标准柠檬酸钠还原法制备纳米金
金纳米合成

3.9nm金球:10mL 0.5mM柠檬酸钠(1.4705mg/10mL)和10mL 0.5mM HAuCl4混合(208.3uL母液+9791.7uL纯水)600uL 0.1M NaBH4(3.783mg/mL)25℃搅拌2min 25℃静置2h9.1nm金球:30mL 0.08M CTAB (0.874464g)和0.25mM HAuCl4(312.5uL母液)以及0.2mL 0.1M (17.612mg/mL)抗坏血酸混合加入10mL上述3.9nm金球种子25℃10min17.5nm金球:50mL纯水加热沸腾0.5mL 24mM HAuCl4 稍后1mL 1%柠檬酸钠5min结束水浴冷却13.2nm金球:75mL 2.2mM(0.04853g)柠檬酸钠溶液煮沸100℃0.5mL HAuCl4(24mM)10min28.3nm金球:上述13.2nm金球降温至90℃0.5mL HAuCl4(24mM)30min 90℃0.5mL HAuCl4(24mM)30min 90℃撤去加热冷却大粒径金球:上述27.5mL溶液26.5mL纯水1mL 60mM(0.017646g)柠檬酸钠溶液加热至90℃0.5mL HAuCl4(24mM)30min 90℃0.5mL HAuCl4(24mM)30min 90℃撤去加热冷却,以此循环。
金纳米棒:1、金种合成,5mL 0.5mM HAuCl4(即104.2uL母液和4895.8uL水)5mL 0.2M CTAB (0.364446g)混合;600uL 10mM NaBH4 2min 28℃2h;(0.3783mg/mL)2、5mL 0.2 M CTAB(0.364446g)(50uL、100uL、150uL、200uL、250uL)4mM AgNO3 (0.6794924mg/mL)25℃5mL 1mM HAuCl4(208.333uL母液和4791.667uL水)70uL 0.0788M抗坏血酸(13.878256mg/mL)混合;12uL金种2min 28℃3h 7000r离心10min 纯水洗涤金纳米花:1、金种合成,25mL 0.25mM HAuCl4(0.2604mL)煮沸0.25mL 5%柠檬酸钠酒红色后降温(10min左右)2、3.7mL 0.25mM HAuCl4(0.0385mL)通过1M NaOH pH 4.2、4.6、5.6、7.0、10.8、11 0.03mL 40mM NH2OH· HCl (2.7796mg/mL)以及0.3mL金种25℃。
超小金纳米粒子及其合成方法

超小金纳米粒子及其合成方法
超小金纳米粒子是指直径通常小于3纳米的金纳米颗粒,具有独特的光学、电子、催化和生物活性等性质。
超小金纳米粒子(AuNPs)在纳米科技领域有着举足轻重的地位。
由于它们的尺寸极小,甚至小于2纳米,这让它们拥有了与宏观尺度金材料截然不同的性质。
这些纳米粒子在生物医学领域中尤其受到关注,因为它们可以作为传感器的信号放大剂或标记物,提高检测生物分子、细胞、病毒等的灵敏度和选择性。
关于超小金纳米粒子的合成方法,主要有硫锚定方法、两亲性嵌段聚合物包裹法、柠檬酸钠还原法和晶体种子生长法等。
具体如下:
1. 硫锚定方法:通过Pt与碳基体中S原子之间的强烈化学相互作用来抑制纳米颗粒的烧结,从而在高温下形成平均尺寸小于5 nm的原子有序的纳米颗粒。
2. 两亲性嵌段聚合物包裹法:这种方法涉及使用两亲性嵌段聚合物作为外层包裹材料,金粒子位于中心。
这种合成方法可以有效地控制纳米粒子的大小和稳定性。
3. 柠檬酸钠还原法:这是一种经典的合成金纳米粒子的方法,通过使用柠檬酸钠作为还原剂和稳定剂,可以在水溶液中制备不同粒径的纳米金。
不过,这种方法通常用于制备粒径在100 nm以下的球状纳米金,对于更小的金纳米粒子则有一定的局限性。
4. 晶体种子生长法:通过使用较小的金胶体颗粒作为种子,可以控制合成出具有特定形状、尺寸、组成和结构的金纳米粒子。
这种方法允许人们对金纳米粒子的生长进行精确的控制。
总的来说,超小金纳米粒子因其独特的物理化学性质而在多个领域展现出广泛的应用潜力,而合成这些纳米粒子的方法也在不断地发展和完善,以满足不同应用的需求。
纳米金制备

纳米金制备2. 纳米金制备2.1 试剂和设备84消毒液、酸缸、去离子水、回流装置、电磁搅拌、氯金酸、柠檬酸三钠、0.22微米滤器、分光光度计、投射电子显微镜2.2 实验原理柠檬酸三钠还原氯金酸,形成胶体金颗粒。
一般可以制备16-147nm粒径的胶体金。
胶体金颗粒的大小取决与制备时加入柠檬酸三钠的量。
文献显示,200ml 0.01%氯金酸+6ml 1%柠檬酸三钠,可制备13nm的纳米金;200ml 0.01%氯金酸+2ml 1%柠檬酸三钠,可制备41nm的纳米金.2.3 胶体金质量的影响因素1)还原剂类型2)搅拌速度3)反应时间(沸腾时间、加入柠檬酸三钠的时间)4)器皿的清洁度5)环境、水质、试剂6)pH值2.4 相关溶液的配制1)0.01%氯金酸溶液。
0.02g氯金酸+200ml去离子水。
2)1%柠檬酸三钠溶液。
1g柠檬酸三钠+100ml去离子水。
2.5 实验步骤1)彻底清洗器皿。
84消毒液浸泡,酸缸过夜,去离子水冲洗,烘箱烘干备用。
2)纳米金制备。
0.01%氯金酸200ml,在油浴中加热至沸腾。
同时,使用磁力搅拌子以最大速率搅拌。
当冷凝管中出现第一滴回流时,加入新鲜配制的1%柠檬酸三钠溶液6ml。
颜色迅速变化,由黄色→黑色→紫色→深蓝→酒红色,至溶液变为透明的酒红色反应15min,停止加热,并继续搅拌,冷却至室温。
用双蒸水定容至原体积。
3)保存。
用0.22微米的硝酸纤维尼龙膜过滤,4摄氏度保存。
2.6 纳米金制备问题1)常用试剂的处理方式2)纳米金储存时间,容器和温度3)200ml 0.01%氯金酸能制备多少纳米金4)纳米金颗粒粒径的控制方式5)器皿的清洁方式6)纳米金标记蛋白。
纳米金的制备及金标核酸链

纳米金的制备所用玻璃器皿置于新鲜配置的王水(浓盐酸和浓硝酸体积比为1:3)中浸泡,超纯水充分清洗干净。
纳米金的制备采用柠檬酸钠还原法[4]。
具体过程如下:于100 mL二次蒸馏水中加入1.0 mL 1%的氯金酸(HAuCl4·4H2O),搅拌加热至沸腾,然后迅速加入3.0 mL 1%的柠檬酸钠,观察溶液由由淡黄色很快变为灰色,继而转变为蓝黑色,最后逐渐变为稳定的红色。
15 min后移去加热装置,继续搅拌冷却至室温。
将制备好的纳米金溶液置于棕色玻璃试剂瓶中,4 ℃下保存备用。
纳米金的粒径和形貌通过透射电镜(TEM,JEM-100CXⅡ)表征,为13 nm左右的球形纳米颗粒(图2.1)。
制备稳定探针修饰的纳米金具体标记过程如下[196]:首先将制得的金溶胶浓缩一倍,于1 mL浓缩的纳米金中缓慢加入18 μL 15.3 μM稳定探针,室温放置16 h后逐滴加入110 μL 100 mM 磷酸缓冲溶液(pH 7.4),随后分两次加入28.5 μL 2 M NaCl进行老化,每次间隔8 h,溶液最终总的一价离子强度(包括K+和Na+)约为0.12 M。
离心分离,最后将沉积物分散于600 μL 10 mM PBS中,4 ℃保存备用。
纳米金标记探针(GNP-Probe)的制备按照文献[244]方法并略有修改。
具体过程如下:将巯基修饰的核酸链(40µL 41.5 µM的P1和160 µL等浓度P2的混合溶液)加入到1 mL金纳米颗粒溶液中。
16 h后,用0.1 M PBS(由0.1 M Na2HPO4和0.1 M KH2PO4混合所得,pH 7.0)将该胶体溶液调节到磷酸盐的浓度为10 mM。
在此后的盐老化过程中,分三次加入一定量的2 M NaCl 和0.1 M PBS混合溶液,使溶液中NaCl的浓度分别为0.1 M、0.2 M和0.3 M,磷酸盐的浓度均为10 mM,每次加完后静置8 h。
纳米金溶液实验报告

一、实验目的1. 熟悉纳米金溶液的制备方法。
2. 学习纳米金溶液的表征方法。
3. 掌握纳米金溶液的基本性质。
二、实验原理纳米金溶液是一种具有优异催化性能、稳定性和生物相容性的材料,广泛应用于催化、生物传感器、药物递送等领域。
纳米金溶液的制备通常采用柠檬酸钠还原法,通过控制反应条件,可以得到不同粒径和形貌的纳米金颗粒。
三、实验材料与仪器1. 实验材料:- 黄金纳米颗粒- 柠檬酸钠- 蒸馏水- 0.1mol/L盐酸溶液- 氢氧化钠溶液- 硫酸铜溶液- 氯化钠溶液- 氨水2. 实验仪器:- 磁力搅拌器- 烧杯- 烧瓶- 移液器- 酒精灯- 超声波清洗器- 分光光度计- 扫描电子显微镜(SEM)- 透射电子显微镜(TEM)四、实验步骤1. 纳米金溶液的制备(1)取5mL黄金纳米颗粒溶液置于烧杯中,加入0.1mol/L盐酸溶液,搅拌均匀。
(2)逐滴加入柠檬酸钠溶液,同时搅拌,直至溶液呈淡黄色。
(3)将烧杯置于磁力搅拌器上,继续搅拌30分钟。
(4)用蒸馏水稀释溶液至所需浓度。
2. 纳米金溶液的表征(1)紫外-可见光谱分析:将制备的纳米金溶液在特定波长下进行紫外-可见光谱分析,确定纳米金溶液的吸收峰位置。
(2)扫描电子显微镜(SEM)分析:将纳米金溶液滴在载玻片上,晾干后进行SEM 分析,观察纳米金颗粒的形貌和尺寸。
(3)透射电子显微镜(TEM)分析:将纳米金溶液滴在碳膜上,晾干后进行TEM分析,观察纳米金颗粒的形貌、尺寸和分散性。
五、实验结果与分析1. 紫外-可见光谱分析:纳米金溶液在520nm处出现特征吸收峰,表明制备的纳米金溶液具有典型的表面等离子体共振特性。
2. 扫描电子显微镜(SEM)分析:SEM图像显示,纳米金颗粒呈球形,粒径分布均匀,尺寸在15nm左右。
3. 透射电子显微镜(TEM)分析:TEM图像显示,纳米金颗粒呈球形,粒径分布均匀,尺寸在15nm左右,分散性好。
六、实验结论1. 通过柠檬酸钠还原法成功制备了纳米金溶液,粒径分布均匀,尺寸在15nm左右。
柠檬酸钠还原法制备纳米金 最小

柠檬酸钠还原法制备纳米金最小柠檬酸钠还原法是一种简单有效的制备纳米金的方法,其原理是利用柠檬酸钠作为还原剂将金离子还原为金颗粒。
本文将一步一步回答有关柠檬酸钠还原法制备纳米金的问题。
第一步:制备柠檬酸钠溶液柠檬酸钠(Na3C6H5O7)是一种白色结晶固体,可在化学试剂商店购买。
首先,将适量的柠檬酸钠加入无水蒸馏水中,搅拌至完全溶解,得到柠檬酸钠溶液。
溶液的浓度可以根据需要进行调整。
第二步:制备金盐溶液金盐溶液是指含有金离子的溶液,常用的金盐有氯金酸(HAuCl4)、三氯化金(AuCl3)等。
可以通过购买金盐或自行合成金盐,这里以氯金酸为例进行介绍。
首先,将适量的氯金酸加入无水蒸馏水中,并将溶液搅拌至金盐完全溶解。
溶液的浓度可以根据需要进行调整。
第三步:还原制备纳米金将制备好的柠檬酸钠溶液缓慢滴加到金盐溶液中,同时用磁力搅拌使两种溶液充分混合。
在滴加柠檬酸钠溶液的同时,可以观察到溶液的颜色由无色逐渐变为红色或橙色,这是金颗粒在形成的过程中发生的现象。
当滴加完柠檬酸钠溶液后,继续搅拌一段时间,使溶液充分反应。
在反应过程中,溶液会逐渐变得更加浑浊,这是由于纳米金颗粒的形成。
第四步:纳米金颗粒的分离经过一定时间的反应后,纳米金颗粒已经形成。
为了将纳米金颗粒从溶液中分离出来,可以采用离心机进行离心分离。
将反应溶液转移到离心管中,设置适当的离心条件,使纳米金颗粒沉淀到离心管的底部。
然后,将上清液轻轻倾倒掉,收集沉淀物即可得到纳米金颗粒。
第五步:纳米金颗粒的表征分离得到的纳米金颗粒可以通过多种分析方法进行表征,如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外可见吸收光谱等。
通过这些分析方法,可以得到纳米金颗粒的晶体结构、形貌、大小分布等信息。
最后,根据纳米金颗粒的制备需要,可以对实验条件进行优化,如柠檬酸钠与金盐的摩尔比、反应时间、反应温度等。
通过调整这些条件,可以控制纳米金颗粒的形成速率和尺寸,实现对纳米金颗粒的精确控制。
胶体金(纳米金Gold Nanoparticles)的制备步骤和注意事项

胶体金(纳米金Gold Nanoparticles)的详细制备步骤和注意事项胶体金的制备一般采用还原法,常用的还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。
下面介绍最常用的制备方法及注意事项。
1、玻璃容器的清洁:玻璃表面少量的污染会干扰胶体金颗粒的生成,一切玻璃容器应绝对清洁,用前经过酸洗、硅化。
硅化过程一般是将玻璃容器浸泡于5%二氯二甲硅烷的氯仿溶液中1分钟,室温干燥后蒸馏水冲洗,再干燥备用。
专用的清洁器皿以第一次生成的胶体金稳定其表面,弃去后以双蒸馏水淋洗,可代替硅化处理。
2、试剂、水质和环境:氯金酸极易吸潮,对金属有强烈的腐蚀性,不能使用金属药匙,避免接触天平称盘。
其1%水溶液在4℃可稳定数月不变。
实验用水一般用双蒸馏水。
实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。
金颗粒容易吸附于电极上使之堵塞,故不能用pH电极测定金溶液的pH值。
为了使溶液pH值不发生改变,应选用缓冲容量足够大的缓冲系统,一般采用柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。
但应注意不应使缓冲液浓度过高而使金溶胶自凝。
3、柠檬酸三钠还原法制备金溶胶:取0.01%氯金酸水溶液100ml 加热至沸,搅动下准确加入1%柠檬酸三钠水溶液0.7ml,金黄色的氯金酸水溶液在2分钟内变为紫红色,继续煮沸15分钟,冷却后以蒸馏水恢复到原体积,如此制备的金溶胶其可见光区最高吸收峰在535nm,A1cm/535=1.12。
金溶胶的光散射性与溶胶颗粒的大小密切相关,一旦颗粒大小发生变化,光散射也随之发生变异,产生肉眼可见的显著的颜色变化,这就是金溶胶用于免疫沉淀或称免疫凝集试验的基础。
金溶胶颗粒的直径和制备时加入的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加入的柠檬酸三钠量,可制得不同颜色的金溶胶,也就是不同粒径的金溶胶,见附表。
附表100 ml 氯金酸中柠檬酸三钠的加入量对金溶胶粒径的影响1%柠檬酸三钠ml 0.30 0.45 0.70 1.00 1.50 2.00金溶胶颜色蓝灰紫灰紫红红橙红橙吸收峰(nm) 220 240 535 525 522 518径粒(nm) 147 97.5 71.5 41 24.5 154、柠檬酸三钠-鞣酸混合还原剂:用此混合还原剂可以得到比较满意的金溶胶,操作方法如下:取4ml1%柠檬酸三钠(Na3C6H5O7.2H2O),加入0~5ml1%鞣酸,0~5ml 25mmo/L K2CO2(体积与鞣酸加入量相等),以双蒸馏水补至溶液最终体积为20ml,加热至60℃取1ml1%的HAuCl4,加于79ml双蒸馏水中,水浴加热至60℃,然后迅速将上述柠檬酸-鞣酸溶液加入,于此温度下保持一定时间,待溶液颜色变成深红色(约需0.5~1小时)后,将溶液加热至沸腾,保持沸腾5分钟即可。
柠檬酸钠还原法制备金纳米粒子实验步骤

柠檬酸钠还原法制备金纳米粒子实验步骤一、试剂和材料1) 柠檬酸钠(Na3C6H507•2H2O,AR) 天津市化学试剂三厂2) 氯金酸溶液(HAu Cl4•4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。
3) 所用水均为超纯水(电阻值大于15 MΩ)4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。
5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等.实验方法(一)小粒径金纳米粒子(约15 nm)的制备1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。
将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。
注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。
注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通风橱中清洗。
王水用后回收作为最后清洗器具使用。
2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。
3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。
4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。
注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。
冷凝管充满水后,将冷却水水量调小,以节省用水。
5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。
6. 保持四氯金酸溶液在剧烈沸腾与均匀搅拌的状态下,使用10mL 刻度吸量管量取5.4 mL 之38.8 mM 柠檬酸钠溶液,自冷凝管上端快速加入,观察记录瓶中溶液颜色之变化及时间。