聚类算法简介-ppt

合集下载

聚类算法入门教程PPT课件

聚类算法入门教程PPT课件

3
聚类图示
聚类中没有任何指导信息,完全按照数据的分布进行类别划分
4
什么是分类?
• 数据集合D a ta ,类别标记集合 C
x D a ta , C la ss(x ) C
• 数据集合: 训练数据 TrainData 待分类数据 ClassData
• 已知 x T r a i n D a t a ; k o n w C l a s s ( x ) & & C l a s s ( x ) C • 问题: t C la s s D a ta ;C la s s (t) ? • 方法:根据训练数据获得类别划分标准 f ( x )
14
Rand
• Set any two data in testing corpus as a pair-point; • If testing corpus has n data, there is n*(n-1)/2 pair-points • a) One pair-point is in same cluster in testing corpus, and in
属于不同维度的特征的关系以 Semantic(Aim,Ajn)表示
• Unbalance Similarity
r
U nbalance(A i,A j) w m (A imA jm )2 m 1
不同特征在数据相似度计算中的作用不同
10
聚类有效性函数(一)
• 最小误差(J e ):
c个 类 别 , 待 聚 类 数 据 x, m i为 类 别 Ci的 中 心 ,
• Precision and Recall • Purity • Rand Value • Intra-cluster similarity

聚类算法层次方法ppt课件

聚类算法层次方法ppt课件

层次聚类方法
一般来说,有两种类型的层次聚类方法:
• 凝聚层次聚类:采用自底向上策略,首先将每个对象作为单独 的一个原子簇,然后合并这些原子簇形成越来越大的簇,直到 所有的对象都在一个簇中(层次的最上层),或者达到一个终 止条件。绝大多数层次聚类方法属于这一类。
• 分裂层次聚类:采用自顶向下策略,首先将所有对象置于一个 簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一个 簇,或者达到某个终止条件,例如达到了某个希望的簇的数目, 或者两个最近的簇之间的距离超过了某个阈值。
不具有很好的可伸缩性,因为合并或分裂的决定需要检查 和估算大量的对象或簇。
Page 16
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
层次聚类的改进
一个有希望的方向是集成层次聚类和其他的聚类技术,形 成多阶段聚类。在下面的内容中会介绍四种这类的方法:
主要内容
凝聚和分裂层次聚类 BIRCH:利用层次方法的平衡迭代归约和聚类
ROCK:分类属性的层次聚类算法 CURE:基于质心和基于代表对象方法之间的中间策略
Chameleon:利用动态建模的层次聚类算法
Page 3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
某个任意的阈值时聚类过程就会终止,则称其为单连接算
法。
当一个算法使用最大距离
度量簇间距离时,有时
称为最远邻聚类算法。如果当最近簇之间的最大距离超过
某个任意阈值时聚类过程便终止,则称其为全连接算法。

层次聚类算法课件

层次聚类算法课件

层次聚类形成的树状图能够直观地展示聚 类的过程和结果,便于理解和分析。
适用于任意形状的簇
对异常值敏感
层次聚类不受簇形状的限制,可以发现任 意形状的簇。
层次聚类对异常值比较敏感,异常值可能 会对聚类结果产生较大影响。
层次聚类算法的分类
01
根据是否进行分裂可以分为凝聚 层次聚类和分裂层次聚类。
02
根据距离度量方式可以分为最小 距离层次聚类、最大距离层次聚 类和平均距离层次聚类等。
对于具有非凸形状的簇,层次 聚类算法可能无法找到最优的 聚类结果。这是因为该算法基 于距离度量来构建簇,而距离 究
CHAPTER
案例一:社交网络用户群体的层次聚类
总结词
社交网络用户群体的层次聚类是利用层次聚类算法对社交网络中的用户进行分类的一种 应用。
特征选择
选择与聚类目标最相关的特征,去除冗余特征。
特征标准化
将特征值缩放到统一尺度,如归一化或标准化。
距离度量的选择
欧氏距离
适用于连续型数据,计算两点之间的直线距 离。
皮尔逊相关系数
适用于连续型数据,衡量两个变量之间的线 性关系。
余弦相似度
适用于连续型数据,衡量两个向量之间的夹 角大小。
Jaccard相似度
索、图像识别、目标检测等应用。
谢谢
THANKS
05 层次聚类算法的优缺点分析
CHAPTER
优点分析
灵活性
层次聚类算法能够处理各种形状和大小的簇,而 不仅仅是圆形或球形的簇。它能够识别出具有复 杂结构的簇,使得聚类结果更加符合实际情况。
稳健性
对于异常值和噪声数据,层次聚类算法通常具有 较好的稳健性。因为异常值和噪声数据对距离计 算的影响较小,所以它们不太可能对聚类结果产 生重大影响。

数据挖掘--聚类课件ppt

数据挖掘--聚类课件ppt

混合变量相异度计算
p
d(f) ij
d (i, j) 1
p
其中
d
( ij
f
) 为单个类型变量定义的距离;
p为变量的个数。
聚类分析中的数据类型
向量对象的距离算法
0 1 2 2
在某些应用中,如信息
0
4
3
0
检索,文本文档聚类,生 .......... .........
物学分类中,需要对大量
主要聚类方法的分类
划分聚类方法
划分方法将给定的数据集划分成k份,每份为一个簇。 划分方法通常采用迭代重定位技术,尝试通过对象 在簇之间的移动在改进划分。
主要聚类方法的分类
层次聚类方法
层次聚类方法创建给定数据 对象集的层次分解。一般可 以分为凝聚法与分裂法。
凝聚法:也称为自底向上的 方法,开始将每个对象形成 单独的簇,然后逐次合并相 近的对象或簇,直到满足终 止条件。
计算欧几里得距离与曼哈顿距离
聚类分析中的数据类型
二元变量
0 1
属性的取值仅为0或1, 0表示该变量不会出现,
1
1
..........
1表示该变量出现。
..........
设二q元为变对量象相i与异j度都计取算1的变量的 ..个.....数...
0 1
0
0
.........
.........
(6) UNTIL E不再明显地发生变化。
k-means算法
1. 初始化聚类中心 (k=3);
2. 根据每个样本到各个中 心的距离,计算k个簇。
3. 使用每个簇的样本,对 每个簇生成新的中心。
.......
4

机器学习应用之聚类介绍课件

机器学习应用之聚类介绍课件

层次聚类算法
01
原理:将数据 点按照相似度 进行层次化分 组,形成树状 结构
02
03
优点:可以处 理大规模数据, 对噪声和异常 值具有较强的 鲁棒性
缺点:计算复 杂度较高,需 要多次迭代才 能得到最终结 果
04
应用场景:适 用于需要发现 数据内部层次 结构的场景, 如客户细分、 文档分类等
基于密度的聚类算法
外部评估:通过实际应 用场景中的效果进行评 估,如分类准确率、预 测准确率等
实验对比:选择不同的 聚类算法进行实验,比 较聚类效果,选择最优 算法进行实际应用
聚类应用案例
客户细分
社交媒体:根据用户行为 和兴趣进行细分,提高广
告投放效果
医疗行业:根据患者病史 和健康状况进行细分,提
高医疗服务质量
01
DBSCAN(Density-Based Spatial Clustering of Applications with Noise):基于密度的噪声应 用空间聚类算法,通过计算每个点的邻域密度来识别聚类。
OPTICS(Ordering Points To Identify the Clustering Structure ):基于密度的聚类结构识别排 序算法,通过计算每个点的可达密度和可达距离来识别聚类。
内部指标:如簇内距离、簇间距 离等,通过计算聚类内部和聚类
之间的相似度来评估聚类效果
可视化评估:通过绘制聚类结果 图,观察聚类结果的分布情况,
以评估聚类效果
聚类评估实践
内部评估:通过聚类结 果的轮廓系数、 Calinski-Harabasz指 数等指标进行评估
交叉验证:将数据集划 分为训练集和测试集, 分别进行聚类,然后比 较聚类结果

聚类分析法ppt课件全

聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024

聚类 课件

聚类 课件
根据某种模型进行聚类,如高斯混合 模型、神经网络聚类等。
基于网格的聚类算法
将数据空间划分为网格,然后在网格 上进行聚类,如STING算法、 CLIQUE算法等。
02
K-means聚类算法
K-means算法的原理
K-means算法是一种基于距离的聚 类算法,通过迭代过程将数据点划分 为K个聚类,使得每个数据点与其所 在聚类的中心点之间的距离之和最小 。
DBSCAN算法的步骤
01 扫描所有点,标记为核心点、边界点和噪 声点。
02 对于每个核心点,以其为起点,扩展与其 密度相连的区域。
03
将扩展的区域内的所有点标记为同一簇。
04
重复上述步骤,直到所有点都被处理。
DBSCAN算法的优缺点
01
优点
02
对异常值具有较强的鲁棒性。
能够发现任何形状的簇。
03
互信息
总结词
衡量聚类结果与真实类别之间相似度的指标,值越大表示聚 类效果越好。
详细描述
互信息是一种衡量聚类结果与真实类别之间相似度的指标, 其计算方法为聚类结果与真实类别之间的熵值之差。如果聚 类效果好,则聚类结果与真实类别之间的相似度会较高,熵 值之差会较小,因此互信息值会较大。
调整兰德指数
总结词
步骤2
重复以下步骤,直到满足终止条件
• 步骤2.1
将每个数据点与最近的簇中心点合并,形成新的 簇中心点。
• 步骤2.2
更新簇中心点为新合并的簇中所有点的平均值或中 心点。
• 步骤2.3
重复步骤2.1和步骤2.2,直到所有数据点都归入某 个簇或达到预设的簇数量。
输出聚类结果。
步骤3
层次聚类算法的优缺点
DBSCAN算法的优缺点

谱聚类算法讲解ppt课件

谱聚类算法讲解ppt课件
wij w ji
sij xi KNN ( x j ) and x j KNN ( xi )
10
Spectral Clustering 谱聚类
谱聚类基础一:图-邻接矩阵
(3)全连接法:
通过核函数定义边权重,常用的有多项式核函数,
高斯核函数和Sigmoid核函数。使用高斯核函数构建邻接
1 1
Rcut(G1 , G2 ) Cut (G1 , G2 )
n1 n2
n1、n 2划分到子图1和子图2的顶点个数
Rcut (G1 , G2 )
1 1

w

ij
n2
iG1 , jG2 n1
(n1 n2 ) 2

wij
量的相似矩阵S
邻接矩阵W。
6
Spectral Clustering 谱聚类
谱聚类基础一:图-邻接矩阵
构建邻接矩阵 W 主要有三种方法 :

-近邻法

K近邻法
• 全连接法
7
Spectral Clustering 谱聚类
谱聚类基础一:图-邻接矩阵
(1) -近邻法:
设置一个距离阈值
,然后用欧式距离
2
27
Spectral Clustering 谱聚类
(2) Ratio Cut





qi




二分类:
n1
n2 n
n2
n1n
i G1
= 1
i G2
Rcut (G1 , G2 )
w q q
2
iG1 , jG2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 2.确定模型:确定每个簇的类中心和半径阈值 r。 • 3.利用最近邻分类方法对测试集中的每个对象 进行分类;
实验数据集KDD CUP
• KDD Cup1999入侵数据包是真正的网络 数据,它是在军事网络坏境中运用非常 广泛的模拟入侵攻击所得到的数据集。 包含大约490万条数据纪录。通过检测 记录中是否包含有攻击行为以及攻击行 为的类别,把记录标记成为正常记录或 是某种攻击的记录。并且认为这些标记 都是正确可信的。
Thank You!
Si
衡量同一类别内数据的平均误差和;
聚类算法的简单分类
• • • • 基于划分: 基于层次: 基于密度: 基于网格: K-means, K-medoids HFC DBSCAN CLIQUE , STING
K-means
• 初始参数-类别数&初始类别中心; • 聚类有效性函数-最小误差; • 优点: 聚类时间快; • 缺点: 对初始参数敏感; 容易陷入局部最优;
c个类别,待聚类数据x,mi为类别Ci的中心, mi
xCi
x
| Ci |
Je || x mi ||2
i 1 xCi
c
Je越小聚类结果越好
Je
衡量属于不同类别的数据与类别中心的的误差和;
• 最小方差:
1 Si 2 n
xCi x' Ci

|| x x ' ||2
K-means步骤
• • • • • 1 设置初始类别中心和类别数; 2 根据类别中心对数据进行类别划分; 3 重新计算当前类别划分下每类的中心; 4 在得到类别中心下继续进行类别划分; 5 如果连续两次的类别划分结果不变则停止算法;否则 循环2~5 ;
初始值敏感
初始化4个类别中心; 左侧的全体数据仅与第一个类别中心相似;
实验数据集KDபைடு நூலகம் CUP
• KDD Cup1999中总共包括了41个特征, 其中9个是离散的特征值,而32个是连 续的特征值。这些特征是从连接中抽取 出来专门为了区分正常连接和异常连接 的特征。
单个TCP连接的基本属性
特征名称 duration protocol_type service src_bytes dst_bytes flag land 特征描述 连接时间的长短 协议类型,比如tcp,udp等 目的端的网络服务,比如http,telnet等 从源端到目的端传输的字节数 从目的端到源端传输的字节数 连接的状态为normal还是error 源和目的主机/端口是否相同,相同为1,不同为0 数据类型 连续型 离散型 离散型 连续型 连续型 离散型 离散型
基于聚类的检测方法
• 主要由两大模块构成:
– 模型建立 – 模型评估
• 第一步:对训练集进行聚类; • 第二步:利用聚类结果得到分类模型; • 检测率:被正确检测的攻击记录数占整个攻击记录数的比例。 • 误报率:表示正常记录被检测为攻击的记录数占整个正常记录 数的比例。 • 未见攻击类型的检测率:表示测试集中出现而训练集中没有出 现的新类型攻击记录被正确检测的比例。
聚类算法简介
什么是聚类?
• 聚类就是对大量未知标注的数据集,按 数据的内在相似性将数据集划分为多个 类别,使类别内的数据相似度较大而类 别间的数据相似度较小;
为什么需要聚类?
对相似的 文档或超 链接进行 聚类,由 于类别数 远小于文 档数,能 够加快用 户寻找相 关信息的 速度;
聚类图示
聚类中没有任何指导信息,完全按照数据的分布进行类别划分
基于聚类的入侵检测方法 分类
• 有指导的入侵检测方法
– 通过在已标记为正常和入侵的数据集上进行训练, 建立分类模型,通过检测数据偏离各分类模型的偏 差来检测非正常的、潜在的入侵行为。 – 方法的有效性取决于训练数据集的质量。 – 要求训练数据被正确地标记为正常或攻击,如果标 记不正确,则算法可能会将某种入侵行为及其变种 看成正常而不能检测,从而使检测率降低,或者将 正常行为看成入侵,使误报率提高。
通过何种类别划分方式使类别划分结果达到有效性函数;
相似度
• Euclidean Distance
Euclidean( Ai , Aj ) ( Aim Ajm)
m 1 r
数据表示为向量,向量中某一维对应数据某一特征或属性
仅计算了数据向量中属于同一维度特征的权值差距;
聚类有效性函数
• 最小误差(Je):
层次聚类
• 分裂或凝聚
算法运行到某一阶段,类别划分结果达到聚类标准时 即可停止分裂或凝聚;
基于聚类的入侵检测方法
• 由于IDS需要处理的数据量非常大,对建模和 检测的准确性、时效性要求高,因此在研究基 于聚类的入侵检测方法时重点考虑三个方面的 要求:
– 聚类算法时间复杂度低; – 聚类精度高,能将不同类型的数据聚集在分离的簇 中; – 给簇准确做标记,能得到较准确的分类模型。
t ClassData; Class(t) f (t)
分类图示
训练数据 待分类数据
1 2
3
4
聚类与分类的区别
• 有类别标记和无类别标记; • 有监督与无监督; (有训练语料与无训练语料) • Train And Classification (分类); • No Train(聚类);
聚类的基本要素
wrong_fragment
urgent
错误分片的数目
紧急包的数目
连续型
连续型
实验数据集KDD CUP
• 实验数据集采用KDD Cup1999网络数据集。该数 据集中包含的攻击类型可以分成是四大类:
– DOS——拒绝服务攻击类型(比如,Syn flood); – U2R——非授权得到超级用户权限或运行超级用户函数 (比如,缓冲溢出攻击); – R2L——从远程计算机进行非授权的访问(比如,密码的 猜测及用户权限级别的提升); – Probing——扫描或者对其它系统漏洞的探测(比如,端 口扫描)。
• 定义数据之间的相似度; • 聚类有效性函数(停止判别条件);
1. 在聚类算法的不同阶段会得到不同的类别划分结果,可以通过聚类有效性函数 来判断多个划分结果中哪个是有效的; 2. 使用有效性函数作为算法停止的判别条件,当类别划分结果达到聚类有效性函 数时即可停止算法运行;
• 类别划分策略(算法);
实验数据集KDD CUP
攻击所属类别 DOS U2R R2L Probing 攻击名称 Back, land, Neptune, pod, smurf, teardrop Buffer_overflow, loadmodule, perl, rootkit ftp_write, guess_passwd,imap,multihop, phf,spy, warezclient,warezmaster Ipsweep,nmap,portsweep, satan
基于聚类的入侵检测方法 分类
• 无指导的入侵检测方法
– 是在未标记的数据上训练模型并检测入侵, 不需要任何先验知识,可能检测新的、未知 的入侵。
• 基于基本的假定:
– 正常行为较入侵行为占绝对的比例; – 入侵行为偏离正常行为是可以区别的。
聚类簇
无指导的聚类检测过程
• 1.模型建立
– 第一步:对训练集T1进行聚类,得到聚类结果 T1={C1,C2,…,Ck}; – 第二步:给簇做标记:统计每个簇Ci(1≤i ≤k)的 异常因子或数据量的大小。
什么是分类?
• 数据集合 Data ,类别标记集合 C
x Data, Class( x) C
• 数据集合: 训练数据 TrainData 待分类数据 ClassData • 已知 x TrainData; konwClass( x)&&Class( x) C • 问题:t ClassData; Class(t)? • 方法:根据训练数据获得类别划分标准 f ( x)
有指导的聚类检测过程
• 1.初始时,簇集合为空,读入一个新的对象; • 2.以这个对象构建一个新的簇,该记录的类别标记作为 新簇类别的标志; • 3.若已到数据库末尾,则转6,否则读入新对象,利用 给定的距离定义,计算它与每个簇间距离,并选择最小 的距离; • 4.若最小距离超过阈值r,或对象的类别与其最近簇的 类别不同,转2; • 5.否则将该对象并入具有最小距离的簇中并更新该簇的 各类属性值的统计频度及数值属性的簇中心,转3; • 6.结束。
相关文档
最新文档