉及到球与多面体的内切和外接问题,需要利用球心到多面 体的顶点的距离等于半径的原理来解决。
球的切线和割线定理
切线和割线定理是球在几何题中的重要应用,通过这些定理可以推导出球与其他 几何形状的位置关系。
球在物理题中的应用
02
球的内切问题
球与多边形的内切

高三一轮复习专题《球的内切和外接问题》课件

高三一轮复习专题《球的内切和外接问题》课件

C.
1变变:2式式则 :3题 题::在 一已A个知正各B方顶中 BC 体点. 的都各在, 顶一点个用 均球在面同上解 一的球正直 的四球棱面柱角 上高识 ,为三 若4,该得 体角 正积方r为, 体形 1的6,3表3则知 面,这从 积个为球2而 S的4,表O 则1面该积球为S的(体A2积为)AO 12 .
球外接于正方体
D A
D1 A1
C
对角面 A
B
O
设棱长为1
C1
A1
B1
C
2R 3
O
2
C1
球的内接正方体的对角线等于球直径。 S丙 4 R32 =3
二、构造法
1、构造正方体 例4、若三棱锥的三条侧棱两两垂直,且侧棱长
均为 3 ,则其外接球的表面积是 9
变式题(浙江高考题)已知球O的面上四点A、B、C、D, D 平 A A, 面 B A C B B ,D C A A B B C 3 则球O的体积等于
高为4,体积为16,则这个球的表面积为( C ) 【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为 (h
A. 1 6 B. C. 2 4 D. 2 0 3 2 为正四面体的高),且外接球的半径 ,从而可以通过截面图中 建立棱长与半径之间的关系。
66x433,x2h,hx
1, 2 3.
∴正六棱柱的底面圆的半径 r 1,球心到底面的距离 .∴外接球的半径 Rr2d21, V 2球43 .
d
3 2
小结 本题是运用公式 R2r2d2求球的半径的,该公式是求球
的半径的常用公式.
思考题:半径为R的球的外切圆柱(球与圆柱的侧面、两底面都 相切)的表面积为________,体积为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D A
D1 A1
C
B O
C1 B1
球的内接正方体的对角线等于球直径。
变式训练:已知正四面体内接于一个球,某人画出四个过球心的 平面截球与正四面体所得的图形如下,
则( D )




• A.以下四个图形都是正确的 • C.只有④是正确的
B.只有②④是正确的 D.只有①②是正确的
解法2:
A B
O D
r
62
例4、正三棱锥的高为 1,底面边长为 2 6 。求棱锥的
全面积和它的内切球的表面积。
解法2: 设球的半径为 r,则 VA- BCD =
A
VO-ABC + VO- ABD + VO-ACD + VO-BCD
1 3
2
VABC D3
2 6 4
1
O
D
1
3 r S全 32 23r
球与多面体的内切、外接
球的半径r 的棱长a有什么关系?
.r
a
一、 球体的体积与表面积

V球

4 R3
3
二、球与多面体的接、切
② S球面4R2
定义1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个 多面体的内切球 。
例 7、.若三棱锥 S-ABC 的底面是以 AB 为斜边的等腰直角三角形,AB=2,
SA=SB=SC=2,则该三棱锥的外接球的球心到平面 ABC 的距离为( )
S
A.
B.
C.1
D.
答案:D.
O
,即
.
C
A
M
B
7
若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
例 9、已知三棱锥的四个顶点都在球 的球面上,

4
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不 重合。
例4、正三棱锥的高为 1,底面边长为2 6 。求棱锥的全面
积和它的内切球的表面积。
A
解法1: 过侧棱AB与球心O作截面( 如图 )
在正三棱锥中,BE 是正△BCD的高,
1
O1 是正△BCD的中心,且AE 为斜高
所示,该斜三棱柱的体积为______.
4 举一反三-突破提升
2、(2015 郑州三模) 正三角形ABC的边长为2 3 ,将
它沿高AD翻折,使点B 与点C间的距离为 3 ,此时四面
体ABCD的外接球的体积为

BD DC 3
BC 3
A B C 等边三角形
BE 1 3 1 2 sin 60
1
剖析定义
一、由球心的定义确定球心
在空间,如果一个定点与一个简单多面体的 所有顶点的距离都相等,那么这个定点就是该简 单多面体的外接球球心。
1 一、定义法 针对讲解
D
AO
C
图4 B
2 求正方体、长方体的外接球的有关问题
2
求正方体、长方体的外接球的有关问题
②出现正四面体外接球时利用构造法(补形法),联系正方体。
AD 3 , BE 1 3
2
2 sin 60
OB OE2 BE2 9 1 13
4
2
V 4R2 13 13

,,
解:



因为 所以
所以知 所以可得图形为:


,
,求球 的体积。
P

中斜边为

中斜边为
B
取斜边的中点 , 在



所以在几何体中
,即 为该四面体的外接球的球心
A
O
C
所以该外接球的体积为
03
破译规律-特别提醒
2 例题剖析-针对讲解
04
举一反三-突破提升
4
举一反三-突破提升
1、(2015 海淀二模)已知斜三棱柱的三视图如图
B
O1
E
r 62 S 球 8526
C 注意:①割补法,②
V V多 多面 面 体 体 13S13全r内 S全 切球 r内切球
变式训练:一个正方体内接于一个球,过球心作一截面,如图所示,则截 面的可能图形是( )




• A .①② B.②④ C.①②③ D.②③④
ABC 所成的角为 60°,则该三棱锥外接球的体积为( )
A.
B.
C. 4
D.
5
正棱锥的外接球的球心是在其高上
例 6.一个正四棱锥的底面边长为 2,侧棱长为
则此球的表面积为 9 .
,五个顶点都在同一个球面上,
P
设外接球半径为 R,在△OO1A 中有
D
解得 . ∴ .
O1
O C
A B
6
测棱相等的锥体顶点的投影在底面外接圆心
体(棱长为a)的外接球半径R与内切球半径r之比 为R:r=3:1.外接球半径:R 6 a
4
内切球半径:r 6 a
12
结论:正四面体与球的接切问题,可通过线面关系证出,内切球
和外接球的两个球心是重合的,为正四面体高的四等分点,即定
有内切球的半径 r 1 h (为正四面体的高),且外接球的半径 R3r
,∴ ,
∴外接球的半径为
,∴球的表面积等于
.
解析:球内接多面体,利用圆内接多边形的性质求出小 圆半径,通常用到余弦定理求余弦值,通过余弦值再利 用正弦定理得到小圆半径 c 2r ,从而解决问题。
sin C
5
正棱锥的外接球的球心是在其高上
例 5 在三棱锥 P-ABC 中,PA=PB=PC= ,侧棱 PA 与底面
C 求正多面体外接球的半径
A B
O D
C
求正方体外接球的半径
4
直三棱柱的外接球的球心是上下底面三角形外心的连线的中点。
例 4、(2014)已知三棱柱 若该棱柱的体积为
的侧棱垂直于底面,各顶点都在同一球面上,

,则此球的表面积等于_________.
解:由已知条件得: ∵
,∴

,∴

设 的外接圆的半径为 ,则
例 2.(全国卷)一个四面体的所有棱长都为 2 ,四个顶点在
同一球面上,则此球的表面积为( )
A. 3
B. 4 C. 3 3 D. 6
2 破译规律-特别提醒
3
球与正四面体内切接问题
【例3】求棱长为a的正四面体内切球的体积.
3
球与正四面体内切接问题
3 正四面体内切、外接结论 球内接长方体的对角线是球的直径。正四面
O F D BC2 6 O1E 2 且AE 3
B
O1
E
S 全 31 226
3 3262 4
C
9 26 3
作 OF ⊥ AE 于 F 设内切球半径为 r,则 OA = 1 -r
∵ Rt △ AFO ∽ Rt △ AO1E
r 1r
S 球 8 5 262 3
相关文档
最新文档